Enhancing Interdisciplinarity for the Engineer of 2020
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Outline of Science
Outline of science The following outline is provided as a topical overview of • Empirical method – science: • Experimental method – The steps involved in order Science – systematic effort of acquiring knowledge— to produce a reliable and logical conclusion include: through observation and experimentation coupled with logic and reasoning to find out what can be proved or 1. Asking a question about a natural phenomenon not proved—and the knowledge thus acquired. The word 2. Making observations of the phenomenon “science” comes from the Latin word “scientia” mean- 3. Forming a hypothesis – proposed explanation ing knowledge. A practitioner of science is called a for a phenomenon. For a hypothesis to be a "scientist". Modern science respects objective logical rea- scientific hypothesis, the scientific method re- soning, and follows a set of core procedures or rules in or- quires that one can test it. Scientists generally der to determine the nature and underlying natural laws of base scientific hypotheses on previous obser- the universe and everything in it. Some scientists do not vations that cannot satisfactorily be explained know of the rules themselves, but follow them through with the available scientific theories. research policies. These procedures are known as the 4. Predicting a logical consequence of the hy- scientific method. pothesis 5. Testing the hypothesis through an experiment – methodical procedure carried out with the 1 Essence of science goal of verifying, falsifying, or establishing the validity of a hypothesis. The 3 types of -
Recommendations from the Academic Futures Working Group On
Recommendations from the Academic Futures Working Group on Interdisciplinary Education, Research and Creative Works Released to campus October 1, 2019 University of Colorado Boulder Table of Contents I. Background and Philosophy B. Interdisciplinarity, the Public University, and Serving the Public Good C. Campus Perspectives on Interdisciplinarity II. Interdisciplinarity in Teaching and Research A. Bringing Interdisciplinarity Front and Center B. Creating the Continuum of Interdisciplinary Education C. Interdisciplinary Research and Scholarship: Building on our Existing Interdisciplinary Strengths III. Creating sustainability and taking on our challenges IV. Creating a Budgetary Model for Campus that Supports Interdisciplinarity V. Conclusion 1 University of Colorado Boulder Committee Members Jim White, Interim Dean, College of Arts and Sciences (Lead) Waleed Abdalati, Director, CIRES and Professor, Geography, College of Arts and Sciences Max Boykoff, Associate Professor, ENVS/CIRES; Director, Center for Science and Technology Policy Andrew Calabrese, Associate Dean of Graduate Programs and Research, Professor of Media Studies, CMCI Margaret C. Campbell, Provost Professor of Marketing, Leeds School of Business Sharon Collinge, Professor, ENVS, College of Arts and Sciences Jackie Elliott, Associate Professor and Chair, Classics Oliver Gerland, Associate Professor, Theatre & Dance; Interim Director of the Humanities program Larry Levine, Associate Vice Chancellor for IT and CIO, Office of Information Technology Jana Milford, Professor, -
Foundations of Nursing Science 9781284041347 CH01.Indd Page 2 10/23/13 10:44 AM Ff-446 /207/JB00090/Work/Indd
9781284041347_CH01.indd Page 1 10/23/13 10:44 AM ff-446 /207/JB00090/work/indd © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION PART 1 Foundations of Nursing Science 9781284041347_CH01.indd Page 2 10/23/13 10:44 AM ff-446 /207/JB00090/work/indd © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 9781284041347_CH01.indd Page 3 10/23/13 10:44 AM ff-446 /207/JB00090/work/indd © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION CHAPTER Philosophy of Science: An Introduction 1 E. Carol Polifroni Introduction A philosophy of science is a perspective—a lens, a way one views the world, and, in the case of advanced practice nurses, the viewpoint the nurse acts from in every encounter with a patient, family, or group. A person’s philosophy of science cre- ates the frame on a picture—a message that becomes a paradigm and a point of reference. Each individual’s philosophy of science will permit some things to be seen and cause others to be blocked. It allows people to be open to some thoughts and potentially keeps them closed to others. A philosophy will deem some ideas correct, others inconsistent, and some simply wrong. While philosophy of sci- ence is not meant to be viewed as a black or white proposition, it does provide perspectives that include some ideas and thoughts and, therefore, it must neces- sarily exclude others. The important key is to ensure that the ideas and thoughts within a given philosophy remain consistent with one another, rather than being in opposition. -
Interdisciplinarity in Social Sciences: Does It Provide Answers to Current Challenges in Higher Education and Research?
Interdisciplinarity in Social Sciences: Does It Provide Answers to Current Challenges in Higher Education and Research? Edited by Tatjana Muravska, Žaneta Ozoliņa Contributing authors: Alexandre Berlin, Zane Cunska, Manfred J. Holler, Guna Japiņa, Sylvain Jouhette, Roswitha M. King, Juris Krūmiņš, Ilona Kunda, Iasonas Lamprianou, Kristīne Medne, Indriķis Muižnieks, Nils Muižnieks, Tatjana Muravska, Žaneta Ozoliņa, Romāns Putāns, Fernando Reis, Inna Šteinbuka, Anete Vītola, Zane Zeibote University of Latvia Press UDK 378.4 In 720 Contributing authors: Alexandre Berlin, Zane Cunska, Manfred J. Holler, Guna Japiņa, Sylvain Jouhette, Roswitha M. King, Juris Krūmiņš, Ilona Kunda, Iasonas Lamprianou, Kristīne Medne, Indriķis Muižnieks, Nils Muižnieks, Tatjana Muravska, Žaneta Ozoliņa, Romāns Putāns, Fernando Reis, Inna Šteinbuka, Anete Vītola, Zane Zeibote. Interdisciplinarity in Social Sciences: Does it Provide Answers to Current Challenges in Higher Education and Research? Riga, University of Latvia Press, 2011, p. 232, il. Editors Tatjana Muravska, Žaneta Ozoliņa Reviewers Professor Dr. habil. Rainer Arnold, Chair of Public and Comparative Law, Jean Monnet Chair ad Personam, University of Regensburg, Germany Professor Dr. habil. Kęstutis Kriščiūnas, Jean Monnet Professor, Director, Institute of Europe, Kaunas University of Technology, Lithuania Professor Dr. Tiiu Paas, Chair of Economic Modeling, Faculty of Economics and Management, Tartu University, Estonia Professor Dr. habil. Baiba Rivža, Full Member of the Latvian Academy of Sciences, -
Complexity and Interdiciplinarity - W
KNOWLEDGE MANAGEMENT, ORGANIZATIONAL INTELLIGENCE AND LEARNING, AND COMPLEXITY - Vol. II - Complexity and Interdiciplinarity - W. H. Newell COMPLEXITY AND INTERDISCIPLINARITY W. H. Newell School of Interdisciplinary Studies, Miami University, Oxford, Ohio USA Keywords: autopoiesis, boundary, chaos, complex, connect, cybernetic, emergent, fractal, holism, integrate, interact, interdisciplinary, interrelate, multidisciplinary, nonlinear, pattern, self-organize, system, team, transdisciplinary Contents 1. Introduction—Holism and Fragmentation, Order and Disorder 2. Interdisciplinarity Defined 3. The Organization of Interdisciplinarity 4. Complexity Defined 5. Simple, Complicated, and Complex Systems 6. Characteristics of Complex Systems 7. Other Forms of Complexity 8. Integrating Complexity and Interdisciplinarity 9. The Promise of Complexity and Interdisciplinarity Glossary Bibliography Biographical Sketch “The only way in which a human being can make some approach to knowing the whole of a subject is by hearing what can be said about it by persons of every variety of opinion and studying all modes in which it can be looked at by every character of mind. No wise man ever acquired his wisdom in any mode but this.” John Stuart Mill. Summary Together, theories of complexity and interdisciplinarity offer a way of thinking about our world that creates meaning and order while embracing fragmentation and recognizing the very real disorder all around us. The dichotomies of holism and fragmentation, order and disorder, can be replaced by complex systems that reveal hidden (albeitUNESCO partial) order in apparent randomness,– EOLSS and by interdisciplinary study that integrates fragmented insights from reductionist disciplines into holistic understanding. More pragmatically, interdisciplinary study of complex problems has the potential to identify solutionsSAMPLE that are manageable (becau CHAPTERSse they are built on recognizable patterns of behavior) while they are realistic (because they take into account the complex nature of each problem). -
Defining Terms for Integrated (Multi-Inter-Trans-Disciplinary) Sustainability Research
Sustainability 2011, 3, 1090-1113; doi:10.3390/su3081090 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Review Defining Terms for Integrated (Multi-Inter-Trans-Disciplinary) Sustainability Research Paul Stock 1,* and Rob J.F. Burton 2 1 Centre for the Study of Agriculture, Food and Environment and Department of Sociology, University of Otago, PO Box 56, Dunedin 9054, New Zealand 2 Centre for Rural Research, N-7491 Trondheim, Norway; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +64-03-479-9242; Fax: +64-03-479-5266. Received: 19 May 2011; in revised form: 11 July 2011 / Accepted: 18 July 2011 / Published: 26 July 2011 Abstract: Our contemporary social and ecological problems, including climate change, peak oil and food security, necessitate solutions informed by multiple backgrounds that singular disciplines seem unable to provide, and possibly, are even incapable of providing. The increasing occurrence of multi-, inter- and transdisciplinary (MIT) research projects speak to the recognition of that necessity. But as the literature and our own experiences bear out, just calling a project “beyond disciplinary” or integrated does not necessarily yield the intended outcomes or make progress toward alleviating the hurdles of bridging disciplines. Here we examine the distinctions between three categories (multidisciplinary, interdisciplinary and transdisciplinary) of integrated research and offer reflections on how sustainability researchers can categorize their research to improve common understandings. Keywords: transdisciplinary; sustainability; multidisciplinary; interdisciplinary; integrated research; research project; methods 1. Introduction Traditional disciplinary approaches to research have had a considerable and overwhelmingly positive impact on the development of scientific method in the modern world. -
Inclusive Worldviews: Interdisciplinary Research from a Radical Constructivist Perspective
INCLUSIVE WORLDVIEWS: INTERDISCIPLINARY RESEARCH FROM A RADICAL CONSTRUCTIVIST PERSPECTIVE ALEXANDER RIEGLER Center Leo Apostel Vrije Universiteit Brussel Krijgskundestraat 33, B-1160 Brussels E-mail:[email protected] Interdisciplinary inquiry presupposes an open worldview to enable the researcher to transcend the confinements of a specific discipline in order to become aware of aspects that are necessary to satisfyingly solve a problem. Radical construc- tivism offers a way of engineering such interdisciplinarity that goes beyond mere multi or pluridisciplinary approaches. In this paper I describe epistemological and methodological aspects of interdisciplinarity, discuss typical problems it faces, and carve out its relationship with knowledge and communication from a constructivist perspective. Five implications for interdisciplinary practice and science education conclude the paper. Keywords: Radical constructivism; black-boxing; knowledge; meaning 1. Introduction To me, science has always been an interdisciplinary endeavour. When I en- rolled at university, I intended to carry over the passion for astronomy I had developed in high school. But taking to the computational approach, I also became intrigued by the idea of building computational models of that which enables human scientists to do their job in the first place: cognition. In those days, I considered artificial intelligence a sort of meta solution to current problems in science. Rather than solving the actual problem, the solution concerns methods that solve a class of problems, e.g. all those scientific problems that arise due to cognitive insufficiencies of the human researcher. Soon I changed to study artificial intelligence and cognitive sci- ence and experienced my first “paradigm-switch” from mathematics-based science to computation-based research. -
Introduction to Philosophy of Science
INTRODUCTION TO PHILOSOPHY OF SCIENCE The aim of philosophy of science is to understand what scientists did and how they did it, where history of science shows that they performed basic research very well. Therefore to achieve this aim, philosophers look back to the great achievements in the evolution of modern science that started with the Copernicus with greater emphasis given to more recent accomplishments. The earliest philosophy of science in the last two hundred years is Romanticism, which started as a humanities discipline and was later adapted to science as a humanities specialty. The Romantics view the aim of science as interpretative understanding, which is a mentalistic ontology acquired by introspection. They call language containing this ontology “theory”. The most successful science sharing in the humanities aim is economics, but since the development of econometrics that enables forecasting and policy, the humanities aim is mixed with the natural science aim of prediction and control. Often, however, econometricians have found that successful forecasting by econometric models must be purchased at the price of rejecting equation specifications based on the interpretative understanding supplied by neoclassical macroeconomic and microeconomic theory. In this context the term “economic theory” means precisely such neoclassical equation specifications. Aside from economics Romanticism has little relevance to the great accomplishments in the history of science, because its concept of the aim of science has severed it from the benefits of the examination of the history of science. The Romantic philosophy of social science is still resolutely practiced in immature sciences such as sociology, where mentalistic description prevails, where quantification and prediction are seldom attempted, and where implementation in social policy is seldom effective and often counterproductive. -
Bachelor of Engineering Program in Robotics Engineering and Automation System
Bachelor of Engineering Program in Robotics Engineering and Automation System Production Engineering Department, Faculty of Engineering King Mongkut's University of Technology North Bangkok 1518 Pracharad 1 Rd., Wongsawang, Bangsue, Bangkok 10800 Thailand Tel. 02-555-2000 ext 8208 Fax 02-587-0029 Brief History Since founded in 1984, Production Engineering Department has offered only one undergraduate curriculum. With ample available resources, the department identifies the next step as a new curriculum responding to industrial needs. PE Students become so skillful that they have won many prizes in various robot competitions. Curriculum Objectives Produce graduates in Robotics Engineering and Automation System for industry and ASEAN. Produce students with skills and knowledge to proudly represent KMUTNB uniqueness. Support innovative creation according to KMUTNB philosophy Program of Study for Robotics Engineering & Automation System ( . 2556) Total = 143 Credits Semester 1 Semester 2 Semester 3 Semester 4 Semester 5 Semester 6 Summer Semester 7 Semester 8 = 18 Credits = 20 Credits = 22 Credits = 21 Credits = 18 Credits = 19 Credits = 240 hours = 11 Credits = 14 Credits 040203111 3(3-0-6) 040203112 3(3-0-6) 040203211 3(3-0-6) 010243102 3(3-0-6) 010243xxx 3(x-x-x) 010243xxx 3(x-x-x) 010243210 1(0-2-1) 010243211 3(0-6-3) Engineering Engineering Engineering Mechanics of Technical Elective Technical Elective p RE Project I RE Project II Course I Course II ) Mathematics I Mathematics II Mathematics III i Materials 0 - h 0 s 4 n 2 r - 0 e -
Higher Education Research and Development Survey, Fy
INFORMATION ONLY – DO NOT USE TO REPORT FORM APPROVED OMB No. 3145-0100 Expiration Date: 09/30/19 NATIONAL SCIENCE FOUNDATION ALEXANDRIA, VA 22314 HIGHER EDUCATION RESEARCH AND DEVELOPMENT SURVEY FY 2018 Please submit your survey data by January 31, 2019. Your participation in this survey provides important information on the national level of R&D activity. The National Science Foundation (NSF) is authorized to collect this information under the National Science Foundation Act of 1950, as amended. Your institution’s response is entirely voluntary. Response to this survey is estimated to require 54 hours. If you wish to comment on the time required to complete this survey, please contact Suzanne H. Plimpton of NSF at (703) 292-7556, or e-mail [email protected]. The Web address for submitting your data: http://www.herdsurvey.org/ Or mail this form to: ICF 530 Gaither Road, Suite 500 Rockville, MD 20850 Questions? Technical support: [email protected] (866) 936-9376 General survey questions: Michael Gibbons National Center for Science and Engineering Statistics National Science Foundation [email protected] (703) 292-4590 Thank you for your participation. INFORMATION ONLY – DO NOT USE TO REPORT What’s New for FY 2018 Changes to Question 1 • On row e1, institutionally financed research, instructions were updated to clarify that expenditures for institution research administration and support (e.g., office of sponsored programs) should be excluded. 2 INFORMATION ONLY – DO NOT USE TO REPORT Survey Definitions and Instructions This survey collects data on research and development (R&D) activities at higher education institutions. Please report R&D activities and expenditures for your institution’s 2018 fiscal year. -
Bibliometrics Development and Indicators in Science
Vol. 7(9), pp. 161-172, November 2015 DOI: 10.5897/IJLIS2015.0584 Article Number: C3192D155901 International Journal of Library and Information ISSN 2141-2626 Copyright © 2015 Science Author(s) retain the copyright of this article http://www.academicjournals.org/IJLIS Full Length Research Paper Development of bibliometrics in Colombia Cristina Restrepo Arango1* and Rubén Urbizagástegui Alvarado2 1Programa de Posgrado en Bibliotecología y Estudios de la Información Universidad Nacional Autónoma de México, México. 2Library and Information Science, University of California at Riverside, Science Library, Riverside, CA 92521 – 5900, USA. Received 8 April, 2015:Accepted 6 October, 2015 The literature on bibliometrics published by Colombian and foreign authors who selected Colombian academic journals or events held in the country to communicate their findings is analyzed. The publications by Colombian researchers published abroad were also collected and analyzed. The type of documents used by researchers, the journals most used, and the languages used for communicating their findings were also studied. The growth of the literature, the network of co-authorships, the more productive authors, and scientific fields most researched were also analyzed. It was found 255 papers were published in academic journals, most of them in Spanish language; 77% of authors have published just one document, while 23% of them made between 2 and 24 contributions. The production of this kind of literature is concentrated in the last decade as well as the collabortion behavior of authors. The literature is growing in an exponential form at a rate of 20% per year and doubling in size every 4 years. Network analysis identified six research groups in the country. -
Interactive Agenda Setting in the Social Sciences – Interdisciplinarity Elizabeth Shove & Paul Wouters
Interactive agenda setting in the social sciences – Interdisciplinarity Elizabeth Shove & Paul Wouters Introduction In this background paper we review a selection of reports and documents written about interdisciplinarity in the social sciences. We do so with the aim of provoking and informing discussion about how interdisciplinary research agendas emerge, stabilise and disappear. The concept of interdisciplinary is particularly relevant when thinking about research agenda setting in the social sciences. For example, in our workshop about research centres, the wish to promote interdisciplinarity seemed to be a key motivation for the creation of new teams and groups. Science policy makers and research managers around the world routinely see interdisciplinarity as a progressive force that helps break the shackles of narrow-minded academic specialisation. This is a core theme in Mode II knowledge production as characterised by Gibbons with reference to the UK research system in particular (Gibbons 1994; Nowotny 2001). Interdisciplinarity is important for many research centres and the ESRC is clearly not the only science agency to invest in teams that span several disciplines. New grand funding schemes such as the UK e-science programme (Hey 2002) and the US initiative in creating new cyberinfrastructures for science and education revolve around an intuition about the value of being interdisciplinary (Nentwich 2003). In the first part of this paper we take stock of claims made about interdisciplinary research: why is it needed, whose agendas it engages with, what is special about it, and how might it be organised and evaluated. The second part offers a critique of the reasoning on which many of these claims rest.