Anatomical Connections of the Periaqueductal Gray: Specific Neural Substrates for Different Kinds of Fear
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evidence for 5-Hydroxytryptamine, Substance P, and Thyrotropin-Releasing Hormone in Neurons Innervating the Phrenic Motor Nucleus’
0270.6474/84/0404-1064$02.00/0 The Journal of Neuroscience Copyright 0 Society for Neuroscience Vol. 4, No. 4, pp. 1064-1071 Printed in U.S.A. April 1984 EVIDENCE FOR 5-HYDROXYTRYPTAMINE, SUBSTANCE P, AND THYROTROPIN-RELEASING HORMONE IN NEURONS INNERVATING THE PHRENIC MOTOR NUCLEUS’ JOSEPH R. HOLTMAN, JR.,*,’ WESLEY P. NORMAN,$ LANA SKIRBOLL,§ KENNETH L. DRETCHEN,* CLAUDIO CUELLO,II THEO J. VISSER,ll TOMAS HijKFELT,# AND RICHARD A. GILLIS* Departments of *Pharmacology and JfAnatomy, Georgetown University, Schools of Medicine and Dentistry, Washington, D. C. 20007; $Laboratory of Clinical Sciences and Biology, Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland 20205; 11Department of Anatomy, Oxford University, Oxford, England; VDepartment of Internal Medicine III and Clinical Endocrinology, Medical Faculty, Erasmus University, Rotterdam, The Netherlands; and #Department of Histology, Karolinska Institutet, Stockholm, Sweden Received July 29, 1983; Revised October 31, 1983; Accepted November 4, 1983 Abstract Retrograde tracing with a fluorescent dye (Fast Blue) combined with immunohistochemistry was used to identify putative neurotransmitter(s) at the phrenic motor nucleus in the cat. Fast Blue was injected bilaterally into the diaphragm of five cats, where each phrenic nerve enters the muscle. Seven days later the animals were perfusion fixed and tissue sections from the fourth, fifth, and sixth cervical spinal cord segments were analyzed using a fluorescence microscope. Retrogradely labeled fluorescent phrenic motor neuron cell bodies appeared in all of the segments but primarily in sections from the fifth segment. The same or adjacent transverse sections were then used for the demonstration of the distribution of the neurotransmitters 5-hydroxytryptamine (5HT), substance P, and thyrotropin-releasing hormone (TRH) in the area of the phrenic motor nucleus using the indirect immunofluorescence technique. -
Context-Dependent Modulation of Auditory Processing by Serotonin
Hearing Research 279 (2011) 74e84 Contents lists available at ScienceDirect Hearing Research journal homepage: www.elsevier.com/locate/heares Context-dependent modulation of auditory processing by serotonin L.M. Hurley a,*, I.C. Hall b a Indiana University, Jordan Hall/Biology, 1001 E. Third St, Bloomington, IN 47405, USA b Columbia University, 901 Fairchild Center, M.C. 2430, New York, NY 10027, USA article info abstract Article history: Context-dependent plasticity in auditory processing is achieved in part by physiological mechanisms that Received 3 October 2010 link behavioral state to neural responses to sound. The neuromodulator serotonin has many character- Received in revised form istics suitable for such a role. Serotonergic neurons are extrinsic to the auditory system but send 13 December 2010 projections to most auditory regions. These projections release serotonin during particular behavioral Accepted 20 December 2010 contexts. Heightened levels of behavioral arousal and specific extrinsic events, including stressful or Available online 25 December 2010 social events, increase serotonin availability in the auditory system. Although the release of serotonin is likely to be relatively diffuse, highly specific effects of serotonin on auditory neural circuitry are achieved through the localization of serotonergic projections, and through a large array of receptor types that are expressed by specific subsets of auditory neurons. Through this array, serotonin enacts plasticity in auditory processing in multiple ways. Serotonin changes the responses of auditory neurons to input through the alteration of intrinsic and synaptic properties, and alters both short- and long-term forms of plasticity. The infrastructure of the serotonergic system itself is also plastic, responding to age and cochlear trauma. -
Identification of Discrete Functional Subregions of the Human
Identification of discrete functional subregions of the human periaqueductal gray Ajay B. Satputea,1, Tor D. Wagerb, Julien Cohen-Adadc, Marta Bianciardid, Ji-Kyung Choid, Jason T. Buhlee, Lawrence L. Waldd, and Lisa Feldman Barretta,f aDepartment of Psychology, Northeastern University, Boston, MA, 02115; bDepartment of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO 80309; cDepartment of Electrical Engineering, École Polytechnique de Montréal, Montreal, QC, Canada H3T 1J4; Departments of dRadiology and fPsychiatry, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129; and eDepartment of Psychology, Columbia University, New York, NY, 10027 Edited by Marcus E. Raichle, Washington University in St. Louis, St. Louis, MO, and approved September 9, 2013 (received for review March 30, 2013) The midbrain periaqueductal gray (PAG) region is organized into Unfortunately however, standard fMRI is fundamentally lim- distinct subregions that coordinate survival-related responses ited in its resolution, making it uncertain which fMRI results lie during threat and stress [Bandler R, Keay KA, Floyd N, Price J in the PAG and which lie in other nearby nuclei. The overarching (2000) Brain Res 53 (1):95–104]. To examine PAG function in humans, issue is size and shape. The PAG is small and is shaped like a researchers have relied primarily on functional MRI (fMRI), but tech- hollow cylinder with an external diameter of ∼6 mm, a height of nological and methodological limitations have prevented research- ∼10 mm, and an internal diameter of ∼2–3 mm. The cerebral ers from localizing responses to different PAG subregions. -
The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety
The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Taylor, Norman E. "The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety." eNeuro 6, 1 (January 2019): e0018-18.2019 © 2019 Taylor et al As Published http://dx.doi.org/10.1523/eneuro.0018-18.2019 Publisher Society for Neuroscience Version Final published version Citable link https://hdl.handle.net/1721.1/126481 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ Confirmation Cognition and Behavior The Role of Glutamatergic and Dopaminergic Neurons in the Periaqueductal Gray/Dorsal Raphe: Separating Analgesia and Anxiety Norman E. Taylor,1 JunZhu Pei,2 Jie Zhang,1 Ksenia Y. Vlasov,2 Trevor Davis,3 Emma Taylor,4 Feng-Ju Weng,2 Christa J. Van Dort,5 Ken Solt,5 and Emery N. Brown5,6 https://doi.org/10.1523/ENEURO.0018-18.2019 1University of Utah, Salt Lake City 84112, UT, 2Massachusetts Institute of Technology, Cambridge 02139, MA, 3Brigham Young University, Provo 84602, UT, 4University of Massachusetts, Lowell 01854, MA, 5Massachusetts General Hospital, Boston 02114, MA, and 6Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139 Abstract The periaqueductal gray (PAG) is a significant modulator of both analgesic and fear behaviors in both humans and rodents, but the underlying circuitry responsible for these two phenotypes is incompletely understood. -
Neuronal and Glial Factors Contributing to Sex Differences in Opioid Modulation of Pain
www.nature.com/npp NEUROPSYCHOPHARMACOLOGY REVIEWS Neuronal and glial factors contributing to sex differences in opioid modulation of pain Dayna L. Averitt 1, Lori N. Eidson2, Hillary H. Doyle3 and Anne Z. Murphy3 Morphine remains one of the most widely prescribed opioids for alleviation of persistent and/or severe pain; however, multiple preclinical and clinical studies report that morphine is less efficacious in females compared to males. Morphine primarily binds to the mu opioid receptor, a prototypical G-protein coupled receptor densely localized in the midbrain periaqueductal gray. Anatomical and physiological studies conducted in the 1960s identified the periaqueductal gray, and its descending projections to the rostral ventromedial medulla and spinal cord, as an essential descending inhibitory circuit mediating opioid-based analgesia. Remarkably, the majority of studies published over the following 30 years were conducted in males with the implicit assumption that the anatomical and physiological characteristics of this descending inhibitory circuit were comparable in females; not surprisingly, this is not the case. Several factors have since been identified as contributing to the dimorphic effects of opioids, including sex differences in the neuroanatomical and neurophysiological characteristics of the descending inhibitory circuit and its modulation by gonadal steroids. Recent data also implicate sex differences in opioid metabolism and neuroimmune signaling as additional contributing factors. Here we cohesively present these lines -
Sclocco Brainstim2019.Pdf
Brain Stimulation xxx (xxxx) xxx Contents lists available at ScienceDirect Brain Stimulation journal homepage: http://www.journals.elsevier.com/brain-stimulation The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh-field (7T) fMRI study * Roberta Sclocco a, b, , Ronald G. Garcia a, c, Norman W. Kettner b, Kylie Isenburg a, Harrison P. Fisher a, Catherine S. Hubbard a, Ilknur Ay a, Jonathan R. Polimeni a, Jill Goldstein a, c, d, Nikos Makris a, c, Nicola Toschi a, e, Riccardo Barbieri f, g, Vitaly Napadow a, b a Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA b Department of Radiology, Logan University, Chesterfield, MO, USA c Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA d Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA e Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy f Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy g Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA article info abstract Article history: Background: Brainstem-focused mechanisms supporting transcutaneous auricular VNS (taVNS) effects Received 12 September 2018 are not well understood, particularly in humans. We employed ultrahigh field (7T) fMRI and evaluated Received in revised form the influence of respiratory phase for optimal targeting, applying our respiratory-gated auricular vagal 2 January 2019 afferent nerve stimulation (RAVANS) technique. Accepted 6 February 2019 Hypothesis: We proposed that targeting of nucleus tractus solitarii (NTS) and cardiovagal modulation in Available online xxx response to taVNS stimuli would be enhanced when stimulation is delivered during a more receptive state, i.e. -
Brain Structure and Function Related to Headache
Review Cephalalgia 0(0) 1–26 ! International Headache Society 2018 Brain structure and function related Reprints and permissions: sagepub.co.uk/journalsPermissions.nav to headache: Brainstem structure and DOI: 10.1177/0333102418784698 function in headache journals.sagepub.com/home/cep Marta Vila-Pueyo1 , Jan Hoffmann2 , Marcela Romero-Reyes3 and Simon Akerman3 Abstract Objective: To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background: Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus: This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms -
Opioid-Sensitive Brainstem Neurons Separately Modulate Pain and Respiration
OPIOID-SENSITIVE BRAINSTEM NEURONS SEPARATELY MODULATE PAIN AND RESPIRATION By Daniel R. Cleary A DISSERTATION Presented to the Neuroscience Graduate Program and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy June, 2012 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL _______________________________ This is to certify that the PhD dissertation of Daniel R. Cleary has been approved ____________________________________ Mentor : Mary M. Heinricher, PhD ____________________________________ Committee Chair: Michael C. Andresen, PhD ____________________________________ Member: Nabil J. Alkayed, MD, PhD ____________________________________ Member: Michael M. Morgan, PhD ____________________________________ Member: Shaun F. Morrison, PhD ____________________________________ Member: Susan L. Ingram, PhD TABLE OF CONTENTS Table of contents i List of figures and tables vii List of abbreviations ix Acknowledgements xi Abstract xiii Chapter 1. Introduction 1 1.1 Overview 2 1.2 Rostral ventromedial medulla and the maintenance of homeostasis 3 1.2.1 Convergence of pain modulation and homeostasis 3 1.2.2 Anatomy of brainstem modulation 4 1.2.2.1 RVM in the modulation of nociception 5 1.2.2.2 Respiratory modulation by raphe nuclei 5 1.2.2.3 Thermoregulation via raphe nuclei 7 1.2.2.4 Cardiovascular regulation 8 1.2.3 Specificity of function of RVM neurons 9 1.3 Modulation of pain in the maintenance of homeostasis 9 1.3.1 Anatomy of -
Medial Preoptic Area Afferents to Periaqueductal Gray Medullo- Output Neurons: a Combined Fos and Tract Tracing Study
The Journal of Neuroscience, January 1, 1996, 16(1):333-344 Medial Preoptic Area Afferents to Periaqueductal Gray Medullo- Output Neurons: A Combined Fos and Tract Tracing Study Tilat A. Rimi,* Anne 2. Murphy,’ Matthew Ennis,’ Michael M. Behbehani,z and Michael T. Shipley’ ‘Department of Anatomy, University of Maryland School of Medicine, Baltimore, Maryland 21201, and *Departments of Cell Biology, Neurobiolog.v, and Anatomy and 3Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267 We have shown recently that the medial preoptic area (MPO) second series of experiments investigated whether MPO robustly innervates discrete columns along the rostrocaudal stimulation excited PAG neurons with descending projec- axis of the midbrain periaqueductal gray (PAG). However, the tions to the medulla. Retrograde labeling of PAG neurons location of PAG neurons responsive to MPO activation is not projecting to the medial and lateral regions of the rostroven- known. Anterograde tract tracing was used in combination with tral medulla (RVM) was combined with MPO-induced Fos Fos immunohistochemistry to characterize the MPO -+ PAG expression. The results showed that a substantial population pathway anatomically and ,functionally within the same animal. (3743%) of Fos-positive PAG neurons projected to the Focal electrical or chemical stimulation of MPO in anesthetized ventral medulla. This indicates that MPO stimulation en- rats induced extensive Fos expression within the PAG com- gages PAG-medullary output neurons. Taken together, these pared with sham controls. Fos-positive neurons were organized results suggest that the MPO + PAG + RVM projection as 2-3 longitudinal columns. The organization and location of constitutes a functional pathway. -
Analysis of Pacemaker Activity in a Two-Component Model of Some
Analysis of pacemaker activity in a two-component model of some brainstem neurons Henry C. Tuckwell1,2∗, Ying Zhou3,, Nicholas J. Penington 4,5 1 School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia 2 School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia 3 Department of Mathematics, Lafayette College, 1 Pardee Drive, Easton, PA 18042, USA 4 Department of Physiology and Pharmacology, 5 Program in Neural and Behavioral Science and Robert F. Furchgott Center for Neural and Behavioral Science State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA ∗ Corresponding author: Henry C. Tuckwell, School of Electrical and Electronic Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; Tel: 61-481192816; Fax: 61-8-83134360: email: [email protected] September 11, 2018 arXiv:1704.03941v2 [q-bio.NC] 15 Apr 2017 1 Abstract Serotonergic, noradrenergic and dopaminergic brainstem (including midbrain) neu- rons, often exhibit spontaneous and fairly regular spiking with frequencies of order a few Hz, though dopaminergic and noradrenergic neurons only exhibit such pacemaker- type activity in vitro or in vivo under special conditions. A large number of ion channel types contribute to such spiking so that detailed modeling of spike generation leads to the requirement of solving very large systems of differential equations. It is use- ful to have simplified mathematical models of spiking in such neurons so that, for example, features of inputs and output spike trains can be incorporated including stochastic effects for possible use in network models. -
Reidun Ursin Changing Concepts on the Role of Serotonin in the Regulation of Sleep and Waking
Reidun Ursin Changing concepts on the role of serotonin in the regulation of sleep and waking The story of serotonin and sleep has been developing for more than 50 years, from the discovery in the 1950s that it had a role in brain function and in EEG synchronization. In parallel, the areas of sleep research and neurochemistry have seen enormous developments. The concept of serotonin as a sleep neurotransmitter was based on the effects of lesions of the brainstem raphe nuclei and the effects of serotonin depleting drugs in cats. The description of the firing pattern of the dorsal raphe nuclei changed this concept, initially to the entirely opposite view of serotonin as a waking transmitter. More recently, there has emerged a more complex view on the role of serotonin as a modulator of both waking and sleep. The effects of serotonin on sleep and waking may depend on which neurons are firing, their projection site, which postsynaptic receptors are present at this site, and, not the least, on the functional state of the system and the organism at a particular moment. Christopher A. Lowry, Andrew K. Evans, Paul J. Gasser, Matthew W. Hale, Daniel R. Staub and Anantha Shekhar Topographic organization and chemoarchitecture of the dorsal raphe nucleus and the median raphe nucleus The role of serotonergic systems in regulation of behavioral arousal and sleep-wake cycles is complex and may depend on both the receptor subtype and brain region involved. Increasing evidence points toward the existence of multiple topographically organized subpopulations of serotonergic neurons that receive unique afferent connections, give rise to unique patterns of projections to forebrain systems, and have unique functional properties. -
Inputs to Serotonergic Neurons Revealed by Conditional Viral Transneuronal Tracing
The Journal of Comparative Neurology 514:145–160 (2009) Research in Systems Neuroscience Inputs to Serotonergic Neurons Revealed by Conditional Viral Transneuronal Tracing 1 2 1 JOA˜ O M. BRAZ, * LYNN W. ENQUIST, AND ALLAN I. BASBAUM 1Departments of Anatomy and Physiology and W.M. Keck Foundation Center for Integrative Neuroscience, University of California San Francisco, San Francisco, California 94158 2Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544 ABSTRACT the dorsal raphe (DR) and the nucleus raphe magnus of the Descending projections arising from brainstem serotoner- rostroventral medulla (RVM). Among these are several cat- gic (5HT) neurons contribute to both facilitatory and inhibi- echolaminergic and cholinergic cell groups, the periaque- tory controls of spinal cord “pain” transmission neurons. ductal gray, several brainstem reticular nuclei, and the nu- Unclear, however, are the brainstem networks that influ- cleus of the solitary tract. We conclude that a brainstem 5HT ence the output of these 5HT neurons. To address this network integrates somatic and visceral inputs arising from question, here we used a novel neuroanatomical tracing various areas of the body. We also identified a circuit that method in a transgenic line of mice in which Cre recombi- arises from projection neurons of deep spinal cord laminae nase is selectively expressed in 5HT neurons (ePet-Cre V–VIII and targets the 5HT neurons of the NRM, but not of mice). Specifically, we injected the conditional pseudora- the DR. This spinoreticular pathway constitutes an anatom- bies virus recombinant (BA2001) that can replicate only in ical substrate through which a noxious stimulus can acti- Cre-expressing neurons.