Genetic T-Type Calcium Channelopathies Norbert Weiss,‍ ‍ 1 Gerald W Zamponi‍ ‍ 2

Total Page:16

File Type:pdf, Size:1020Kb

Genetic T-Type Calcium Channelopathies Norbert Weiss,‍ ‍ 1 Gerald W Zamponi‍ ‍ 2 Neurogenetics J Med Genet: first published as 10.1136/jmedgenet-2019-106163 on 19 June 2019. Downloaded from REVIEW Genetic T-type calcium channelopathies Norbert Weiss, 1 Gerald W Zamponi 2 1Institute of Organic Chemistry ABSTRact their electrophysiological and pharmacological and Biochemistry, Czech T-type channels are low-voltage-activated calcium properties. This heterogeneity is in part explained Academy of Sciences, Praha, Czech Republic channels that contribute to a variety of cellular and by the existence of three T-type channel isoforms, 2 12 13 14 Department of Physiology physiological functions, including neuronal excitability, Cav3.1, Cav3.2 and Cav3.3, which in humans and Pharmacology, Cumming hormone and neurotransmitter release as well as are encoded by the genes CACNA1G, CACNA1H School of Medicine, University developmental aspects. Several human conditions and CACNA1I, respectively (figure 1A). This diver- of Calgary, Calgary, Alberta, including epilepsy, autism spectrum disorders, sity is further enriched by the existence of several Canada schizophrenia, motor neuron disorders and aldosteronism channel splice variants. Indeed, alternative splicing have been traced to variations in genes encoding T-type of Ca 3.1,15–19 Ca 3.220–24 and Ca 3.325 26 contrib- Correspondence to v v v Dr Norbert Weiss, Institute channels. In this short review, we present the genetics of utes to increase the functional diversity of T-type of Organic Chemistry and T-type channels with an emphasis on structure-function channels and may also have important pathophysi- Biochemistry, Czech Academy of relationships and associated channelopathies. ological implications. Sciences, Praha 166 10, Czech T-type channels consist on a single Ca 3 pore- Republic; v weiss@ uochb. cas. cz and forming subunit that contains all the structural Dr Gerald W Zamponi, determinants of channel gating and ion selectivity Department of Physiology INTRODUCTION and permeability (for review see.27 The Ca 3 subunit and PharmacologyCumming v Low-voltage-activated Cav3 T-type channels are is a relatively large plasma membrane protein of School of Medicine, University members of the superfamily of voltage-gated about 260 kDa organised into four hydrophobic of Calgary, Calgary T2N 4N1, 1 Alberta, Canada; calcium channels. T-type channels are widely domains (DI to DIV), each of them made of six zamponi@ ucalgary. ca expressed throughout the nervous, the neuroen- transmembrane helices (S1 to S6) (figure 1B). The 2 docrine and the cardiovascular system and are voltage-sensing module of the channel is formed Received 20 March 2019 also found in several non-excitable tissues such as Revised 2 May 2019 by the positively charged arginine/lysine-rich S4 osteocytes,3 sperm cells4 and immune cells.5 6 The 28 Accepted 18 May 2019 segments, while the ion conductivity and selec- cellular and physiological processes in which T-type tivity lie on the re-entrant extracellular linkers channels are implicated depend primarily on the connecting S5 and S6 segments of each domain, tissue distribution of the channels. For instance, in so-called pore-forming loop (P loop).2 The four the central and peripheral nervous systems, T-type transmembrane domains are linked together channels play an essential role in shaping neuronal by several intracellular loops connecting the S6 excitability,7–9 whereas they contribute to the release 10 11 segment of the upstream domain to the S1 segment http://jmg.bmj.com/ of hormones in the neuroendocrine system. of the downstream domain, which in combination The essential role of T-type channels in human with the amino and carboxy termini provide hubs physiology is emphasised by the existence of chan- for channel regulation by a variety of signalling nelopathies which are disorders that are caused or molecules and other molecular partners including enhanced by mutations in genes that encode these the G-protein βγ-dimer,29 30 CaMKII,31 32 kelch- channels. Most of T-type channelopathies are trans- like 1,33 calcineurin,34 syntaxin-1A,35 stac1,36 37 38 39 mitted by recessive inheritance or appear sporadic. CACHD1, spectrin α/β and ankyrin B as well on September 29, 2021 by guest. Protected copyright. The clinical manifestations of these disorders as several ion channels.40 41 In addition, T-type depend primarily on dysfunctions of the biophys- channels undergo several post-translational modifi- ical characteristics and cell surface trafficking of the cations such as phosphorylation,42 ubiquitination43 channels and can lead to either gain-of-function or and glycosylation,44–49 which contribute to the loss-of-function. expression and activity of the channel. In this review, we present an overview of human The contribution of T-type channels in particular T-type channelopathies and their relationship with cellular processes is partly inherent to their unique the diversity, structure and function of T-type chan- electrophysiological properties. Voltage-dependent nels. This will be followed by the presentation of opening of T-type channels occurs at comparatively the various syndromes for which T-type channels © Author(s) (or their negative membrane potentials where calcium influx have been linked to, with an emphasis on the struc- employer(s)) 2019. Re-use contributes to the depolarisation of the plasma ture-function-pathogenicity relationship of mutant permitted under CC BY-NC. No membrane, therefore increasing the opening prob- commercial re-use. See rights Cav3 channels. and permissions. Published ability of voltage-gated sodium channels and the by BMJ. propensity of cells to fire action potentials. This DIVERSITY, STRUCTURE AND FUNCTION OF aspect is especially relevant in several central To cite: Weiss N, CA 3 CHANNELS neurons including thalamic and hippocampal cells Zamponi GW. J Med Genet V Epub ahead of print: [please Although T-type currents recorded from various where T-type channels are particularly abundant include Day Month Year]. native tissues present a common feature illus- in dendrites to enhance subthreshold postsynaptic doi:10.1136/ trated by a low-threshold of activation around potentials and facilitate the propagation of the jmedgenet-2019-106163 −55 mV, they also exhibit several differences in electrical signal to the cell body.50 Another way by Weiss N, Zamponi GW. J Med Genet 2019;0:1–10. doi:10.1136/jmedgenet-2019-106163 1 Neurogenetics J Med Genet: first published as 10.1136/jmedgenet-2019-106163 on 19 June 2019. Downloaded from Figure 1 Chromosomal location of human Cav3 channels and their membrane topology. (A) Chromosomal location of human CACNA1G, CACNA1H and CACNA1I genes encoding Cav3.1, Cav3.2 and Cav3.3 channels, respectively. (B) Secondary membrane topology of Cav3 depicting the main structural channel gating determinants. http://jmg.bmj.com/ which T-type channels contribute to neuronal excitability is by dysfunction associated with ageing.65 Mice lacking Cacna1h forming functional complexes with several types of voltage-acti- display abnormal coronary function,66 67 decreased suscepti- vated and calcium-activated potassium channels that allow these bility to cardiac hypertrophy68 and absence seizure,69 decreased channels to operate at subthreshold membrane potentials.51–55 peripheral pain signalling70 as well as several neurological symp- In addition, their fast recovery from inactivation allows T-type toms including elevated anxiety and impaired memory.71 72 Mice channels to generate calcium spikes on brief periods of hyperpo- lacking Cacna1I have provided important information on the 73 74 on September 29, 2021 by guest. Protected copyright. larisation, which leads to the firing of rebound burst of action implication of Cav3.3 channels in sleep rhythmogenesis. potentials that support various forms of neuronal rhythmogen- Finally, several studies from genetic knock out have uncovered a esis.56–59 Although a significant fraction of T-type channels is role for T-type channels in the control of myogenic tone.75 inactivated at most resting membrane potentials of nerve cells, Considering that the cellular and physiological functions in a small fraction remains open to support the passive influx of which T-type channels are implicated are directly dependent on calcium (termed window current due to the ‘window’ created their electrophysiological properties, it is anticipated that alter- by the overlap between the activation and inactivation curves of ation of channel gating caused by mutations will have deleterious the channels). In nerve cells, this window current has been impli- consequences. In the next section, we will cover the current cated in the generation of low frequency oscillations observed state of knowledge of T-type channelopathies and illustrate the during sleep patterns60 and is likely to play additional functions links between the structure-function of mutant channels and the especially in non-excitable cells. T-type channels also contribute pathophysiological features of the associated human syndromes. to several forms of synaptic plasticity.61 Finally, T-type channels are implicated in the low-threshold release of neurotransmitters and hormones, possibly by virtue of their functional coupling CACNA1H (CAV3.2) CHANNELOPATHIES with the vesicular release machinery.10 11 Genetic knockout in Idiopathic generalised epilepsy mice also provided insightful information on the physiolog- It is well established that T-type channels play an essential ical importance of T-type channels. For instance, knockout of role in the
Recommended publications
  • Genetic Associations Between Voltage-Gated Calcium Channels (Vgccs) and Autism Spectrum Disorder (ASD)
    Liao and Li Molecular Brain (2020) 13:96 https://doi.org/10.1186/s13041-020-00634-0 REVIEW Open Access Genetic associations between voltage- gated calcium channels and autism spectrum disorder: a systematic review Xiaoli Liao1,2 and Yamin Li2* Abstract Objectives: The present review systematically summarized existing publications regarding the genetic associations between voltage-gated calcium channels (VGCCs) and autism spectrum disorder (ASD). Methods: A comprehensive literature search was conducted to gather pertinent studies in three online databases. Two authors independently screened the included records based on the selection criteria. Discrepancies in each step were settled through discussions. Results: From 1163 resulting searched articles, 28 were identified for inclusion. The most prominent among the VGCCs variants found in ASD were those falling within loci encoding the α subunits, CACNA1A, CACNA1B, CACN A1C, CACNA1D, CACNA1E, CACNA1F, CACNA1G, CACNA1H, and CACNA1I as well as those of their accessory subunits CACNB2, CACNA2D3, and CACNA2D4. Two signaling pathways, the IP3-Ca2+ pathway and the MAPK pathway, were identified as scaffolds that united genetic lesions into a consensus etiology of ASD. Conclusions: Evidence generated from this review supports the role of VGCC genetic variants in the pathogenesis of ASD, making it a promising therapeutic target. Future research should focus on the specific mechanism that connects VGCC genetic variants to the complex ASD phenotype. Keywords: Autism spectrum disorder, Voltage-gated calcium
    [Show full text]
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 1. Pain and PTSS Associated Genes (N = 604
    Supplementary Table 1. Pain and PTSS associated genes (n = 604) compiled from three established pain gene databases (PainNetworks,[61] Algynomics,[52] and PainGenes[42]) and one PTSS gene database (PTSDgene[88]). These genes were used in in silico analyses aimed at identifying miRNA that are predicted to preferentially target this list genes vs. a random set of genes (of the same length). ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APOE APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1C CACNA1E CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL CALM2 CAMK2A CAMK2B CAMK4 CAT CCK CCKAR CCKBR CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CPS1 CREB1 CRH CRHBP CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSMD1 CSNK1A1 CSNK1E CTSB CTSS CX3CL1 CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DAO DBH DBI DICER1 DISC1 DLG2 DLG4 DPCR1 DPP4 DRD1 DRD2 DRD3 DRD4 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAAH FAM19A4 FGF2 FKBP5 FLOT1 FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA2 GABRA4
    [Show full text]
  • Phenotypic Spectrum and Long-Term Outcome in Children with Genetic Causes of Early-Onset Epileptic Encephalopathy
    Phenotypic Spectrum and Long-term Outcome in Children With Genetic Causes of Early-onset Epileptic Encephalopathy Chunhui Hu Department of Neurology, Children’s Hospital of Fudan University Deying Liu Wuhan Children’s hospital, Tongji Medical college, Huazhong University of Science & Technology Tian Luo Department of Neurology, Children’s Hospital of Fudan University Yi Wang ( [email protected] ) Department of Neurology, Children’s Hospital of Fudan University Zhisheng Liu Wuhan Children’s hospital, Tongji Medical college, Huazhong University of Science & Technology Research Article Keywords: Phenotypic spectrum, Long-term outcome, Genetic, EOEE, Therapy Posted Date: March 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-257334/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/23 Abstract Background To explore the clinical phenotype and long-term outcome in children with genetic causes of early-onset epileptic encephalopathies. Methods The clinical data of 118 children between 2010 and 2020 was obtained and analyzed. The whole exome sequencing and copy number variation studies in family were used to nd pathogenic mutations. The conrmed mutations were veried by Sanger sequencing. Results Among 118 patients, 39 patients were diagnosed with DS, 18 were WS, 3 were OS, 3 were EME, 2 were MMFSI, 1 was GLUT1 deciency syndrome, 1 was Pyridoxine dependent epilepsy and 51 were non-symptomatic EOEEs. The initial EEG showed frequent multiple and multifocal sharp waves, spike waves, sharp slow waves or spike slow waves. In the later period, some transformed into infrequent discharging or normal EEG. 112 patients (112/118, 94.9%) showed normal brain MRI, and the remaining 6 had widened extracerebral space.
    [Show full text]
  • An Advance About the Genetic Causes of Epilepsy
    E3S Web of Conferences 271, 03068 (2021) https://doi.org/10.1051/e3sconf/202127103068 ICEPE 2021 An advance about the genetic causes of epilepsy Yu Sun1, a, *, †, Licheng Lu2, b, *, †, Lanxin Li3, c, *, †, Jingbo Wang4, d, *, † 1The School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3633, US 2High School Affiliated to Shanghai Jiao Tong University, Shanghai, 200441, China 3Applied Biology program, University of British Columbia, Vancouver, V6r3b1, Canada 4School of Chemical Machinery and Safety, Dalian University of Technology, Dalian, 116023, China †These authors contributed equally. Abstract: Human hereditary epilepsy has been found related to ion channel mutations in voltage-gated channels (Na+, K+, Ca2+, Cl-), ligand gated channels (GABA receptors), and G-protein coupled receptors, such as Mass1. In addition, some transmembrane proteins or receptor genes, including PRRT2 and nAChR, and glucose transporter genes, such as GLUT1 and SLC2A1, are also about the onset of epilepsy. The discovery of these genetic defects has contributed greatly to our understanding of the pathology of epilepsy. This review focuses on introducing and summarizing epilepsy-associated genes and related findings in recent decades, pointing out related mutant genes that need to be further studied in the future. 1 Introduction Epilepsy is a neurological disorder characterized by 2 Malfunction of Ion channel epileptic seizures caused by abnormal brain activity. 1 in Functional variation in voltage or ligand-gated ion 100 (50 million people) people are affected by symptoms channel mutations is a major cause of idiopathic epilepsy, of this disorder worldwide, with men, young children, and especially in rare genetic forms.
    [Show full text]
  • Transcriptomic Profiling of Ca Transport Systems During
    cells Article Transcriptomic Profiling of Ca2+ Transport Systems during the Formation of the Cerebral Cortex in Mice Alexandre Bouron Genetics and Chemogenomics Lab, Université Grenoble Alpes, CNRS, CEA, INSERM, Bâtiment C3, 17 rue des Martyrs, 38054 Grenoble, France; [email protected] Received: 29 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Cytosolic calcium (Ca2+) transients control key neural processes, including neurogenesis, migration, the polarization and growth of neurons, and the establishment and maintenance of synaptic connections. They are thus involved in the development and formation of the neural system. In this study, a publicly available whole transcriptome sequencing (RNA-Seq) dataset was used to examine the expression of genes coding for putative plasma membrane and organellar Ca2+-transporting proteins (channels, pumps, exchangers, and transporters) during the formation of the cerebral cortex in mice. Four ages were considered: embryonic days 11 (E11), 13 (E13), and 17 (E17), and post-natal day 1 (PN1). This transcriptomic profiling was also combined with live-cell Ca2+ imaging recordings to assess the presence of functional Ca2+ transport systems in E13 neurons. The most important Ca2+ routes of the cortical wall at the onset of corticogenesis (E11–E13) were TACAN, GluK5, nAChR β2, Cav3.1, Orai3, transient receptor potential cation channel subfamily M member 7 (TRPM7) non-mitochondrial Na+/Ca2+ exchanger 2 (NCX2), and the connexins CX43/CX45/CX37. Hence, transient receptor potential cation channel mucolipin subfamily member 1 (TRPML1), transmembrane protein 165 (TMEM165), and Ca2+ “leak” channels are prominent intracellular Ca2+ pathways. The Ca2+ pumps sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) and plasma membrane Ca2+ ATPase 1 (PMCA1) control the resting basal Ca2+ levels.
    [Show full text]
  • Transcriptomic Uniqueness and Commonality of the Ion Channels and Transporters in the Four Heart Chambers Sanda Iacobas1, Bogdan Amuzescu2 & Dumitru A
    www.nature.com/scientificreports OPEN Transcriptomic uniqueness and commonality of the ion channels and transporters in the four heart chambers Sanda Iacobas1, Bogdan Amuzescu2 & Dumitru A. Iacobas3,4* Myocardium transcriptomes of left and right atria and ventricles from four adult male C57Bl/6j mice were profled with Agilent microarrays to identify the diferences responsible for the distinct functional roles of the four heart chambers. Female mice were not investigated owing to their transcriptome dependence on the estrous cycle phase. Out of the quantifed 16,886 unigenes, 15.76% on the left side and 16.5% on the right side exhibited diferential expression between the atrium and the ventricle, while 5.8% of genes were diferently expressed between the two atria and only 1.2% between the two ventricles. The study revealed also chamber diferences in gene expression control and coordination. We analyzed ion channels and transporters, and genes within the cardiac muscle contraction, oxidative phosphorylation, glycolysis/gluconeogenesis, calcium and adrenergic signaling pathways. Interestingly, while expression of Ank2 oscillates in phase with all 27 quantifed binding partners in the left ventricle, the percentage of in-phase oscillating partners of Ank2 is 15% and 37% in the left and right atria and 74% in the right ventricle. The analysis indicated high interventricular synchrony of the ion channels expressions and the substantially lower synchrony between the two atria and between the atrium and the ventricle from the same side. Starting with crocodilians, the heart pumps the blood through the pulmonary circulation and the systemic cir- culation by the coordinated rhythmic contractions of its upper lef and right atria (LA, RA) and lower lef and right ventricles (LV, RV).
    [Show full text]
  • SUPPLEMENTARY APPENDIX Inflammation Regulates Long Non-Coding RNA-PTTG1-1:1 in Myeloid Leukemia
    SUPPLEMENTARY APPENDIX Inflammation regulates long non-coding RNA-PTTG1-1:1 in myeloid leukemia Sébastien Chateauvieux, 1,2 Anthoula Gaigneaux, 1° Déborah Gérard, 1 Marion Orsini, 1 Franck Morceau, 1 Barbora Orlikova-Boyer, 1,2 Thomas Farge, 3,4 Christian Récher, 3,4,5 Jean-Emmanuel Sarry, 3,4 Mario Dicato 1 and Marc Diederich 2 °Current address: University of Luxembourg, Faculty of Science, Technology and Communication, Life Science Research Unit, Belvaux, Luxemburg. 1Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, Luxembourg, Luxembourg; 2College of Pharmacy, Seoul National University, Gwanak-gu, Seoul, Korea; 3Cancer Research Center of Toulouse, UMR 1037 INSERM/ Université Toulouse III-Paul Sabatier, Toulouse, France; 4Université Toulouse III Paul Sabatier, Toulouse, France and 5Service d’Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopôle, Toulouse, France Correspondence: MARC DIEDERICH - [email protected] doi:10.3324/haematol.2019.217281 Supplementary data Inflammation regulates long non-coding RNA-PTTG1-1:1 in myeloid leukemia Sébastien Chateauvieux1,2, Anthoula Gaigneaux1*, Déborah Gérard1, Marion Orsini1, Franck Morceau1, Barbora Orlikova-Boyer1,2, Thomas Farge3,4, Christian Récher3,4,5, Jean-Emmanuel Sarry3,4, Mario Dicato1 and Marc Diederich2 1 Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, 2540 Luxembourg, Luxemburg; 2 College of Pharmacy, Seoul National University, 1 Gwanak-ro,
    [Show full text]
  • Identification of Key Pathways and Genes in Dementia Via Integrated Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440371; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of Key Pathways and Genes in Dementia via Integrated Bioinformatics Analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440371; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract To provide a better understanding of dementia at the molecular level, this study aimed to identify the genes and key pathways associated with dementia by using integrated bioinformatics analysis. Based on the expression profiling by high throughput sequencing dataset GSE153960 derived from the Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) between patients with dementia and healthy controls were identified. With DEGs, we performed a series of functional enrichment analyses. Then, a protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network was constructed, analyzed and visualized, with which the hub genes miRNAs and TFs nodes were screened out. Finally, validation of hub genes was performed by using receiver operating characteristic curve (ROC) analysis.
    [Show full text]
  • Identification of 42 Genes Linked to Stage II Colorectal Cancer Metastatic Relapse
    Int. J. Mol. Sci. 2016, 17, 598; doi:10.3390/ijms17040598 S1 of S16 Supplementary Materials: Identification of 42 Genes Linked to Stage II Colorectal Cancer Metastatic Relapse Rabeah A. Al-Temaimi, Tuan Zea Tan, Makia J. Marafie, Jean Paul Thiery, Philip Quirke and Fahd Al-Mulla Figure S1. Cont. Int. J. Mol. Sci. 2016, 17, 598; doi:10.3390/ijms17040598 S2 of S16 Figure S1. Mean expression levels of fourteen genes of significant association with CRC DFS and OS that are differentially expressed in normal colon compared to CRC tissues. Each dot represents a sample. Table S1. Copy number aberrations associated with poor disease-free survival and metastasis in early stage II CRC as predicted by STAC and SPPS combined methodologies with resident gene symbols. CN stands for copy number, whereas CNV is copy number variation. Region Cytoband % of CNV Count of Region Event Gene Symbols Length Location Overlap Genes chr1:113,025,076–113,199,133 174,057 p13.2 CN Loss 0.0 2 AKR7A2P1, SLC16A1 chr1:141,465,960–141,822,265 356,305 q12–q21.1 CN Gain 95.9 1 SRGAP2B MIR5087, LOC10013000 0, FLJ39739, LOC10028679 3, PPIAL4G, PPIAL4A, NBPF14, chr1:144,911,564–146,242,907 1,331,343 q21.1 CN Gain 99.6 16 NBPF15, NBPF16, PPIAL4E, NBPF16, PPIAL4D, PPIAL4F, LOC645166, LOC388692, FCGR1C chr1:177,209,428–177,226,812 17,384 q25.3 CN Gain 0.0 0 chr1:197,652,888–197,676,831 23,943 q32.1 CN Gain 0.0 1 KIF21B chr1:201,015,278–201,033,308 18,030 q32.1 CN Gain 0.0 1 PLEKHA6 chr1:201,289,154–201,298,247 9093 q32.1 CN Gain 0.0 0 chr1:216,820,186–217,043,421 223,235 q41 CN
    [Show full text]
  • A Rare CACNA1H Variant Associated with Amyotrophic Lateral Sclerosis Causes Complete Loss of Cav3.2 T-Type Channel Activity Robin N
    Stringer et al. Molecular Brain (2020) 13:33 https://doi.org/10.1186/s13041-020-00577-6 RESEARCH Open Access A rare CACNA1H variant associated with amyotrophic lateral sclerosis causes complete loss of Cav3.2 T-type channel activity Robin N. Stringer1,2, Bohumila Jurkovicova-Tarabova3, Sun Huang4, Omid Haji-Ghassemi5, Romane Idoux1, Anna Liashenko1, Ivana A. Souza4, Yuriy Rzhepetskyy1, Lubica Lacinova3, Filip Van Petegem5, Gerald W. Zamponi4, Roger Pamphlett6 and Norbert Weiss1* Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of cortical, brain stem and spinal motor neurons that leads to muscle weakness and death. A previous study implicated CACN A1H encoding for Cav3.2 calcium channels as a susceptibility gene in ALS. In the present study, two heterozygous CACNA1H variants were identified by whole genome sequencing in a small cohort of ALS patients. These variants were functionally characterized using patch clamp electrophysiology, biochemistry assays, and molecular modeling. A previously unreported c.454GTAC > G variant produced an inframe deletion of a highly conserved isoleucine residue in Cav3.2 (p.ΔI153) and caused a complete loss-of-function of the channel, with an additional dominant- negative effect on the wild-type channel when expressed in trans. In contrast, the c.3629C > T variant caused a missense substitution of a proline with a leucine (p.P1210L) and produced a comparatively mild alteration of Cav3.2 channel activity. The newly identified ΔI153 variant is the first to be reported to cause a complete loss of Cav3.2 channel function. These findings add to the notion that loss-of-function of Cav3.2 channels associated with rare CACNA1H variants may be risk factors in the complex etiology of ALS.
    [Show full text]