Russian Wildrye [Psathyrostachys Juncea (Fisch.) Nevski] Richard R

Total Page:16

File Type:pdf, Size:1020Kb

Russian Wildrye [Psathyrostachys Juncea (Fisch.) Nevski] Richard R _??_1990 by Cytologia,Tokyo Cytologia55: 639-643, 1990 Meiotic Associations at Metaphase l in Diploid , Triploid, and Tetraploid RussianWildrye [Psathyrostachys juncea (Fisch.)Nevski] RichardR.-C. Wang and JohnD. Berdahl USDA-ARS,Forage and RangeResearch Laboratory , Utah State University,Logan, UT 84322-6300and USDA-ARS, NorthernGreat PlainsResearch Laboratory, P. O.Box 459, Mandan,ND 58554,U. S. A. AcceptedJuly 6, 1990 Russian wildrye [Psathyrostachys juncea (Fisch.) Nevskil] is an important forage grass. It was introduced into the U. S.A. from the USSR and China in 1927 (Hanson 1972), but research and breeding programs were not initiated until the 1940's. Russian wildrye is a diploid (2n= 14) that was classified by Love (1984) as having the N genome. This grass is productive and resistant to environmental stresses but is difficult to establish due to poor seedling vigor. Because of its relatively low chromosome number, induced polyploidy may be an effective method to increase the size of cells and organs (such as the seeds), thus improving seedling emergence. Indeed, seedling emergence was significantly higher in autotetraploids induced by nitrous oxide (Berdahl et al. 1989) and colchicine (Lawrence et al. 1990) than in diploid con trols. This report describes the meiotic associations in diploid Russian wildrye and derived autotriploids and autotetraploids. Based on the results of this study, breeding strategies for Psathyrostachysjuncea are suggested. Materials and methods Tetraploid plants of this species were produced by nitrous oxide treatment following emas culation and pollination of selected plants from the cultivar 'Bozoisky' (PI 440627; developed in the USSR) and various other experimental strains (Berdahl and Barker, in preparation). Triploid plants were obtained through natural pollination of the tetraploids by diploids at Mandan, North Dakota, and through selfing of the diploid (utilizing the occurrence of an unreduced gamete) at Logan, Utah. Progenies of the tetraploids were grouped as triploid or tetraploid, depending on the pollen sources in the Mandan field nursery. Spikes of the plants were fixed in the Carnoy's solution (6:3:1 of ethanol: chloroform: acetic acid) for 24 to 48 hours before transferring into 70% ethanol for storage in a refrigerator. Meiotic analysis was carried out with pollen mother cells (PMCs) squashed and stained in aceto-carmine. Results and discussion Chromosome associations at the metaphase I(MI) in PMCs of the diploid averaged 1.74 rod bivalents +5.26 ring bivalents in 31 cells. This pattern was almost identical to that ob tained by Dewey and Hsiao (1983) with the exception that they observed a low frequency of univalents. The c values (mean arm-pairing frequency; Alonso and Kimber 1981) in the diploid plants were 0.876 and 0.869 in this study and that of Dewey and Hsiao (1983), re spectively. Seven triploid plants were isolated from the progenies of autotetraploids subjected to open pollination, presumably as a result of pollination by pollen grains from diploid plants grown in the same field nursery at Mandan, ND. The meiotic associations at MI in these seven tri 640 Richard R.-C. Wang and John D. Berdahl Cytologia 55 ploids were slightly variable (Table 1), reflecting the genotypic variations among the pollen sources as well as heterozygosity among the tetraploid maternal parents. Nevertheless, the mean pairing patterns of the seven triploids were similar to the one triploid produced by self ing the diploid plant in Logan, UT (Table 1). A maximum of seven trivalents was easily ob served (Fig. 1). The high trivalent frequencies observed in these triploids confirmed their autotriploidy and indicated the absence of a bivalentization system (Charpentier et al. 1988, Wang 1989, Wang and Hsiao 1989) in the parent selections. The mathematical analysis of Alonso and Kimber (1981) to estimate the c and x values for these triploids indicated their autotriploidy, because all the x values (relative affinity between the two closest genomes) were close to 0.5 (Table 1). However, the trivalent frequencies observed in these triploids were higher than expected based on their model. Closer examinations of the configurations of rod and ring biva lents in the diploid revealed that the seven chromosomes of the N genome contained two rod bivalents having either one or two chiasma(ta), two ring bivalents having two to three chiasmata, and three ring bivalents having three to four chiasmata at late pro phase (Fig. 2). The mean chiasma frequency per bivalent was 2.24 at MI. This is higher than the maximum of 2.00 assumed for the model of Alonso and Kimber (1981) for triploids. This violation of the basic as sumption of their model may explain the discrepency and may invalidate its use. Therefore, we used the equations of Jackson and Casey (1982), which assume from I to 4 chiasma(ta) per bivalent rather than the fixed Figs. 1-3. Meiotic pairing in triploid, diploid, 1 or 2 chiasma(ta) per bivalent in Alonso and tetraploid Psathyrostachys juncea, Russian and Kimber's model (1981), to calculate the wildrye. 1, a metaphase I PMC showing seven expected trivalent numbers for three subsets trivalents in the triploid. 2, a late zygotene cell showing two bivalents with 1-2 chiasma(ta) (arrow of chromosomes of the N genome. The heads), two bivalents with 2-3 chiasmata (small sums of trivalents from the subsets based on arrows), and three bivalents with 3-4 chiasmata different P values (0.75 to 0.95) ranged from (large arrows). 3, a metapase I PMC showing 4.52 to 5.74 (Table 2). These expected triva eight bivalents, two chain quadrivalents (small lent frequencies were close to those observed arrows), and one ring quadrivalent (large arrow) in the tetraploid. •~2,400. (Table 1). Jackson and Casey's models appeared to be more appropriate for the N genome chromosomes. The trivalent frequencies observed in these autotriploid plants of Psathyrostachys juncea (Table 1) are much higher than that reported for autotriploid Secale cereale (Niwa et al. 1989), in which 2.37 to 3.01 trivalents were observed. It appeared that chromosome length was not responsible for the variations in trivalent frequency. Both the N and R genomes have similar, long chromosomes (Hsiao et al. 1986), and the short chromosomes of the S and H genomes 1990 MeioticAssociations at MetaphaseI in RussianWildrye 641 formed 2.74 to 4.96 trivalents in their autotriploids (Wang 1990). The R-genome chromosomes could also form up to four chiasmata per bivalent, but the mean chiasmata per bivalent was 2.00 (Galindo and Jouve 1989). The difference in chiasma formation, which may be both quantitative (chiasma number) and qualitative (chiasma maintenance), might be responsible Table 1. Meanchromosome associations at metaphaseI of PMCsof autotriploid Psathyrostachysjuncea * c and x are mean arm-pairing frequency and relative affinity , respectively, according to Alonso and Kimber (1981). Table 2. Expected trivalent frequencies per PMC at different P values (Jackson and Casey 1982) for the three subsets of the N-genome chromsomes (x=7) Table 3. Mean chromosome associations at metaphase I of PMCs in autotetraploid Psathyrostachys juncea for the variations in trivalent frequency observed for different autotriploid species. Another possibility is that a partial bivalentization reduces the trivalent frequency in favor of the for mation of ring bivalents, thus shifting the pairing patterns toward the 2:1 model of Alonso and Kimber (1981) such as in the genus Thinopyrutn (Wang and Hsiao 1989). Both triploid and tetraploid Secale produced fewer trivalents and multivalents, respectively, than expected 642 RichardR. -C. Wangand John D. Berdahl Cytologia55 according to the equations of Wang (1989). This suggests the presence of a bivalentization system in the R genome. Conversely, the higher than expected trivalent frequency in the autotriploid Psathyrostachys, 5.08 vs. 3.76, could be attributed to the absence or inactivity of the bivalentization system in addition to the higher chiasmate formation per bivalent than the assumed maximum of 2.00. Meiotic associations of PMCs at MI in seven autotetraploid plants are presented in Table 3. Based on the diploid c value of 0.87 and the equation of Wang (1989), expected multivalent (trivalents plus quadrivalents) frequency in the autotetraploids was 2.47. A range of 2.07 to 2.69 and a mean of 2.43 multivalents were observed, thus confirming the expectation. How ever, our scores of quadrivalents (Fig. 3) in these plants might be too conservative in light of the trivalent frequency observed in triploids (Table 1). If the reasoning of an absence or inactivity of the bivalentization system in the triploid is accepted, we can assume that the select ed parents are lacking or heterozygous for the genes controlling bivalentization. Because bivalentization is governed by two or more recessive genes (Charpentier et al. 1988), the auto tetraploid cannot be bivalentized. Therefore, out observations of multivalent frequency in these autotetraploids could only be too conservative. Nevertheless, this level of multivalent frequency was comparable to that cited in Wang (1989) in the genus Agropyron, which has the P genomes in an autoploid series of diploid, tetraploid, and hexaploid species (Dewey 1984). Autopolyploidy did not affect fertility and seed production in crested wheatgrass (Agropyron spp.), despite of the lack of bivalentization. Therefore, autopolyploid Russian wildrye may not necessarily be less fertile than its diploid state. The mean pollen stainability in 15 auto tetraploid plants was 86% as compared to 87% in 14 diploid plants (Berdahl et al. 1989). It appears that bivalentization for autopolyploids or diploidization for allopolyploids is not so essential for high seed yield in outcrossing species as in self-pollinating species. Therefore, the same breeding strategies for crested wheatgrass (Asay 1986)can be applied for improvement of Russian wildrye. Both grasses are autopolyploid outcrossers having relatively high fertility in spite of high multivalent frequency.
Recommended publications
  • Genetic Diversity and Phylogeny in Hystrix (Poaceae, Triticeae) and Related Genera Inferred from Giemsa C-Banded Karyotypes
    Genetics and Molecular Biology, 32, 3, 521-527 (2009) Copyright © 2009, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Genetic diversity and phylogeny in Hystrix (Poaceae, Triticeae) and related genera inferred from Giemsa C-banded karyotypes Hai-Qin Zhang1,2, Rui-Wu Yang3, Li Zhang3, Chun-Bang Ding3, Jian Zeng1 and Yong-Hong Zhou1,2 1Triticeae Research Institute, Sichuan Agricultural University, Sichuan, China. 2Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Sichuan, China. 3College of Biology and Science, Sichuan Agricultural University, Sichuan, China. Abstract The phylogenetic relationships of 15 taxa from Hystrix and the related genera Leymus (NsXm), Elymus (StH), Pseudoroegneria (St), Hordeum (H), Psathyrostachys (Ns), and Thinopyrum (E) were examined by using the Giemsa C-banded karyotype. The Hy. patula C-banding pattern was similar to those of Elymus species, whereas C-banding patterns of the other Hystrix species were similar to those of Leymus species. The results suggest high genetic diversity within Hystrix, and support treating Hy. patula as E. hystrix L., and transferring Hy. coreana, Hy. duthiei ssp. duthiei and Hy. duthiei ssp. longearistata to the genus Leymus. On comparing C-banding patterns of Elymus species with their diploid ancestors (Pseudoroegneria and Hordeum), there are indications that certain chro- mosomal re-arrangements had previously occurred in the St and H genomes. Furthermore, a comparison of the C-banding patterns of the Hystrix and Leymus species with the potential diploid progenitors (Psathyrostachys and Thinopyrum) suggests that Hy. coreana and some Leymus species are closely related to the Ns genome of Psathyrostachys, whereas Hy.
    [Show full text]
  • Taxonomy and Phylogeny in Triticeae: a Historical Review and Current Status
    Advances in Plants & Agriculture Research Review Article Open Access Taxonomy and phylogeny in Triticeae: a historical review and current status Abstract Volume 3 Issue 5 - 2016 The Triticeae is an economically important tribe within the Poaceae. Because a number of cereal crops and forage grasses belong to the tribe it has attracted much scientific Mohannad G Al–Saghir attention covering many species: taxonomy, phylogeny, genetics, cytogenetic, genome Department of Environmental and Plant Biology, Ohio analyses (crossing ability and chromosome pairing), isoenzymes, molecular biology University, USA (RFLP, RAPD, PCR sequencing) and breeding. This paper contains a brief historical outline of the taxonomy of the tribe. Phylogenetic hypotheses regarding this tribe Correspondence: Mohannad G Al–Saghir, Department of inferred from different methods, techniques and approaches, are reviewed. The Environmental and Plant Biology, Ohio University, Zanesville, different phylogenies are discussed and compared and conflicts are elucidated. Ohio, USA, Email al–[email protected] Keywords: triticeae, phylogeny, taxonomy, poaceae, perennial species, durum Received: April 23, 2016 | Published: May 10, 2016 wheat, phylogenies, genetic diversity, cytogenetics, molecular biology, chromosomes, perennial, caespitose, thizomatous species Introduction as cited above. We can therefore conclude that the most appropriate outgroup for the tribe will be Bromus. The tribe Triticeae Dum is economically the most important tribe in the grass family (Poaceae). It encompasses between 350 and 500 Definition annual or perennial species,1–3 including the important cereal crops wheat (Triticum aestivium L.), durum wheat (T. turgidum sup. durum The Triticeae encompasses annual and perennial, caespitose or (Desf. MacKay) barley (Hordeum vulgare L.), rye (Secale cereal L.) thizomatous species.
    [Show full text]
  • 1501 Taxonomic Revision of the Genus Psathyrostachys Nevski (Poaceae
    AJCS 5(12):1501-1507 (2011) ISSN:1835-2707 Taxonomic revision of the genus Psathyrostachys Nevski (Poaceae: Triticeae) in Turkey Evren Cabi 1*, Musa Do ğan 2, Ersin Karabacak 3 1Atatürk University, Faculty of Science, Department of Biology, 25240, Erzurum, TURKEY 2Middle East Technical University, Faculty of Arts and Sciences, Department of Biological Sciences, 06531, Ankara, TURKEY 3Çanakkale Onsekiz Mart University, Faculty of Arts and Sciences, Department of Biology, 17020, Çanakkale, TURKEY *Corresponding author: [email protected] Abstract In this study, the genus Psathyrostachys Nevski is revised in Turkey. Furthermore multivariate analysis have been carried out in order to understand the delimitation of the taxa of Psathyrostachys. For this reason, 20 quantitative, qualitative and multi-state morphological characters were scored for the accessions representing 10 populations of the genus. The data were subjected to numerical taxonomic analysis. The results showed that the genus is represented by 3 species one of which is new species and the other one is a new record for Turkey. An account of 3 species and 4 subspecies recognized in the genus is given including the genus description, a key for the species as well as the subspecies, species descriptions, flowering times, habitats, altitudes, type citations, distributions, phytogeography and their conservation status. However, three new taxa, namely P. narmanica sp. nov ., P. fragilis subsp. artvinense subsp. nov. and P. daghestanica subsp erzurumica subsp. nov. are described and illustrated for the first time. Keywords: Poaceae, Psathyrostachys , revision, Turkey. Introduction The genus Psathyrostachys Nevski (Poaceae; Triticeae) is a anatomical studies have also been done on certain grass small, well-defined, perennial genus comprising only eight genera (Do ğan, 1988, 1991, 1992, 1997; Cabi and Do ğan, species (Baden 1991).
    [Show full text]
  • Host Range of a Deleterious Rhizobacterium for Biological Control of Downy Brome
    Weed Science, 49:792±797. 2001 Host range of a deleterious rhizobacterium for biological control of downy brome Ann C. Kennedy Pseudomonas ¯uorescens strain D7 (P. f . D7; NRRL B-18293) is a root-colonizing Corresponding author. Land Management and bacterium that inhibits downy brome (Bromus tectorum L. BROTE) growth. Before Water Conservation Research Unit, USDA commercialization as a biological control agent, strain D7 must be tested for host Agricultural Research Service, 215 Johnson Hall, plant speci®city. Agar plate bioassays in the laboratory and plant±soil bioassays in a Washington State University, Pullman, WA, 99164- growth chamber were used to determine the in¯uence of P. f . D7 on germination 6421; [email protected] and root growth of 42 selected weed, cultivated or native plant species common in the western and midwestern United States. In the agar plate bioassay, all accessions Bradley N. Johnson of downy brome were inhibited by P. f . D7. Root growth of seven Bromus spp. was Tami L. Stubbs inhibited an average of 87% compared with that of controls in the agar plate bio- Land Management and Water Conservation assay. Root growth of non-Bromus monocots was reduced by 0 to 86%, and only 6 Research Unit, USDA Agricultural Research Service, out of 17 plant species were inhibited 40% or greater. Among all plant species, only 215 Johnson Hall, Washington State University, downy brome root growth from two accessions was signi®cantly inhibited by P. f . Pullman, WA, 99164-6421 D7 in plant±soil bioassays (42 and 64%). P. f . D7 inhibited root growth and ger- mination in agar plate bioassays more than in plant±soil bioassays.
    [Show full text]
  • Literaturverzeichnis
    Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings.
    [Show full text]
  • 'Mankota' Russian Wildrye Release Brochure
    ‘Mankota’ Russian Wildrye Psathyrostachys juncea A Conservation Plant Release by USDA NRCS Plant Materials Center, Bismarck, North Dakota Source Mankota traces to plants selected from a source population of 29 different cultivars, experimental strains, and plant introductions. Selected plants were tested at the Northern Great Plains Research Laboratory, Mandan, ND, for seedling emergence from a 2-inch planting depth, stand establishment, resistance to leafspot diseases, lodging, and forage and seed yields. Uses Russian wildrye is better suited to grazing than to hay production. Russian wildrye is usually sown alone because it develops an extensive root system that provides high plant competition to most other forage species. Once 'Mankota' Russian wildrye Psathyrostachys juncea established, Russian wildrye is tolerant of heavy fall (Fisch.) Nevski (Mandan R 1808, PI-556988) was grazing, and the basal leaves provide high quality forage. released cooperatively in March 1991 by the USDA Fall regrowth is rapid if soil water is adequate. A valuable Agricultural Research Service, the USDA Natural use for Mankota would be complementary pasture that Resources Conservation Service (NRCS), and the North would extend the fall grazing season when nutritional Dakota Agricultural Experiment Station. Mankota is quality of most other grasses is low. recommended for pasture to complement native rangeland in the northern Great Plains, particularly during late Adaptation summer, fall, and early winter when nutritive quality of Mankota is adapted to a wide range of environments in Russian wildrye is high compared with most other the northern Great Plains. Russian wildrye is drought grasses. tolerant and is most commonly used in areas where annual precipitation averages less than 16 inches.
    [Show full text]
  • Rangelands of Central Asia: Forest Service
    United States Department of Agriculture Rangelands of Central Asia: Forest Service Rocky Mountain Research Station Proceedings of the Conference Proceedings RMRS-P-39 on Transformations, Issues, and June 2006 Future Challenges Bedunah, Donald J., McArthur, E. Durant, and Fernandez-Gimenez, Maria, comps. 2006. Rangelands of Cen- tral Asia: Proceedings of the Conference on Transformations, Issues, and Future Challenges. 2004 January 27; Salt Lake City, UT. Proceeding RMRS-P-39. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 127 p. Abstract ________________________________________ The 11 papers in this document address issues and needs in the development and stewardship of Central Asia rangelands, and identify directions for future work. With its vast rangelands and numerous pastoral populations, Central Asia is a region of increasing importance to rangeland scientists, managers, and pastoral development specialists. Five of the papers address rangeland issues in Mongolia, three papers specifically address studies in China, two papers address Kazakhstan, and one paper addresses the use of satellite images for natural resource planning across Central Asia. These papers comprise the proceedings from a general technical conference at the 2004 Annual Meeting of the Society for Range Management, held at Salt Lake City, Utah, January 24-30, 2004. As the 2004 SRM Conference theme was “Rangelands in Transition,” these papers focus on an area of the world that has experienced dramatic socio-economic changes in 20th Century associated with adoption of communism and command economies and the subsequent collapse of the command economies and the recent transition to a free market economies. The changes in land use and land tenure policies that accompanied these shifts in socio economic regimes have had dramatic impacts on the region’s rangelands and the people who use them.
    [Show full text]
  • Medusahead Management Guide for the Western States. University of California, Weed Research and Information Center, Davis
    #822 Medusahead Management Guide for the Western States GUY B. KYSER Weed Science Program Department of Plant Sciences University of California, Davis, CA JOSEPH M. DITOMASO Weed Science Program Department of Plant Sciences University of California, Davis, CA KIRK W. DAVIES Eastern Oregon Agricultural Research Center, Burns, OR JOSH S. DAVY University of California Cooperative Extension, Tehama County, CA BRENDA S. SMITH Eastern Oregon Agricultural Research Center, Burns, OR Medusahead Management Guide for the Western States Guy B. Kyser Weed Science Program, Department of Plant Sciences University of California, Davis, CA Joseph M. DiTomaso Weed Science Program, Department of Plant Sciences University of California, Davis, CA Kirk W. Davies Eastern Oregon Agricultural Research Center, Burns, OR Josh S. Davy University of California Cooperative Extension, Tehama County, CA Brenda S. Smith Eastern Oregon Agricultural Research Center, Burns, OR Published by the Weed Research and Information Center, University of California. Recommended citation: Kyser GB, DiTomaso JM, Davies KW, Davy JS, Smith BS (2014) Medusahead Management Guide for the Western States. University of California, Weed Research and Information Center, Davis. 68 p. Available at: wric.ucdavis.edu. Acknowledgements WE ARE INDEBTED TO James A. Young, USDA- Neil McDougald,IUniversity of California Coopera- ARS, Reno, NV (retired), for his wide-ranging body tive Extension Farm Advisor, Madera County of work with medusahead, and for his enjoyable, lit- Melissa Merrill-Davies, University of California Co- erate science writing. In particular, his 1992 review of operative Extension County Director and Farm medusahead ecology and management was indispen- Advisor, Modoc County sable in preparation of this manuscript.
    [Show full text]
  • Genetic Structure of Eurasian and North American Leymus (Triticeae) Wildryes Assessed by Chloroplast DNA Sequences and AFLP Profiles
    Plant Syst Evol (2011) 294:207–225 DOI 10.1007/s00606-011-0455-x ORIGINAL ARTICLE Genetic structure of Eurasian and North American Leymus (Triticeae) wildryes assessed by chloroplast DNA sequences and AFLP profiles C. Mae Culumber • Steven R. Larson • Kevin B. Jensen • Thomas A. Jones Received: 30 September 2010 / Accepted: 2 April 2011 / Published online: 18 May 2011 Ó Springer-Verlag (outside the USA) 2011 Abstract Leymus is a genomically defined allopolyploid six North American taxa and four Eurasian taxa, had more of genus Triticeae with two distinct subgenomes. Chloro- than 98% bootstrap confidence with 0.071 and 0.055 plast DNA sequences of Eurasian and North American D among taxa. Three other Eurasian taxa clustered with species are distinct and polyphyletic. However, phyloge- 79% and 89% confidence, with up to 0.79 D between taxa. nies derived from chloroplast and nuclear DNA sequences These estimates provide benchmarks for phylogenetic are confounded by polyploidy and lack of polymorphism comparisons of AFLP profiles, but three taxa could not be among many taxa. The AFLP technique can resolve phy- reliably grouped, which may reflect concurrent radiation of logenetic relationships between closely related species, multiple lineages or lack of homologous AFLP characters with a curvilinear relationship expected between the pro- caused by a high D. portion of shared bands and nucleotide substitution rate (D), up to about 0.100 D. The objective of this study was to Keywords Triticeae Á Chloroplast Á AFLP Á Leymus Á compare D and phylogenetic relationships among 16 Nucleotide sequence divergence Á Hybrid species Leymus taxa, based on chloroplast DNA sequences and multi- locus AFLP genotypes.
    [Show full text]
  • Vascular Plant Species of the Pawnee National Grassland
    ,*- -USDA United States Department of Agriculture Vascular Plant Species of the Forest Service Rocky Mountain Pawnee National Grassland Research Station General Technical Report RMRS-GTR-17 September 1998 Donald L. Hazlett Abstract Hazlett, Donald L. 1998. Vascular plant species of the pawnee National Grassland. General Technical Report RMRS-GTR-17. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 26 p. This report briefly describes the main vegetation types and lists the vascular plant species that are known to occur in and near the Pawnee National Grassland, Weld County, Colorado. A checklist includes the scientific and common names for 521 species. Of these, 115 plant species (22 percent) are not native to this region. The life forms, habitats, and geographic distribution of native and introduced plants are summarized and discussed. Keywords: grasslands, Colorado flora, Great Plains flora, plant lists The Author Dr. Donald L. Hazlett, a native of the eastern plains of Colorado, has lived and worked in the Pawnee National Grassland region since 1983. Before 1983 Don spent 12 years working in Honduras and Costa Rica. He has worked for Colorado State University as site manager for the Central Plains Experimental Range, as a visiting professor in the biology department, and as a plant taxonomist for the Center for Ecological Management of Military Lands. Since 1995 Don has been a research contractor for ecological and floristic studies in the western United States. He prefers ethnobotanical studies. Publisher Rocky Mountain Research Station Fort Collins, Colorado September 1998 You may order additional copies of this publication by sending your mailing information in label form through one of the following media.
    [Show full text]
  • State of NEW MEXICO 2014 Wetland Plant List
    4/2/14 & n s p State of NEW MEXICO 2014 Wetland Plant List Lichvar, R.W., M. Butterw ick, N.C. Melvin, and W.N. Kirchner. 2014. The National Wetland Plant List: 2014 Update of Wetland Ratings. Phytoneuron 2014-41: 1-42. http://wetland_plants.usace.army.mil/ Sisyrinchium demissum Greene (Stif f Blue-Ey ed-Grass) Photo: Lewis E. Epple User Notes: 1) Plant species not listed are considered UPL for w etland delineation purposes. 2) A few UPL species are listed because they are rated FACU or w etter in at least one Corps region. 3) Some state boundaries lie w ithin tw o or more Corps Regions. If a species occurs in one region but not the other, its rating w ill be show n in one column and the other column w ill be BLANK. Approved for public release; distribution is unlimited. 1/24 4/2/14 State of NEW MEXICO 2014 Wetland Plant List Total Species = 1506 AW GP WMVC OBL 273 266 266 FACW 337 330 320 FAC 338 329 345 FACU 450 390 430 UPL 100 126 116 Regional Totals 1498 1441 1477 Scientific Name Authorship AW GP WMVC Common Name Abies bifolia A. Murr. FACU FACU Rocky Mountain Alpine Fir Abutilon theophrasti Medik. UPL UPL FACU Velv etleaf Acer glabrum Torr. FAC FAC FACU Rocky Mountain Maple Acer grandidentatum Nutt. FACU FAC FACU Cany on Maple Acer negundo L. FACW FAC FAC Ash-Leaf Maple Acer saccharinum L. FAC FAC FAC Silv er Maple Achillea millefolium L. FACU FACU FACU Common Yarrow Achnatherum hymenoides (Roemer & J.A.
    [Show full text]
  • Resistance of Diploid Triticeae Species and Accessions to the Columbia Root-Knot Nematode, Meloidogyne Chitwoodi K
    Supplement to Journal of Nematology 26(4S):635-639. 1994. © The Society of Nematologists 1994. Resistance of Diploid Triticeae Species and Accessions to the Columbia Root-knot Nematode, Meloidogyne chitwoodi K. B. JENSEN AND G. D. GRIFFIN 2 Abstract: The Columbia root-knot nematode, Meloidogyne chitwoodi race 2, is associated with several plant species, including members of the tribe Triticeae. We evaluated 15 diploid species for M. chitwoodi gall and reproductive indices from the following genera: Agropyron, Pseudoroegneria, Hor- deum, Psathyrostachys, and Thinopyrum. Species from the genus Thinopyrum (Thinopyrum bessarabicum; J genome) and Psathyrostachys (Psathyrostachys fragilis, P. juncea, P. stoloniformis; N genome) expressed more resistance to M. chitwoodi than species within the genera Agropyron (Agropyron cristatum and A. mongolicum; P genome), Pseudoroegneria (Pseudoroegneria spicata, P. stipifolia, A. aegilopoicles, P. liban- otica; S genome), and Hordeum (Hordeum bogdanii, H. brevisubulatum, H. californicum, and H. chilensis; H genome), although there was variation among individuals within P. spicata, P. juncea, and P. fragilis. The variation among genera and within species indicates that it would be possible to select Triticeae grasses for resistance to M. chitwoodi in order to identify and introgress genes for resistance into cultivated cereals. Key words: Agropyron, Columbia root-knot nematode, Elymus, genome, grass, Hordeum, Meloidogyne chitwoodi, nematode, Psathyrostachys, Pseudoroegneria, resistance, screening, Thinopyrum, Triticeae. The perennial grasses of the tribe Trit- num tuberosum) in the western United iceae are among the worlds' most valuable States, where potato is often rotated with forages and an important gene source for cereals (6). Development of nematode- wheat (Triticum aestivum), barley (Hordeum resistant cereals would reduce the yield vulgare), and rye (Secale cereale) breeders.
    [Show full text]