Draft Recovery Plan for Five Species from American Sāmoa

Total Page:16

File Type:pdf, Size:1020Kb

Draft Recovery Plan for Five Species from American Sāmoa U.S. Fish & Wildlife Service Draft Recovery Plan for Five Species From American Sāmoa J. Malotaux R. Stirnemann Pe'ape'a Vai or Pacific Sheath-tailed BatBatBat Ma'oma'o Emballonura semicaudata semicaudata Gymnomyza samoensis Tu'aimeo or Friendly Ground-Dove J. Malotaux Gallicolumba stairi R. RundellRundellR. Rundell Eua zebrina R. Rundell Ostodes strigatus Draft Recovery Plan for Five Species from American Sāmoa Peʻapeʻa Vai or Pacific Sheath-tailed Bat, South Pacific Subspecies (Emballonura semicaudata semicaudata) Maʻomaʻo or Mao (Gymnomyza samoensis) Tuʻaimeo or Friendly Ground-Dove (Gallicolumba [=Alopecoenas] stairi) American Sāmoa Distinct Population Segment Eua zebrina Ostodes strigatus June 2020 U.S. Fish and Wildlife Service Portland, Oregon Approved: XXXXXXXXXXXXXXXXXXXX Regional Director U.S. Fish and Wildlife Service DISCLAIMER Recovery plans delineate reasonable actions needed to recover and/or protect listed species. We, the U.S. Fish and Wildlife Service (Service), publish recovery plans, sometimes preparing them with the assistance of recovery teams, contractors, State agencies, and others. Objectives of the recovery plan are accomplished, and funds made available, subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities with the same funds. Recovery plans do not necessarily represent the views or the official positions or approval of any individuals or agencies involved in the plan formulation, other than our own. They represent our official position only after signed by the Director or Regional Director. Draft recovery plans are reviewed by the public and may be subject to additional peer review before the Service adopts them as final. Recovery objectives may be attained and funds expended contingent upon appropriations, priorities, and other budgetary constraints. Recovery plans are guidance and planning documents only; identification of an action to be implemented by any public or private party does not create a legal obligation beyond existing legal requirements. Nothing in this plan should be construed as a commitment or requirement that any Federal agency obligate or pay funds in any one fiscal year in excess of appropriations made by Congress for that fiscal year in contravention of the Anti-Deficiency Act, 31 U.S.C. 1341, or any other law or regulation. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and completion of recovery actions. Literature citation of this document should read as follows: U.S. Fish and Wildlife Service. 2020. Draft recovery plan for five species from American Sāmoa. Portland, Oregon. xiii + 50 pages. An electronic copy of this recovery plan is also available at: https://www.fws.gov/pacific/ecoservices/endangered/recovery/plans.html and http://www.fws.gov/endangered/species/recovery-plans.html i ACKNOWLEDGMENTS We, the U.S. Fish and Wildlife Service, gratefully acknowledge the contributions of the following individuals and organizations in developing the Draft Recovery Plan for Five Species from American Sāmoa. The primary authors of this draft recovery plan are Joy Browning and Ryan Peʻa (Pacific Islands Fish and Wildlife Office [PIFWO], Honolulu, Hawaiʻi), and Grant Canterbury (Regional Office, Portland, Oregon). We particularly thank the species experts who provided their input during development of the draft recovery plan: Scott Burch, National Park of American Sāmoa Robert Cowie, Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa Adam Miles, American Sāmoa Department of Marine and Wildlife Resources Alivereti Naikatani, University of the South Pacific David Sischo, Snail Extinction Prevention Program, Hawaiʻi Division of Forestry and Wildlife Rebecca Stirnemann, Australian National University Nunia Thomas-Moko, NatureFiji David Waldien, Kutztown University of Pennsylvania ii RECOVERY PLANNING PROCESS The Service’s Recovery Planning and Implementation (RPI) approach to recovery planning (see https://www.fws.gov/endangered/esa-library/pdf/RPI-Feb2017.pdf) is intended to reduce the time needed to develop and implement recovery plans, increase recovery plan relevancy over a longer timeframe, and add flexibility to recovery plans so they can be adjusted for new information or circumstances. Under the RPI process, a recovery plan includes the statutorily-required elements under section 4(f) of the Endangered Species Act (Act) (objective and measurable recovery criteria, site-specific management actions, and estimates of time and costs), along with a concise introduction and our strategy for how we plan to achieve species recovery. An RPI recovery plan is supported by two supplementary documents: a Species Status Assessment or Species Report, which describes the best available scientific information related to the biological needs of the species and assessment of threats; and the Recovery Implementation Strategy, which details the particular near-term activities needed to implement the recovery actions identified in the recovery plan. Under this approach, new information on species biology or details of recovery implementation may be incorporated by updating these supplementary documents without the need to revise the recovery plan, unless changes to statutorily-required elements are necessary. Thus, this draft recovery plan document is one piece of a three-part framework: 1. The Recovery Plan contains a concise overview of the recovery strategy for the species (indicating how its recovered state will achieve redundancy, resiliency, and representation), as well as the statutorily required elements of recovery criteria, recovery actions, and estimates of the time and costs to achieve the plan’s goals. 2. The Species Status Assessment (SSA) or Species Report informs the Recovery Plan; it describes the biology and life history needs of the species, includes analysis of each subspecies’ historical and current conditions, and includes discussion of threats and conservation needs of each subspecies, as well as detailed literature references. The SSA or Species Report’s format is structured around the conservation biology principles of resiliency, redundancy, and representation (Shaffer and Stein 2000, pp. 307-310; Wolf et al. 2015, entire). Biology and threat status for the species addressed in this draft recovery plan, including the geography and environmental context of their range in the Samoan archipelago (and more broadly for the bat), are described in five Species Report documents (USFWS 2020a, 2020b, 2020c, 2020d, and 2020e). 3. The Recovery Implementation Strategy (RIS) is the vehicle for implementing the Recovery Plan. The RIS is a short-term, flexible operational document focused on how, when, and by whom the recovery actions from the Recovery Plan will be implemented. This approach allows us to incorporate new information and adapt to changing circumstances with greater flexibility and efficiency. The RIS will be developed and maintained in cooperation with our conservation partners, and will focus on the period of time and scope of activities that work best for our partners to achieve recovery goals. For this draft recovery plan, we are in the process of coordinating with conservation partners in American Sāmoa (particularly the National Park of American Sāmoa [NPSA] and the American Sāmoa Department of Marine and Wildlife Resources [DMWR]) and internationally to identify the highest priority actions for recovery of these species and finalize the draft RIS. iii EXECUTIVE SUMMARY Species Status This draft recovery plan addresses one mammal (peʻapeʻa vai, the South Pacific subspecies of Pacific sheath-tailed bat [Emballonura semicaudata semicaudata]); two birds (maʻomaʻo or mao [Gymnomyza samoensis] and the American Sāmoa distinct population segment (DPS) of tuʻaimeo or friendly ground-dove [Gallicolumba stairi]); and two snails (Eua zebrina and Ostodes strigatus). These five species were proposed for listing as endangered on October 13, 2015 (USFWS 2015) and were listed as endangered on September 22, 2016 (USFWS 2016). No critical habitat is designated for these species. All of these species are currently or historically known from American Sāmoa; the peʻapeʻa vai and maʻomaʻo also occur internationally. Recovery Vision Recovery of peʻapeʻa vai will be signified by restoration of multiple redundant populations distributed widely throughout its international range, comprising one or more viable and interconnected metapopulations allowing natural processes of dispersal and recolonization. Populations should be resilient and self-sustaining, with threats effectively managed through protection of roosts and foraging habitat, and conserve existing genetic diversity. Recovery of maʻomaʻo will be signified by the presence of protected, resilient local populations conserving existing genetic diversity (with sufficient habitat and with predation pressure adequately managed to be self-sustaining), redundantly on multiple islands in Sāmoa and American Sāmoa. Recovery of tuʻaimeo will be signified by the presence of protected, resilient local populations conserving existing genetic diversity (with sufficient habitat and with predation pressure adequately managed to be self-sustaining), redundantly on multiple islands in American Sāmoa. Recovery of Eua zebrina and Ostodes strigatus will be signified by the presence of multiple redundant local populations in American Sāmoa that are resilient, self-sustaining, and conserve existing genetic diversity.
Recommended publications
  • Pacific Sheath-Tailed Bat American Samoa Emballonura Semicaudata Semicaudata Species Report April 2020
    Pacific Sheath-tailed Bat American Samoa Emballonura semicaudata semicaudata Species Report April 2020 U.S. Fish and Wildlife Service Pacific Islands Fish and Wildlife Office Honolulu, HI Cover Photo Credits Shawn Thomas, Bat Conservation International. Suggested Citation USFWS. 2020. Species Status Assessment for the Pacific Sheath Tailed Bat (Emballonura semicaudata semicaudata). April 2020 (Version 1.1). U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office, Honolulu, HI. 57 pp. Primary Authors Version 1.1 of this document was prepared by Mari Reeves, Fred Amidon, and James Kwon of the Pacific Islands Fish and Wildlife Office, Honolulu, Hawaii. Preparation and review was conducted by Gregory Koob, Megan Laut, and Stephen E. Miller of the Pacific Islands Fish and Wildlife Office. Acknowledgements We thank the following individuals for their contribution to this work: Marcos Gorresen, Adam Miles, Jorge Palmeirim, Dave Waldien, Dick Watling, and Gary Wiles. ii Executive Summary This Species Report uses the best available scientific and commercial information to assess the status of the semicaudata subspecies of the Pacific sheath-tailed bat, Emballonura semicaudata semicaudata. This subspecies is found in southern Polynesia, eastern Melanesia, and Micronesia. Three additional subspecies of E. semicaudata (E.s. rotensis, E.s. palauensis, and E.s. sulcata) are not discussed here unless they are used to support assumptions about E.s. semicaudata, or to fill in data gaps in this analysis. The Pacific sheath-tailed bat is an Old-World bat in the family Emballonuridae, and is found in parts of Polynesia, eastern Melanesia, and Micronesia. It is the only insectivorous bat recorded from much of this area.
    [Show full text]
  • EAZA Best Practice Guidelines for Polynesian Tree Snails (Partula Spp)
    EAZA Best Practice Guidelines for Polynesian tree snails (Partula spp) Edition 1.0 Publication date June 2019 Partula Snail EEP Species Committee Editor Dave Clarke, ZSL 2019_Partula sp_EAZA Best Practice Guidelines EAZA Best Practice Guidelines for Polynesian tree snails (Partula spp) Terrestrial Invertebrate Taxon Advisory Group TITAG Chair: Mark Bushell, Bristol Zoo Gardens, Clifton, Bristol, BS8 3HA [email protected] TITAG Vice-Chairs: Tamás Papp, Chester Zoo, Moston Rd, Upton, Chester CH2 1EU. [email protected] & Vítek Lukáš, Zoo Praha, U Trojského zámku 3/120, 171 00 Praha 7, Czechia. [email protected] EEP Co-ordinator: Paul Pearce-Kelly, ZSL [email protected] EEP Studbook keeper: Sam Aberdeen, ZSL [email protected] Edition 1.0 Publication date June 2019 (based on global Management Guidelines document Nov 2007 eds Pearce-Kelly, Blake, Goellner & Snider) Editor Dave Clarke, ZSL [email protected] Citation - Clarke, D., EAZA Best Practice Guidelines for Partula snails. EAZA 2019 We acknowledge the invaluable input of all Partula snail EEP Species Committee members, SSP colleagues and global participating Partula collections. EAZA Best Practice Guidelines disclaimer Copyright (June 2019) by EAZA Executive Office, Amsterdam. All rights reserved. No part of this publication may be reproduced in hard copy, machine-readable or other forms without advance written permission from the European Association of Zoos and Aquaria (EAZA). Members of the European Association of Zoos and Aquaria (EAZA) may copy this information for their own use as needed. The information contained in these EAZA Best Practice Guidelines has been obtained from numerous sources believed to be reliable.
    [Show full text]
  • Savai'i Volcano
    A Visitor’s Field Guide to Savai’i – Touring Savai’i with a Geologist A Visitor's Field Guide to Savai’i Touring Savai'i with a Geologist Warren Jopling Page 1 A Visitor’s Field Guide to Savai’i – Touring Savai’i with a Geologist ABOUT THE AUTHOR AND THIS ARTICLE Tuapou Warren Jopling is an Australian geologist who retired to Savai'i to grow coffee after a career in oil exploration in Australia, Canada, Brazil and Indonesia. Travels through Central America, the Andes and Iceland followed by 17 years in Indonesia gave him a good understanding of volcanology, a boon to later educational tourism when explaining Savai'i to overseas visitors and student groups. His 2014 report on Samoa's Geological History was published in booklet form by the Samoa Tourism Authority as a Visitor's Guide - a guide summarising the main geological events that built the islands but with little coverage of individual natural attractions. This present article is an abridgement of the 2014 report and focuses on Savai'i. It is in three sections; an explanation of plate movement and hotspot activity for visitors unfamiliar with plate tectonics; a brief summary of Savai'i's geological history then an island tour with some geologic input when describing the main sites. It is for nature lovers who would appreciate some background to sightseeing. Page 1 A Visitor’s Field Guide to Savai’i – Touring Savai’i with a Geologist The Pacific Plate, The Samoan Hotspot, The Samoan Archipelago The Pacific Plate, the largest of the Earth's 16 major plates, is born along the East Pacific Rise.
    [Show full text]
  • Moluscos Del Perú
    Rev. Biol. Trop. 51 (Suppl. 3): 225-284, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Moluscos del Perú Rina Ramírez1, Carlos Paredes1, 2 y José Arenas3 1 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos. Avenida Arenales 1256, Jesús María. Apartado 14-0434, Lima-14, Perú. 2 Laboratorio de Invertebrados Acuáticos, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Apartado 11-0058, Lima-11, Perú. 3 Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma. Av. Benavides 5400, Surco. P.O. Box 18-131. Lima, Perú. Abstract: Peru is an ecologically diverse country, with 84 life zones in the Holdridge system and 18 ecological regions (including two marine). 1910 molluscan species have been recorded. The highest number corresponds to the sea: 570 gastropods, 370 bivalves, 36 cephalopods, 34 polyplacoforans, 3 monoplacophorans, 3 scaphopods and 2 aplacophorans (total 1018 species). The most diverse families are Veneridae (57spp.), Muricidae (47spp.), Collumbellidae (40 spp.) and Tellinidae (37 spp.). Biogeographically, 56 % of marine species are Panamic, 11 % Peruvian and the rest occurs in both provinces; 73 marine species are endemic to Peru. Land molluscs include 763 species, 2.54 % of the global estimate and 38 % of the South American esti- mate. The most biodiverse families are Bulimulidae with 424 spp., Clausiliidae with 75 spp. and Systrophiidae with 55 spp. In contrast, only 129 freshwater species have been reported, 35 endemics (mainly hydrobiids with 14 spp. The paper includes an overview of biogeography, ecology, use, history of research efforts and conser- vation; as well as indication of areas and species that are in greater need of study.
    [Show full text]
  • PUBLICATIONS 11 May 2021
    ROBERT H. COWIE – PUBLICATIONS 11 May 2021 Google Scholar metrics Citations – 8939 (3794 since 2016), h-index – 47 (32 since 2016), i10-index – 109 (65 since 2016) Books (5) Joshi, R.C., Cowie, R.H. & Sebastian, L.S. (eds.) 2017. Biology and Management of Invasive Apple Snails. Philippine Rice Research Institute, Muñoz, Nueva Ecija. xvii + 405 p. Cowie, R.H., Rundell, R.J. & Yeung, N.W. 2017. Samoan Land Snails and Slugs – An Identification Guide. Department of Marine and Wildlife Resources, American Samoa Government. viii + 71 p. Cowie, R.[H.] 2014. Journey to a Waterfall. A Biologist in Africa. Lulu, Raleigh. x + 279 p. Staples, G.W. & Cowie, R.H. (eds.) 2001. Hawai‘i’s Invasive species. A guide to invasive plants and animals in the Hawaiian Islands. Mutual Publishing & Bishop Museum Press, Honolulu. xii + 116 p. Cowie, R.H., Evenhuis, N.L. & Christensen, C.C. 1995. Catalog of the native land and freshwater molluscs of the Hawaiian Islands. Backhuys Publishers, Leiden. vi + 248 p. Journal articles (136) 2021 Gerlach, J., Barker, G.M., Bick, C.S., Bouchet, P., Brodie, G., Christensen, C.C., Collins, T., Coote, T., Cowie, R.H., Fiedler, G.C., Griffiths, O.L., Florens, F.B.V, Hayes, K.A., Kim, J., Meyer, J.-Y., Meyer, W.M., III, Richling, I., Slapcinsky, J.D., Winsor, L. & Yeung, N.W. 2021. Negative impacts of the invasive predators Euglandina ‘rosea’ (Mollusca: Spiraxidae) and Platydemus manokwari (Platyhelminthes: Geoplanidae) when used as biological control agents against the pest snail Lisschatina fulica (Mollusca: Achatinidae). Biological Invasions 23(4): 997-1031. Rollins, R.L., Cowie, R.H., Echaluse, M.V.
    [Show full text]
  • Bird Abundances in Primary and Secondary Growths in Papua New Guinea: a Preliminary Assessment
    Mongabay.com Open Access Journal - Tropical Conservation Science Vol.3 (4):373-388, 2010 Research Article Bird abundances in primary and secondary growths in Papua New Guinea: a preliminary assessment Kateřina Tvardíková1 1 Department of Zoology, Faculty of Biological Science, University of South Bohemia, Branišovská 31, CZ- 370 05 České Budějovice. Email: <[email protected] Abstract Papua New Guinea is the third largest remaining area of tropical forest after the Amazon and Congo basins. However, the growing intensity of large-scale slash-and-burn agriculture and logging call for conservation research to assess how local people´s traditional land-use practices result in conservation of local biodiversity, of which a species-rich and diverse component is the avian community. With this in mind, I conducted a preliminary survey of birds in small-scale secondary plots and in adjacent primary forest in Wanang Conservation Area in Papua New Guinea. I used mist-netting, point counts, and transect walks to compare the bird communities of 7-year-old secondary growth, and neighboring primary forest. The preliminary survey lasted 10 days and was conducted during the dry season (July) of 2008. I found no significant differences in summed bird abundances between forest types. However, species richness was higher in primary forest (98 species) than in secondary (78 species). The response of individual feeding guilds was also variable. Two habitats differed mainly in presence of canopy frugivores, which were more abundant (more than 80%) in primary than in secondary forests. A large difference (70%) was found also in understory and mid-story insectivores. Species occurring mainly in secondary forest were Hooded Butcherbird (Cracticus cassicus), Brown Oriole (Oriolus szalayi), and Helmeted Friarbird (Philemon buceroides).
    [Show full text]
  • Southwest Pacific Islands: Samoa, Fiji, Vanuatu & New Caledonia Trip Report 11Th to 31St July 2015
    Southwest Pacific Islands: Samoa, Fiji, Vanuatu & New Caledonia Trip Report 11th to 31st July 2015 Orange Fruit Dove by K. David Bishop Trip Report - RBT Southwest Pacific Islands 2015 2 Tour Leaders: K. David Bishop and David Hoddinott Trip Report compiled by Tour Leader: K. David Bishop Tour Summary Rockjumper’s inaugural tour of the islands of the Southwest Pacific kicked off in style with dinner at the Stamford Airport Hotel in Sydney, Australia. The following morning we were soon winging our way north and eastwards to the ancient Gondwanaland of New Caledonia. Upon arrival we then drove south along a road more reminiscent of Europe, passing through lush farmlands seemingly devoid of indigenous birds. Happily this was soon rectified; after settling into our Noumea hotel and a delicious luncheon, we set off to explore a small nature reserve established around an important patch of scrub and mangroves. Here we quickly cottoned on to our first endemic, the rather underwhelming Grey-eared Honeyeater, together with Nankeen Night Herons, a migrant Sacred Kingfisher, White-bellied Woodswallow, Fantailed Gerygone and the resident form of Rufous Whistler. As we were to discover throughout this tour, in areas of less than pristine habitat we encountered several Grey-eared Honeyeater by David Hoddinott introduced species including Common Waxbill. And so began a series of early starts which were to typify this tour, though today everyone was up with added alacrity as we were heading to the globally important Rivierre Bleu Reserve and the haunt of the incomparable Kagu. We drove 1.3 hours to the reserve, passing through a stark landscape before arriving at the appointed time to meet my friend Jean-Marc, the reserve’s ornithologist and senior ranger.
    [Show full text]
  • Evolutionary History of a Vanishing Radiation
    Lee et al. BMC Evolutionary Biology 2014, 14:202 http://www.biomedcentral.com/1471-2148/14/202 RESEARCH ARTICLE Open Access Evolutionary history of a vanishing radiation: isolation-dependent persistence and diversification in Pacific Island partulid tree snails Taehwan Lee1, Jingchun Li1, Celia KC Churchill2 and Diarmaid Ó Foighil1* Abstract Background: Partulid tree snails are endemic to Pacific high islands and have experienced extraordinary rates of extinction in recent decades. Although they collectively range across a 10,000 km swath of Oceania, half of the family’s total species diversity is endemic to a single Eastern Pacific hot spot archipelago (the Society Islands) and all three partulid genera display highly distinctive distributions. Our goal was to investigate broad scale (range wide) and fine scale (within‐Society Islands) molecular phylogenetic relationships of the two widespread genera, Partula and Samoana. What can such data tell us regarding the genesis of such divergent generic distribution patterns, and nominal species diversity levels across Oceania? Results: Museum, captive (zoo) and contemporary field specimens enabled us to genotype 54 of the ~120 recognized species, including many extinct or extirpated taxa, from 14 archipelagoes. The genera Partula and Samoana are products of very distinct diversification processes. Originating at the western edge of the familial range, the derived genus Samoana is a relatively recent arrival in the far eastern archipelagoes (Society, Austral, Marquesas) where it exhibits a stepping‐stone phylogenetic pattern and has proven adept at both intra‐and inter‐ archipelago colonization. The pronounced east–west geographic disjunction exhibited by the genus Partula stems from a much older long-distance dispersal event and its high taxonomic diversity in the Society Islands is a product of a long history of within‐archipelago diversification.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • Cormura Brevirostris. by Enrico Bernard Published 18 December 2003 by the American Society of Mammalogists
    MAMMALIAN SPECIES No. 737, pp. 1±3, 3 ®gs. Cormura brevirostris. By Enrico Bernard Published 18 December 2003 by the American Society of Mammalogists Cormura Peters, 1867 from same locality are: zygomatic breadth, 10.02 (9.64±10.36), 10.03 (9.85±10.16); length of maxillary toothrow, 6.17 (6.01±6.35), Emballonura Wagner, 1843:367. Type species Emballonura bre- 6.18 (5.91±6.50); breadth across molars, 7.27 (6.98±7.55), 7.39 virostris Wagner. (7.23±7.55); condylocanine length for males and females combined, Cormura Peters, 1867:475. Based on Emballonura brevirostris 14.23 (13.67±14.73). Ranges of external and skull measurements Wagner. (sample sizes in parentheses) from Suriname of sexes combined Myropteryx Miller, 1906:59±60. Type species Myropteryx pullus (Husson 1962) are: length of forearm, 41.5±47.0 (10); length of 3rd Miller. digit, metacarpal, 40.0±42.0 (10); length of 3rd digit, 1st phalanx, 12.0±14.0 (10); length of 3rd digit, 2nd phalanx, 19.0±22.0 (10); CONTEXT AND CONTENT. Order Chiroptera, suborder length of 4th digit, metacarpal, 33.0±36.0 (10); length of 4th digit, Microchiroptera, family Emballonuridae, subfamily Emballonuri- 1st phalanx, 9.0±10.5 (10); length of 4th digit, 2nd phalanx, 6.0± nae. Cormura is monotypic. 8.0 (9); length of 5th digit, metacarpal, 30.5±34.0 (10); length of 5th digit, 1st phalanx, 11.0±11.5 (10); length of 5th digit, 2nd phalanx, 5.0±7.0 (9); length of tibia, 15.0±16.5 (10); length of hind Cormura brevirostris (Wagner, 1843) foot, 6.5±7.0 (9); length of calcar, 13.0±15.5 (9); greatest length of Wagner's Sac-winged Bat skull, 15.1±15.8 (4); condylobasal length, 14.7 (1); condyle to front of canine, 13.6±14.3 (5); basal length, 11.3±13.0 (4); palatal length, Emballonura brevirostris Wagner, 1843:367.
    [Show full text]
  • Index of Handbook of the Mammals of the World. Vol. 9. Bats
    Index of Handbook of the Mammals of the World. Vol. 9. Bats A agnella, Kerivoula 901 Anchieta’s Bat 814 aquilus, Glischropus 763 Aba Leaf-nosed Bat 247 aladdin, Pipistrellus pipistrellus 771 Anchieta’s Broad-faced Fruit Bat 94 aquilus, Platyrrhinus 567 Aba Roundleaf Bat 247 alascensis, Myotis lucifugus 927 Anchieta’s Pipistrelle 814 Arabian Barbastelle 861 abae, Hipposideros 247 alaschanicus, Hypsugo 810 anchietae, Plerotes 94 Arabian Horseshoe Bat 296 abae, Rhinolophus fumigatus 290 Alashanian Pipistrelle 810 ancricola, Myotis 957 Arabian Mouse-tailed Bat 164, 170, 176 abbotti, Myotis hasseltii 970 alba, Ectophylla 466, 480, 569 Andaman Horseshoe Bat 314 Arabian Pipistrelle 810 abditum, Megaderma spasma 191 albatus, Myopterus daubentonii 663 Andaman Intermediate Horseshoe Arabian Trident Bat 229 Abo Bat 725, 832 Alberico’s Broad-nosed Bat 565 Bat 321 Arabian Trident Leaf-nosed Bat 229 Abo Butterfly Bat 725, 832 albericoi, Platyrrhinus 565 andamanensis, Rhinolophus 321 arabica, Asellia 229 abramus, Pipistrellus 777 albescens, Myotis 940 Andean Fruit Bat 547 arabicus, Hypsugo 810 abrasus, Cynomops 604, 640 albicollis, Megaerops 64 Andersen’s Bare-backed Fruit Bat 109 arabicus, Rousettus aegyptiacus 87 Abruzzi’s Wrinkle-lipped Bat 645 albipinnis, Taphozous longimanus 353 Andersen’s Flying Fox 158 arabium, Rhinopoma cystops 176 Abyssinian Horseshoe Bat 290 albiventer, Nyctimene 36, 118 Andersen’s Fruit-eating Bat 578 Arafura Large-footed Bat 969 Acerodon albiventris, Noctilio 405, 411 Andersen’s Leaf-nosed Bat 254 Arata Yellow-shouldered Bat 543 Sulawesi 134 albofuscus, Scotoecus 762 Andersen’s Little Fruit-eating Bat 578 Arata-Thomas Yellow-shouldered Talaud 134 alboguttata, Glauconycteris 833 Andersen’s Naked-backed Fruit Bat 109 Bat 543 Acerodon 134 albus, Diclidurus 339, 367 Andersen’s Roundleaf Bat 254 aratathomasi, Sturnira 543 Acerodon mackloti (see A.
    [Show full text]
  • Consolidating Reform for Faster Economic Growth
    Private Sector Assessment June 2008Project Number: Samoa: Consolidating Reform for Faster Economic Growth © 2008 Asian Development Bank All rights reserved. This report was prepared by staff and consultants of the Asian Development Bank (ADB). The analyses and assessments contained herein do not necessarily reflect the views of ADB, its Board of Directors, or the governments its members represent. ADB does not guarantee the accuracy of the data included in this publication and accepts no responsibility of any consequences of their use. The term “country,” as used in the context of ADB, refers to a member of ADB and does not imply any view on the part of ADB as to the member’s sovereignty or independent status. This report was prepared for ADB by Paul Holden of the Enterprise Research Institute, Gunnison, Colorado, USA, and Laure Darcy, consultant, under the supervision of Winfried Wicklein, Senior Private Sector Development Specialist, ADB, Pacific Liaison and Coordination Office, Sydney, Australia. Asian Development Bank 6 ADB Avenue, Mandaluyong City 1550 Metro Manila, Philippines Tel (63-2) 632-4444 Fax (63-2) 636-2444 www.adb.org Asian Development Bank. 2008. Samoa: Private Sector Assessment—Consolidating Reform for Faster Growth. Manila. CONTENTS Page FIGURES, TABLES, AND BOXES iv ABBREVIATIONS v SAMOA PRIVATE SECTOR ASSESSMENT: A SUMMARY OF BINDING CONSTRAINTS AND POLICY ISSUES vi I. INTRODUCTION 1 II. BACKGROUND 4 A. Structure of the Economy 4 B. Growth Performance 5 C. Prices 6 D. Public Sector Finances 6 E. The Financial Sector 7 F. Balance of Payments 8 G. Remittances and Emigration 8 III. BINDING CONSTRAINTS TO GROWTH AND POLICY INITIATIVES 10 A.
    [Show full text]