Nuclei of the Human Raphe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence for 5-Hydroxytryptamine, Substance P, and Thyrotropin-Releasing Hormone in Neurons Innervating the Phrenic Motor Nucleus’
0270.6474/84/0404-1064$02.00/0 The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 4, pp. 1064-1071 Printed in U.S.A. April 1984 EVIDENCE FOR 5-HYDROXYTRYPTAMINE, SUBSTANCE P, AND THYROTROPIN-RELEASING HORMONE IN NEURONS INNERVATING THE PHRENIC MOTOR NUCLEUS’ JOSEPH R. HOLTMAN, JR.,*,’ WESLEY P. NORMAN,$ LANA SKIRBOLL,§ KENNETH L. DRETCHEN,* CLAUDIO CUELLO,II THEO J. VISSER,ll TOMAS HijKFELT,# AND RICHARD A. GILLIS* Departments of *Pharmacology and JfAnatomy, Georgetown University, Schools of Medicine and Dentistry, Washington, D. C. 20007; $Laboratory of Clinical Sciences and Biology, Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland 20205; 11Department of Anatomy, Oxford University, Oxford, England; VDepartment of Internal Medicine III and Clinical Endocrinology, Medical Faculty, Erasmus University, Rotterdam, The Netherlands; and #Department of Histology, Karolinska Institutet, Stockholm, Sweden Received July 29, 1983; Revised October 31, 1983; Accepted November 4, 1983 Abstract Retrograde tracing with a fluorescent dye (Fast Blue) combined with immunohistochemistry was used to identify putative neurotransmitter(s) at the phrenic motor nucleus in the cat. Fast Blue was injected bilaterally into the diaphragm of five cats, where each phrenic nerve enters the muscle. Seven days later the animals were perfusion fixed and tissue sections from the fourth, fifth, and sixth cervical spinal cord segments were analyzed using a fluorescence microscope. Retrogradely labeled fluorescent phrenic motor neuron cell bodies appeared in all of the segments but primarily in sections from the fifth segment. The same or adjacent transverse sections were then used for the demonstration of the distribution of the neurotransmitters 5-hydroxytryptamine (5HT), substance P, and thyrotropin-releasing hormone (TRH) in the area of the phrenic motor nucleus using the indirect immunofluorescence technique. -
Activation of Raphe Nuclei Triggers Rapid and Distinct Effects on Parallel Olfactory Bulb Output Channels
Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kapoor, Vikrant, Allison Provost, Prateek Agarwal, and Venkatesh N. Murthy. 2015. “Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels.” Nature neuroscience 19 (2): 271-282. doi:10.1038/nn.4219. http:// dx.doi.org/10.1038/nn.4219. Published Version doi:10.1038/nn.4219 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29002684 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Neurosci Manuscript Author . Author manuscript; Manuscript Author available in PMC 2016 August 01. Published in final edited form as: Nat Neurosci. 2016 February ; 19(2): 271–282. doi:10.1038/nn.4219. Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels Vikrant Kapoor1,2,†, Allison Provost1,2, Prateek Agarwal1,2, and Venkatesh N. Murthy1,2,† 1Center for Brain Science, Harvard University, Cambridge, MA 02138 2Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA 02138 Abstract The serotonergic raphe nuclei are involved in regulating brain states over time-scales of minutes and hours. We examined more rapid effects of serotonergic activation on two classes of principal neurons in the mouse olfactory bulb, mitral and tufted cells, which send olfactory information to distinct targets. -
Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry
HYPOTHESIS AND THEORY published: 20 December 2018 doi: 10.3389/fncel.2018.00506 Scaling Our World View: How Monoamines Can Put Context Into Brain Circuitry Philipp Stratmann 1,2*, Alin Albu-Schäffer 1,2 and Henrik Jörntell 3 1 Sensor Based Robotic Systems and Intelligent Assistance Systems, Department of Informatics, Technical University of Munich, Garching, Germany, 2 German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Weßling, Germany, 3 Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden Monoamines are presumed to be diffuse metabotropic neuromodulators of the topographically and temporally precise ionotropic circuitry which dominates CNS functions. Their malfunction is strongly implicated in motor and cognitive disorders, but their function in behavioral and cognitive processing is scarcely understood. In this paper, the principles of such a monoaminergic function are conceptualized for locomotor control. We find that the serotonergic system in the ventral spinal cord scales ionotropic signals and shows topographic order that agrees with differential gain modulation of ionotropic subcircuits. Whereas the subcircuits can collectively signal predictive models of the world based on life-long learning, their differential scaling continuously adjusts these models to changing mechanical contexts based on sensory input on a fast time scale of a few 100 ms. The control theory of biomimetic robots demonstrates that this precision scaling is an effective and resource-efficient -
Cellular Changes in Injured Rat Spinal Cord Following Electrical Brainstem Stimulation
brain sciences Article Cellular Changes in Injured Rat Spinal Cord Following Electrical Brainstem Stimulation Walter J. Jermakowicz 1,* , Stephanie S. Sloley 2, Lia Dan 2, Alberto Vitores 2, Melissa M. Carballosa-Gautam 2 and Ian D. Hentall 2 1 Department of Neurological Surgery, University of Miami, 1095 NW 14th Terr, Miami, FL 33136, USA 2 Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terr., Miami, FL 33136, USA; [email protected] (S.S.S.); [email protected] (L.D.); [email protected] (A.V.); [email protected] (M.M.C.-G.); [email protected] (I.D.H.) * Correspondence: [email protected]; Tel.: +1-615-818-3070 Received: 6 May 2019; Accepted: 27 May 2019; Published: 28 May 2019 Abstract: Spinal cord injury (SCI) is a major cause of disability and pain, but little progress has been made in its clinical management. Low-frequency electrical stimulation (LFS) of various anti-nociceptive targets improves outcomes after SCI, including motor recovery and mechanical allodynia. However, the mechanisms of these beneficial effects are incompletely delineated and probably multiple. Our aim was to explore near-term effects of LFS in the hindbrain’s nucleus raphe magnus (NRM) on cellular proliferation in a rat SCI model. Starting 24 h after incomplete contusional SCI at C5, intermittent LFS at 8 Hz was delivered wirelessly to NRM. Controls were given inactive stimulators. At 48 h, 5-bromodeoxyuridine (BrdU) was administered and, at 72 h, spinal cords were extracted and immunostained for various immune and neuroglial progenitor markers and BrdU at the level of the lesion and proximally and distally. -
Overview of the Reticular Formation (RF)
TeachSheet Reticular Formation & Diffuse modulatory system Overview of the Reticular Formation (RF) The term reticular formation refers to the neuronal network within the brainstem, although it continues rostrally into the thalamus and hypothalamus and caudally into the propriospinal network of the spinal cord. A “coordinating system” (like the Limbic system) with “connections” to sensory, somatic motor and visceral motor systems Organization can be subdivided into two neuronal cell “columns” (medial to lateral) as well as on the basis of their neurotransmitter release Neuronal columns (many nuclei and names, but these are some of the major ones): o “Medial tegmental field” (large-celled nuclei) . Origin of the reticulospinal pathway . Role in coordinating posture, eye and head movements. o “Lateral tegmental field” (smaller and fewer cells, shorter local projections) . Extends from the medulla to the pons . Coordinate autonomic and limbic functions (e.g. micturition, swallowing, mastication and vocalization) The functions of the reticular formation include their ability to coordinate motor and sensory brainstem nuclei: o Pattern generator . Eye movements; horizontal (PPRF) and vertical (riMLF) . Rhythmical chewing movements (pons) . Posture and locomotion (midbrain and pons) . Swallowing, vomiting, coughing and sneezing (medulla) . Micturition (pons) o Respiratory control (medulla); expiratory, inspiratory, apneustic and pneumotaxic o Cardiovascular control (medulla); vasomotor pressor/depressor, cardioacceleratory and inhibitory. Afferents arise from baroreceptors (carotid sinus and aortic arch), chemoreceptors (carotid sinus, lateral reticular formation chemosensitive area in the medulla) and stretch receptors (lung and respiratory muscles) . Efferents arise from reticular formation neurons within the pons and medulla o Sensory modulation or “gate” control . The term “gating” refers to “modulation” of synaptic transmission from one set of neurons to the next. -
Brain Structure and Function Related to Headache
Review Cephalalgia 0(0) 1–26 ! International Headache Society 2018 Brain structure and function related Reprints and permissions: sagepub.co.uk/journalsPermissions.nav to headache: Brainstem structure and DOI: 10.1177/0333102418784698 function in headache journals.sagepub.com/home/cep Marta Vila-Pueyo1 , Jan Hoffmann2 , Marcela Romero-Reyes3 and Simon Akerman3 Abstract Objective: To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background: Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus: This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms -
Opioid-Sensitive Brainstem Neurons Separately Modulate Pain and Respiration
OPIOID-SENSITIVE BRAINSTEM NEURONS SEPARATELY MODULATE PAIN AND RESPIRATION By Daniel R. Cleary A DISSERTATION Presented to the Neuroscience Graduate Program and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy June, 2012 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL _______________________________ This is to certify that the PhD dissertation of Daniel R. Cleary has been approved ____________________________________ Mentor : Mary M. Heinricher, PhD ____________________________________ Committee Chair: Michael C. Andresen, PhD ____________________________________ Member: Nabil J. Alkayed, MD, PhD ____________________________________ Member: Michael M. Morgan, PhD ____________________________________ Member: Shaun F. Morrison, PhD ____________________________________ Member: Susan L. Ingram, PhD TABLE OF CONTENTS Table of contents i List of figures and tables vii List of abbreviations ix Acknowledgements xi Abstract xiii Chapter 1. Introduction 1 1.1 Overview 2 1.2 Rostral ventromedial medulla and the maintenance of homeostasis 3 1.2.1 Convergence of pain modulation and homeostasis 3 1.2.2 Anatomy of brainstem modulation 4 1.2.2.1 RVM in the modulation of nociception 5 1.2.2.2 Respiratory modulation by raphe nuclei 5 1.2.2.3 Thermoregulation via raphe nuclei 7 1.2.2.4 Cardiovascular regulation 8 1.2.3 Specificity of function of RVM neurons 9 1.3 Modulation of pain in the maintenance of homeostasis 9 1.3.1 Anatomy of -
Distribution of Serotonin Receptors and Transporters in the Human Brain: Implications for Psychosis
From the Department of Clinical Neuroscience Karolinska Institutet, Stockholm, Sweden Distribution of Serotonin Receptors and Transporters in the Human Brain: Implications for Psychosis Katarina Varnäs Stockholm 2005 © Katarina Varnäs, 2005 ISBN 91-7140-280-2 Though this be madness, yet there is method in it. William Shakespeare ABSTRACT The serotonin (5-HT) system is thought to be involved in different psychiatric disorders, includ- ing depression and anxiety disorders, and is a major target for the pharmacological treatment of these conditions. The involvement of the 5-HT system in psychosis has been suggested, as 5- HT receptor agonism is a common mechanism of different classes of hallucinogenic drugs and several antipsychotics are 5-HT receptor antagonists. In this study, the distribution of 5-HT transporters and G-protein-coupled 5-HT recep- tors in the human brain was characterized using whole hemisphere autoradiographic tech- niques. In addition, a pilot investigation was performed to compare the densities of 5-HT bind- ing sites in brain tissue from patients who suffered from schizophrenia-like psychosis and con- trol subjects. We found higher levels of 5-HT transporters in several regions of the greater limbic lobe (subcallosal area, anterior cingulate gyrus, posterior uncus, insular and entorhinal cortices, and the temporal pole) as compared to the isocortex. Higher levels of 5-HT 1A receptors were also found in limbic cortices (subcallosal area, temporal pole, hippocampus, and entorhinal cortex) compared to isocortical structures. Dense binding to 5-HT 1B receptors was found in the ventral striato-pallidal system of the human brain. 5-HT 1B receptor mRNA expression was detected in the striatum with the highest levels in ventral striatal regions. -
Inputs to Serotonergic Neurons Revealed by Conditional Viral Transneuronal Tracing
The Journal of Comparative Neurology 514:145–160 (2009) Research in Systems Neuroscience Inputs to Serotonergic Neurons Revealed by Conditional Viral Transneuronal Tracing 1 2 1 JOA˜ O M. BRAZ, * LYNN W. ENQUIST, AND ALLAN I. BASBAUM 1Departments of Anatomy and Physiology and W.M. Keck Foundation Center for Integrative Neuroscience, University of California San Francisco, San Francisco, California 94158 2Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544 ABSTRACT the dorsal raphe (DR) and the nucleus raphe magnus of the Descending projections arising from brainstem serotoner- rostroventral medulla (RVM). Among these are several cat- gic (5HT) neurons contribute to both facilitatory and inhibi- echolaminergic and cholinergic cell groups, the periaque- tory controls of spinal cord “pain” transmission neurons. ductal gray, several brainstem reticular nuclei, and the nu- Unclear, however, are the brainstem networks that influ- cleus of the solitary tract. We conclude that a brainstem 5HT ence the output of these 5HT neurons. To address this network integrates somatic and visceral inputs arising from question, here we used a novel neuroanatomical tracing various areas of the body. We also identified a circuit that method in a transgenic line of mice in which Cre recombi- arises from projection neurons of deep spinal cord laminae nase is selectively expressed in 5HT neurons (ePet-Cre V–VIII and targets the 5HT neurons of the NRM, but not of mice). Specifically, we injected the conditional pseudora- the DR. This spinoreticular pathway constitutes an anatom- bies virus recombinant (BA2001) that can replicate only in ical substrate through which a noxious stimulus can acti- Cre-expressing neurons. -
Neuromodulation in Treatment of Hypertension by Acupuncture: a Neurophysiological Prospective
Vol.5, No.4A, 65-72 (2013) Health http://dx.doi.org/10.4236/health.2013.54A009 Neuromodulation in treatment of hypertension by acupuncture: A neurophysiological prospective Peyman Benharash1, Wei Zhou2* 1Division of Cardiothoracic Surgery, University of California, Los Angeles, USA 2Department of Anesthesiology, University of California, Los Angeles, USA; *Corresponding Author: [email protected] Received 28 February 2013; revised 30 March 2013; accepted 6 April 2013 Copyright © 2013 Peyman Benharash, Wei Zhou. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT study the effects of acupuncture on the hyper- tensive man. Hypertension is a major public health problem affecting over one billion individuals worldwide. Keywords: Central Nervous System; This disease is the result of complex interac- Electroacupuncture; Neurotransmitter; Brain Stem tions between genetic and life-style factors and the central nervous system. Sympathetic hyper- activity has been postulated to be present in 1. INTRODUCTION most forms of hypertension. Pharmaceutical Hypertension has become a serious public health prob- therapy for hypertension has not been perfected, lem impacting over one billion lives worldwide [1]. At often requires a multidrug regimen, and is as- the turn of this century, 7.6 million deaths were attribut- sociated with adverse side effects. Acupuncture, able to hypertension. The majority of this disease burden a form of somatic afferent nerve stimulation has occurred in working people in low to middle-income been used to treat a host of cardiovascular dis- countries, while its prevalence increases with age and the eases such as hypertension. -
Direct Gabaergic and Glycinergic Inhibition of the Substantia Gelatinosa from the Rostral Ventromedial Medulla Revealed by in Vivo Patch-Clamp Analysis in Rats
The Journal of Neuroscience, February 8, 2006 • 26(6):1787–1794 • 1787 Behavioral/Systems/Cognitive Direct GABAergic and Glycinergic Inhibition of the Substantia Gelatinosa from the Rostral Ventromedial Medulla Revealed by In Vivo Patch-Clamp Analysis in Rats Go Kato,1,2 Toshiharu Yasaka,1 Toshihiko Katafuchi,1 Hidemasa Furue,1 Masaharu Mizuno,3 Yukihide Iwamoto,2 and Megumu Yoshimura1 Departments of 1Integrative Physiology and 2Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan, and 3Division of Higher Brain Functions, Department of Brain Science and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan Stimulation of the rostral ventromedial medulla (RVM) is believed to exert analgesic effects through the activation of the serotonergic system descending to the spinal dorsal horn; however, how nociceptive transmission is modulated by the descending system has not been fully clarified. To investigate the inhibitory mechanisms affected by the RVM, an in vivo patch-clamp technique was used to record IPSCs fromthesubstantiagelatinosa(SG)ofthespinalcordevokedbychemical(glutamateinjection)andelectricalstimulation(ES)oftheRVM in adult rats. In the voltage-clamp mode, the RVM glutamate injection and RVM-ES produced an increase in both the frequency and amplitude of IPSCs in SG neurons that was not blocked by glutamate receptor antagonists. Serotonin receptor antagonists were unex- pectedly without effect, but a GABAA receptor antagonist, bicuculline, or a glycine receptor antagonist, strychnine, completely sup- pressed the RVM stimulation-induced increase in IPSCs. The RVM-ES-evoked IPSCs showed fixed latency and no failure at 20 Hz stimuli with a conduction velocity of Ͼ3 m/s (3.1–20.7 m/s), suggesting descending monosynaptic GABAergic and/or glycinergic inputs from the RVM to the SG through myelinated fibers. -
Enkephalin Systems in Diencephalon and Brainstem of the Rat
THE JOURNAL OF COMPARI1TIVE NEUROLOGY 220:310-320 (19113) Enkephalin Systems in Diencephalon and Brainstem of the Rat HENRY KHACHATURIAN, MICHAEL E. LEWIS, AND STANLEY J. WATSON Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48105 ABSTRACT The immunocytochemical distribution of [Leulenkephalin and an adre- nal enkephalin precursor fragment (BAM-22P)immunoreactivity was inves- tigated in the diencephalon and brainstem of rats pretreated with relatively high doses of colchicine (300-400 pgil0 pl intracerebroventricularly). The higher ranges of colchicine pretreatment allowed the visualization of exten- sive enkephalincontaining systems in these brain regions, some of which are reported for the first time. Immunoreactive perikarya were found in many hypothalamic and thalamic nuclei, interpeduncular nucleus, substan- tia nigra, the colliculi, periaqueductal gray, parabrachial nuclei, trigeminal motor and spinal nuclei, nucleus raphe magnus and other raphe nuclei, nu- cleus reticularis paragigantocellularis, vestibular nuclei, several nor- adrenergic cell groups, nucleus tractus solitarius, as well as in the spinal cord dorsal horn. In addition to the above regions, immunoreactive fibers were also noted in the habenular nuclei, trigeminal sensory nuclei, locus coeruleus, motor facial nucleus, cochlear nuclei, dorsal motor nucleus of the vagus, and hypoglossal nucleus. When adjacent sections to those stained for Peulenkephalin were processed for BAM-22P immunoreactivity, it was found that these two immunoreactivities were distributed identically at almost all anatomical locations. BAM-22P immunoreactivity was generally less pronounced and was preferentially localized to neuronal perikarya. The results of the present as well as the preceding studies (Khachaturian et al., '83) strongly suggest substantial structural similarity between the adrenal proenkephalin precursor and that which occurs in the brain.