The Place of Photovoltaics in Poland's Energy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Public Participation and Transparency in Power Grid Planning
Public Participation and Transparency in Power Grid Planning Recommendations from the BESTGRID Project Handbook – Part 1 BESTGRID PARTNERS Transmission System Operator (TSO) Partners Natagora asbl www.natagora.be 50Hertz Transmission GmbH Julien Taymans (Waterloo-Braine l'Alleud project) www.50hertz.com [email protected] Dr Dirk Manthey, [email protected] Phone: +32 (0) 81 390 720 Phone: +49 (0) 30 5150 3419 98 rue Nanon, B-5000 Namur Eichenstr. 3A, D-12435 Berlin German Environment Aid (DUH) Elia System Operator NV www.duh.de www.stevin.be Liv Becker (Suedlink / Bertikow-Pasewalk) Jeroen Mentens (Stevin project) [email protected] [email protected] Phone: +49 (0) 30 2400 867 98 Phone: +32 (0) 2 546 7957 Hackescher Markt 4, D-10178 Berlin Christophe Coq (Waterloo-Braine l'Alleud project) Germanwatch e.V. [email protected] www.germanwatch.org Phone: +32 (0) 2 382 2334 Leon Monnoyerkaai 3, B-1000 Brussels Rotraud Hänlein, [email protected] Phone: +49 (0) 30 2888 356 83 National Grid Stresemannstr. 72, D-10963 Berlin www.nemo-link.com International Institute for Applied Systems Analysis (IIASA) Phil Pryor, [email protected] www.iiasa.ac.at Phone: +44 (0)7795 641 431 Warwick Technology Park, Gallows Hill, Warwick, Joanne Linnerooth-Bayer, [email protected] UK-CV346DA Dr Nadejda Komendantova, [email protected] Phone: +43 (0) 676 83 807 285 TenneT TSO GmbH Schlossplatz 1, A-2361 Laxenburg www.suedlink.tennet.eu Marius Strecker, [email protected] Naturschutzbund Deutschland (NABU) Phone: +49 (0) 921 50740 4094 www.nabu.de Bernecker Str. -
Luxembourg 2010 Update
LUXEMBOURG Key Figures __________________________________________________________________ 2 Overview ____________________________________________________________________ 3 1. Energy Outlook _____________________________________________________________ 4 2. Oil ________________________________________________________________________ 5 2.1 Market Features and Key Issues ____________________________________________________ 5 2.2 Oil Supply Infrastructure __________________________________________________________ 6 2.3 Decision‐making Structure for Oil Emergencies ________________________________________ 7 2.4 Stocks _________________________________________________________________________ 7 3. Other Measures ____________________________________________________________ 9 3.1 Demand Restraint _______________________________________________________________ 9 3.2 Fuel Switching _________________________________________________________________ 10 3.3 Others _______________________________________________________________________ 10 4. Natural Gas _______________________________________________________________ 11 4.1 Market Features and Key Issues ___________________________________________________ 11 4.2 Natural gas supply infrastructure __________________________________________________ 11 4.3 Emergency Policy for Natural Gas __________________________________________________ 13 List of Figures Total Primary Energy Supply _____________________________________________________________ 4 Electricity Generation, by Fuel Source _____________________________________________________ -
Recyclability Challenges in ?Abundant? Material-Based
27th European Photovoltaic Solar Energy Conference and Exhibition This is a pre-peer review version of the paper submitted to the journal Progress in Photovoltaics. It has been selected by the Executive Committee of the 27th EU PVSEC for submission to Progress in Photovoltaics. RECYCLABILITY CHALLENGES IN “ABUNDANT” MATERIAL-BASED TECHNOLOGIES a a,b,* Annick Anctil and Fthenakis aPV Environmental Research Center, Brookhaven National Laboratory, Upton, NY bCenter for Life Cycle Analysis, Columbia University, New York, NY *Bldg. 130, Upton, NY 11973, tel. 631-344-2830, Fax. 631-3443957, [email protected] ABSTRACT: Much current research in photovoltaic technology is directed towards using “abundant” base metals like copper and zinc (e.g., CZTS or more recently CZTSSe) to overcome the the challenges of material scarcity posed by the use of tellurium, indium, germanium, and gallium in current generation products (e.g., CdTe, CIGS, a- Si/thin-film Si). The supply of these materials is limited because they are minor byproducts of the production of copper, zinc, lead. and aluminum, so that their economic production inherently is linked to that of the base metals. But, although the base metals currently are abundant, their reserves are not inexhaustible. In addition to concerns on resource availability, the main sustainability metrics for large-scale PV growth are low cost and minimum environmental impact. As the numbers of photovoltaic installations grow, greatly displacing traditional power- generation infrastructures, recycling will play an increasingly important role in managing their end-of-life fate, so relieving pressure on the prices of critical materials. Identifying the potential issues in current technologies can help implement a take-back- or recycling-program ahead of time. -
Annual Report 20 1 0 Sma Solar Technology Ag
ANNUAL REPORT 2010 SMA SOLAR TECHNOLOGY AG THE FUTURE OF SOLAR TECHNOLOGY BUSINESS GROUP FIGURES HIGHLIGHTS 2010 SMA Group 2010 2009 2008 2007 2006 Sales € million 1,920.1 934.3 681.6 327.3 192.9 Export ratio % 44.9 38.4 42.3 29.4 20.1 Inverter output sold MW 7,750 3,381 2,180 950 430 Capital expenditure1 € million 158.3 82.1 63.9 12.3 15.0 Depreciation € million 31.3 16.3 8.9 16.0 9.0 Operating profit (EBIT) € million 516.8 228.4 167.4 59.3 33.4 KEY FIGURES AND HIGHLIGHTS 2010 Operating profit margin % 26.9 24.4 24.6 18.1 17.3 Consolidated net profit € million 365.0 161.1 119.5 36.8 20.5 Earnings per share2 € 10.52 4.64 3.44 1.06 0.59 Employees (average during the period)3 5,519 3,412 2,513 1,600 1,164 MORE THAN 1,500 NEW JOBS CREATED in Germany 5,179 3,236 2,400 1,535 1,133 abroad 340 176 113 65 31 BUSINESS IN FOREIGN MARKETS IS BOOMING SMA Group 12 / 31 / 2010 12 / 31/ 2009 12 / 31/ 2008 12 / 31/ 2007 12 / 31/ 2006 HIGH DIVIDEND AND REPRESENTS APPROX. OF € 3.00 PLANNED Total assets € million 1,251.5 718.6 469.6 163.2 112.3 45 % OF SALES Equity € million 728.4 407.6 280.8 64.4 40.7 Equity ratio % 58.2 56.7 59.8 39.5 36.2 Net working capital4 € million 284.6 98.6 78.0 59.4 34.3 EBIT RECORD Net working capital ratio % 14.8 10.6 11.4 18.1 17.8 OF € 0.5 BILLION Net Cash € million 523.4 344.8 239.4 41.2 20.9 GROUP SALES INCREASE TO ALMOST € 2 BILLION PERFORMANCE OF THE SMA SHARE 2010 percent5 SMA share TecDAX® ÖkoDAX® 110 100 90 80 70 60 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec SMA IS BY FAR THE WORLD TREMENDOUS GROWTH MARKET AND TECHNOLOGY OF THE SOLAR MARKET, BOTH LEADER IN GERMANY AND ABROAD 1 excl. -
Solar Photovoltaic (PV) System Safety and Fire Ground Procedures
Solar Photovoltaic (PV) System Safety and Fire Ground Procedures SAN FRANCISCO FIRE DEPARTMENT blank page Solar Photovoltaic (PV) System Safety and Fire Ground Procedures April 2012 San Francisco Fire Department 698—2nd Street San Francisco, CA 94107 Chief of Department Joanne Hayes-White Assistant Deputy Chief Jose Luis Velo, Director of Training Project Manager, Paramedic Captain Jim Perry Lieutenant Dawn Dewitt, Editor Published by: Division of Training 2310 Folsom Street San Francisco, CA Phone: (415) 970-2000 April 2012 This manual is the sole property of the San Francisco Fire Department FOREWORD The goal of this manual is to establish standard operating practices as authorized by the Chief of Department and implemented by the Division of Training. The purpose of this manual is to provide all members with the essential information necessary to fulfill the duties of their positions, and to provide a standard text whereby company officers can: Enforce standard drill guidelines authorized as a basis of operation for all companies. Align company drills to standards as adopted by the Division of Training. Maintain a high degree of proficiency, both personally and among their subordinates. All manuals shall be kept up to date so that all officers may use the material contained in the various manuals to meet the requirements of their responsibility. Conditions will develop in fire fighting situations where standard methods of operation will not be applicable. Therefore, nothing contained in these manuals shall be interpreted as an obstacle to the experience, initiative, and ingenuity of officers in overcoming the complexities that exist under actual fire ground conditions. -
Design and Implementation of Reliable Solar Tree
5 IV April 2017 http://doi.org/10.22214/ijraset.2017.4184 www.ijraset.com Volume 5 Issue IV, April 2017 IC Value: 45.98 ISSN: 2321-9653 International Journal for Research in Applied Science & Engineering Technology (IJRASET) Design and Implementation of Reliable Solar Tree Mr. Nitesh Kumar Dixit1, Mr. Vikram Singh2, Mr. Naveen Kumar3, Mr. Manish Kumar Sunda4 1,2 Department of Electronics & Communications Engineering, 3,4 Department of Electrical Engineering, BIET Sikar Abstract: - Flat or roof top mountings of Photovoltaic (PV) structures require large location or land. Scarcity of land is greatest problem in towns or even in villages in India. Sun strength Tree presents higher opportunity to flat mounting of PV systems. For domestic lighting fixtures and other applications use of solar Tree is extra relevant whilst PV system is to be used. Sun tree is an innovative city lights idea that represents a really perfect symbiosis among pioneering layout and like-minded technology. In this paper load, PV, battery and tilt angle requirements estimated for solar tree. The optimum tilt angle for Sikar, Rajasthan calculated i.e. Latitude=27.5691 and Longitude=75.14425. The power output of 240Whr with battery unit of 30Ah, 12V was calculated. Keywords— Photovoltaic, Sun, Solar Tree, Tilt Angle, Sikar Rajasthan; I. INTRODUCTION It is a form of renewable power resource that is some degree competitive with fossil fuels. Hydro power is the force of electricity of moving water. It provides about 96% of the renewable energy in the United States. Solar electricity is available in abundance and considered as the easiest and cleanest method of tapping the renewable power. -
Annual Report 2020 Encevo
Annual Report Encevo S.A. We embrace energy transition GRI 102-16 Our vision We envision Encevo as leading and sustainable energy player in the Greater Region. In the rapidly changing energy landscape, we will ensure a secure access and competitive supply of energy, and actively shape the transition to a sustainable energy sector by embracing technology, deploying innovative solutions and partnering with local communities. Encevo people are empowered and strive for excellence. We mobilise all our forces to bring the energy of tomorrow to our customers. Encevo S.A. Registered as a société anonyme (public limited company) under Luxembourg law with a capital of EUR 90,962,900 (31.12.2020). Registered office: Esch-sur-Alzette Luxembourg Trade and Companies’ Register B11723. Annual General Meeting of 11th May 2021. Index 6 Interview: Claude Seywert & Marco Hoffmann 10 Group Structure 12 Management Reflections 20 Key Figures: Activity at a Glance 27 Encevo Sustainability Context and Management Approach 32 Stakeholder Engagement 41 Business Integrity: General Compliance 49 Indirect and Direct Economic Impacts 54 Product Impact 59 Employee Well-being 70 Resource Efficiency 74 About the Report 80 Governance Details 82 Management Report 92 Consolidated Annual Accounts 134 Extract of the Annual Accounts of Encevo S.A. Claude Seywert CEO Encevo S.A. Chairman of the Executive Committee Marco Hoffmann Chairman of the Board of Directors GRI 102-14 Staying the course towards a sustainable energy transition In a year largely marked by the crisis caused by the pandemic, Encevo Group maintained its operational excellence. The group and its entities stayed the course towards a sustainable energy transition. -
Proceedings of the Fall 2018 ELEC 7830/36 Photovoltaics Class Presentations
Proceedings of the Fall 2018 ELEC 7830/36 Photovoltaics Class Presentations 1) Zabihollah Ahmadi 2) Arthur Bond 3) Carl Bugg 4) Prattay Chowdhury 5) Jeff Craven 6) Kyle Daniels 7) Tanner Grider 8) Donald Hughes 9) Grant Kirby 10) Markus Kreitzer 11) Sanfwon Seo 12) Minseok Song 13) Wendong Wang 14) Shane Williams 15) Yuqiao Zhang 1 Fabrication Methods of Photovoltaic Devices Zabihollah Ahmadi A simple configuration of Solar Cells is a P-N junction, but even for fabrication of this simple configuration there are several experiments that should be done. In other words, fabrication processes involve the steps such as oxidation growth, etching oxides, photolithograph, and metal deposition. As an example, ion implantation is used for making n+ or p+ doping in Si wafer. In general, there are different kind of materials that are used for fabrication of Solar Cells. The most popular materials are Multijunction Cells ( lattice matched, metamorphic, inverted metamorphic, …), Single-Junction GaAs (Single crystal, Concentrator, thin-film crystal), Crystalline Si Cells, Thin films like CIGS and CdTe and Emerging PV (Dye-sensitized cells, Perovskite cells, Organic tandem cells, Inorganic cells, Quantum dot cells.) Recently, some groups used 2D mateirals like Graphene and Transition Metal Dichalcogenides (MoS2) in fabrication of Photovoltaics devices. So, these materials need to be synthesized on substrate using different methods. For example Metal Organic Chemical Vapor Deposition is the best method for deposition of GaAs. This presentation will talk about how these methods work in fabrication of PV. 2 Photovoltaic Sensors Arthur Bond Photovoltaics or PV is the process of converting solar energy into a DC electrical current through the use of semi conductive materials. -
National Survey Report of PV Power Applications in Sweden 2015
National Survey Report of PV Power Applications in Sweden 2015 Prepared by Johan Lindahl Table of contents Table of contents .................................................................................................................. 1 Foreword ............................................................................................................................... 3 Introduction .......................................................................................................................... 4 1 Installation data .................................................................................................................... 5 1.1 Applications for Photovoltaics ................................................................................. 5 1.2 Total photovoltaic power installed .......................................................................... 5 1.2.1 Method ........................................................................................................ 5 1.2.2 The Swedish PV market ............................................................................... 5 1.2.3 Swedish PV market segments ..................................................................... 9 1.2.4 The geographical distribution of PV in Sweden .......................................... 10 1.2.5 PV in the broader Swedish energy market .................................................. 12 2 Competitiveness of PV electricity ......................................................................................... 13 2.1 Module -
Application of Photovoltaic Systems for Agriculture: a Study On
energies Case Report Application of Photovoltaic Systems for Agriculture: A Study on the Relationship between Power Generation and Farming for the Improvement of Photovoltaic Applications in Agriculture Jaiyoung Cho 1,* , Sung Min Park 2, A Reum Park 1, On Chan Lee 3, Geemoon Nam 3 and In-Ho Ra 4,* 1 Wongwang Electric Power Co., 243 Haenamhwasan-ro, Haenam-gun 59046, Jeollanamdo, Korea; [email protected] 2 Department of Horticulture, Kangwon National University, Chuncheon 24341, Jeollanamdo, Korea; [email protected] 3 SM Software, 1175, Seokhyeon-dong, Mokposi 58656, Jeollanamdo, Korea; [email protected] (O.C.L.); [email protected] (G.N.) 4 Department of Information and Communication Technology, Kunsan National University, Gunsan 54150, Jeollabuk-do, Korea * Correspondence: [email protected] (J.C.); [email protected] (I.-H.R.); Tel.: +82-62-384-9118 (J.C.); +82-63-469-4697(I.-H.R.) Received: 29 August 2020; Accepted: 11 September 2020; Published: 15 September 2020 Abstract: Agrivoltaic (agriculture–photovoltaic) or solar sharing has gained growing recognition as a promising means of integrating agriculture and solar-energy harvesting. Although this field offers great potential, data on the impact on crop growth and development are insufficient. As such, this study examines the impact of agriculture–photovoltaic farming on crops using energy information and communications technology (ICT). The researched crops were grapes, cultivated land was divided into six sections, photovoltaic panels were installed in three test areas, and not installed in the other three. A 1300 520 mm photovoltaic module was installed on a screen that was designed with a × shading rate of 30%. -
Fabrication and Characterization of Novel Hybrid Nanocomposites with Application in Solar Cells
Doctor of Philosophy Dissertation Fabrication and Characterization of Novel Hybrid Nanocomposites with Application in Solar Cells Dimitris A. Chalkias Dipl.-Ing Mechanical Engineering & Aeronautics Supervisor: G.C. Papanicolaou Dissertation Submitted to the University of Patras for the Award of the Degree of DOCTOR OF PHILOSOPHY in Mechanical Engineering & Aeronautics Patras, 2019 Πανεπιστήμιο Πατρών, Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Δημήτριος Α. Χαλκιάς © 2019 – Με την επιφύλαξη παντός δικαιώματος Examination Committee 1. George Papanicolaou (Dissertation Supervisor) Professor Emeritus, Department of Mechanical Engineering & Aeronautics, University of Patras, Greece 2. Vassilis Kostopoulos (Dissertation Advisor) Professor, Department of Mechanical Engineering & Aeronautics, University of Patras, Greece 3. Theodoros Loutas (Dissertation Advisor) Assistant Professor, Department of Mechanical Engineering & Aeronautics, University of Patras, Greece 4. George Psarras Associate Professor, Department of Materials Science, University of Patras, Greece 5. Dimitris Kondarides Professor, Department of Chemical Engineering, University of Patras, Greece 6. Joannis Kallitsis Professor, Department of Chemistry, University of Patras, Greece 7. Thomas Stergiopoulos Assistant Professor, Department of Chemistry, Aristotle University of Thessaloniki, Greece Approval of Ph.D. Dissertation of Mr. Dimitris A. Chalkias Willpower is the key to success. I dedicate this work to my Mother, who always supported me and believed in me. Preface The present -
Electric Power Grid Modernization Trends, Challenges, and Opportunities
Electric Power Grid Modernization Trends, Challenges, and Opportunities Michael I. Henderson, Damir Novosel, and Mariesa L. Crow November 2017. This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 United States License. Background The traditional electric power grid connected large central generating stations through a high- voltage (HV) transmission system to a distribution system that directly fed customer demand. Generating stations consisted primarily of steam stations that used fossil fuels and hydro turbines that turned high inertia turbines to produce electricity. The transmission system grew from local and regional grids into a large interconnected network that was managed by coordinated operating and planning procedures. Peak demand and energy consumption grew at predictable rates, and technology evolved in a relatively well-defined operational and regulatory environment. Ove the last hundred years, there have been considerable technological advances for the bulk power grid. The power grid has been continually updated with new technologies including increased efficient and environmentally friendly generating sources higher voltage equipment power electronics in the form of HV direct current (HVdc) and flexible alternating current transmission systems (FACTS) advancements in computerized monitoring, protection, control, and grid management techniques for planning, real-time operations, and maintenance methods of demand response and energy-efficient load management. The rate of change in the electric power industry continues to accelerate annually. Drivers for Change Public policies, economics, and technological innovations are driving the rapid rate of change in the electric power system. The power system advances toward the goal of supplying reliable electricity from increasingly clean and inexpensive resources. The electrical power system has transitioned to the new two-way power flow system with a fast rate and continues to move forward (Figure 1).