Crude Oil Consortium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions. -
Acidification Increases Abundances of Vibrionales And
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sapientia Acidification increases abundances of Vibrionales and Planctomycetia associated to a seaweed-grazer system: potential consequences for disease and prey digestion efficiency Tania Aires1,*, Alexandra Serebryakova1,2,*, Frédérique Viard2,3, Ester A. Serrão1 and Aschwin H. Engelen1 1 Center for Marine Sciences (CCMAR), CIMAR, University of Algarve, Campus de Gambelas, Faro, Portugal 2 Sorbonne Université, CNRS, Lab Adaptation and Diversity in Marine Environments (UMR 7144 CNRS SU), Station Biologique de Roscoff, Roscoff, France 3 CNRS, UMR 7144, Divco Team, Station Biologique de Roscoff, Roscoff, France * These authors contributed equally to this work. ABSTRACT Ocean acidification significantly affects marine organisms in several ways, with complex interactions. Seaweeds might benefit from rising CO2 through increased photosynthesis and carbon acquisition, with subsequent higher growth rates. However, changes in seaweed chemistry due to increased CO2 may change the nutritional quality of tissue for grazers. In addition, organisms live in close association with a diverse microbiota, which can also be influenced by environmental changes, with feedback effects. As gut microbiomes are often linked to diet, changes in seaweed characteristics and associated microbiome can affect the gut microbiome of the grazer, with possible fitness consequences. In this study, we experimentally investigated the effects of acidification on the microbiome of the invasive brown seaweed Sargassum muticum and a native isopod consumer Synisoma nadejda. Both were exposed to ambient CO2 conditions Submitted 13 September 2017 (380 ppm, pH 8.16) and an acidification treatment (1,000 ppm, pH 7.86) for three Accepted 26 January 2018 weeks. -
Supporting Information
Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs. -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Resilience of Microbial Communities After Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms
microorganisms Article Resilience of Microbial Communities after Hydrogen Peroxide Treatment of a Eutrophic Lake to Suppress Harmful Cyanobacterial Blooms Tim Piel 1,†, Giovanni Sandrini 1,†,‡, Gerard Muyzer 1 , Corina P. D. Brussaard 1,2 , Pieter C. Slot 1, Maria J. van Herk 1, Jef Huisman 1 and Petra M. Visser 1,* 1 Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; [email protected] (T.P.); [email protected] (G.S.); [email protected] (G.M.); [email protected] (C.P.D.B.); [email protected] (P.C.S.); [email protected] (M.J.v.H.); [email protected] (J.H.) 2 Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherland Institute for Sea Research, 1790 AB Den Burg, The Netherlands * Correspondence: [email protected]; Tel.: +31-20-5257073 † These authors have contributed equally to this work. ‡ Current address: Department of Technology & Sources, Evides Water Company, 3006 AL Rotterdam, The Netherlands. Abstract: Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little Citation: Piel, T.; Sandrini, G.; is known about the impacts of these H2O2 treatments on other members of the microbial com- Muyzer, G.; Brussaard, C.P.D.; Slot, munity. In this study, we investigated changes in microbial community composition during two P.C.; van Herk, M.J.; Huisman, J.; −1 lake treatments with low H2O2 concentrations (target: 2.5 mg L ) and in two series of controlled Visser, P.M. -
University of Oklahoma Graduate College Microbial Ecology of Coastal Ecosystems: Investigations of the Genetic Potential For
UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MICROBIAL ECOLOGY OF COASTAL ECOSYSTEMS: INVESTIGATIONS OF THE GENETIC POTENTIAL FOR ANAEROBIC HYDROCARBON TRANSFORMATION AND THE RESPONSE TO HYDROCARBON EXPOSURE A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements of the Degree of DOCTOR OF PHILOSOPHY By JAMIE M. JOHNSON DUFFNER Norman, Oklahoma 2017 MICROBIAL ECOLOGY OF COASTAL ECOSYSTEMS: INVESTIGATIONS OF THE GENETIC POTENTIAL FOR ANAEROBIC HYDROCARBON TRANSFORMATION AND THE RESPONSE TO HYDROCARBON EXPOSURE A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Amy V. Callaghan, Chair ______________________________ Dr. Lee R. Krumholz ______________________________ Dr. Michael J. McInerney ______________________________ Dr. Mark A. Nanny ______________________________ Dr. Boris Wawrik © Copyright by JAMIE M. JOHNSON DUFFNER 2017 All Rights Reserved. This dissertation is dedicated to my husband, Derick, for his unwavering love and support. Acknowledgements I would like to thank my advisor, Dr. Amy Callaghan, for her guidance and support during my time as a graduate student, as well as for her commitment to my success as a scientist. I would also like to thank the members of my doctoral committee for their guidance over the years, particularly that of Dr. Boris Wawrik. I would like to also thank Drs. Josh Cooper, Chris Lyles, and Chris Marks for their friendship and support during my time at OU, both in and outside the lab. iv Table of Contents -
1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds. -
High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-Methylalkyl)Succinate Synthase Genes
ORIGINAL RESEARCH published: 07 January 2016 doi: 10.3389/fmicb.2015.01511 High Diversity of Anaerobic Alkane-Degrading Microbial Communities in Marine Seep Sediments Based on (1-methylalkyl)succinate Synthase Genes Marion H. Stagars1,S.EmilRuff1,2† , Rudolf Amann1 and Katrin Knittel1* 1 Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany, 2 HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Max Planck Institute for Marine Microbiology, Bremen, Germany Edited by: Alkanes comprise a substantial fraction of crude oil and are prevalent at marine seeps. Hans H. Richnow, These environments are typically anoxic and host diverse microbial communities that Helmholtz Centre for Environmental Research, Germany grow on alkanes. The most widely distributed mechanism of anaerobic alkane activation Reviewed by: is the addition of alkanes to fumarate by (1-methylalkyl)succinate synthase (Mas). Here Beth Orcutt, we studied the diversity of MasD, the catalytic subunit of the enzyme, in 12 marine Bigelow Laboratory for Ocean sediments sampled at seven seeps. We aimed to identify cosmopolitan species as well Sciences, USA Zhidan Liu, as to identify factors structuring the alkane-degrading community. Using next generation China Agricultural University, China sequencing we obtained a total of 420 MasD species-level operational taxonomic units *Correspondence: (OTU0.96) at 96% amino acid identity. Diversity analysis shows a high richness and Katrin Knittel [email protected] evenness of alkane-degrading bacteria. Sites with similar hydrocarbon composition harbored similar alkane-degrading communities based on MasD genes; the MasD †Present address: community structure is clearly driven by the hydrocarbon source available at the various S. -
Compile.Xlsx
Silva OTU GS1A % PS1B % Taxonomy_Silva_132 otu0001 0 0 2 0.05 Bacteria;Acidobacteria;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un;Acidobacteria_un; otu0002 0 0 1 0.02 Bacteria;Acidobacteria;Acidobacteriia;Solibacterales;Solibacteraceae_(Subgroup_3);PAUC26f; otu0003 49 0.82 5 0.12 Bacteria;Acidobacteria;Aminicenantia;Aminicenantales;Aminicenantales_fa;Aminicenantales_ge; otu0004 1 0.02 7 0.17 Bacteria;Acidobacteria;AT-s3-28;AT-s3-28_or;AT-s3-28_fa;AT-s3-28_ge; otu0005 1 0.02 0 0 Bacteria;Acidobacteria;Blastocatellia_(Subgroup_4);Blastocatellales;Blastocatellaceae;Blastocatella; otu0006 0 0 2 0.05 Bacteria;Acidobacteria;Holophagae;Subgroup_7;Subgroup_7_fa;Subgroup_7_ge; otu0007 1 0.02 0 0 Bacteria;Acidobacteria;ODP1230B23.02;ODP1230B23.02_or;ODP1230B23.02_fa;ODP1230B23.02_ge; otu0008 1 0.02 15 0.36 Bacteria;Acidobacteria;Subgroup_17;Subgroup_17_or;Subgroup_17_fa;Subgroup_17_ge; otu0009 9 0.15 41 0.99 Bacteria;Acidobacteria;Subgroup_21;Subgroup_21_or;Subgroup_21_fa;Subgroup_21_ge; otu0010 5 0.08 50 1.21 Bacteria;Acidobacteria;Subgroup_22;Subgroup_22_or;Subgroup_22_fa;Subgroup_22_ge; otu0011 2 0.03 11 0.27 Bacteria;Acidobacteria;Subgroup_26;Subgroup_26_or;Subgroup_26_fa;Subgroup_26_ge; otu0012 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_5;Subgroup_5_or;Subgroup_5_fa;Subgroup_5_ge; otu0013 1 0.02 13 0.32 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_or;Subgroup_6_fa;Subgroup_6_ge; otu0014 0 0 1 0.02 Bacteria;Acidobacteria;Subgroup_6;Subgroup_6_un;Subgroup_6_un;Subgroup_6_un; otu0015 8 0.13 30 0.73 Bacteria;Acidobacteria;Subgroup_9;Subgroup_9_or;Subgroup_9_fa;Subgroup_9_ge; -
Microbial Methane Formation in Deep Aquifers of a Coal-Bearing Sedimentary Basin, Germany
ORIGINAL RESEARCH published: 20 March 2015 doi: 10.3389/fmicb.2015.00200 Microbial methane formation in deep aquifers of a coal-bearing sedimentary basin, Germany Friederike Gründger 1†, Núria Jiménez 1, Thomas Thielemann 2, Nontje Straaten 1, Tillmann Lüders 3, Hans-Hermann Richnow 4 and Martin Krüger 1* 1 Resource Geochemistry, Geomicrobiology, Federal Institute for Geosciences and Natural Resources, Hannover, Germany, 2 Federal Institute for Geosciences and Natural Resources, Hannover, Germany, 3 Institute of Groundwater Ecology, Helmholtz Center for Environmental Health, Neuherberg, Germany, 4 Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany Edited by: Mark Alexander Lever, Coal-bearing sediments are major reservoirs of organic matter potentially available Eidgenössische Technische for methanogenic subsurface microbial communities. In this study the specific Hochschule Zürich, Switzerland microbial community inside lignite-bearing sedimentary basin in Germany and its Reviewed by: Hiroyuki Imachi, contribution to methanogenic hydrocarbon degradation processes was investigated. Japan Agency for Marine-Earth The stable isotope signature of methane measured in groundwater and coal-rich Science and Technology, Japan Aude Picard, sediment samples indicated methanogenic activity. Analysis of 16S rRNA gene Harvard University, USA sequences showed the presence of methanogenic Archaea, predominantly belonging *Correspondence: to the orders Methanosarcinales and Methanomicrobiales, capable of -
Genome-Based Microbial Taxonomy Coming of Age
Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Genome-Based Microbial Taxonomy Coming of Age Philip Hugenholtz, Adam Skarshewski, and Donovan H. Parks Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia QLD 4072, Australia Correspondence: [email protected] Reconstructing the complete evolutionary history of extant life on our planet will be one of the most fundamental accomplishments of scientific endeavor, akin to the completion of the periodic table, which revolutionized chemistry. The road to this goal is via comparative genomics because genomes are our most comprehensive and objective evolutionary docu- ments. The genomes of plant and animal species have been systematically targeted over the past decade to provide coverage of the tree of life. However, multicellular organisms only emerged in the last 550 million years of more than three billion years of biological evolution and thus comprise a small fraction of total biological diversity. The bulk of biodiversity, both past and present, is microbial. We have only scratched the surface in our understanding of the microbial world, as most microorganisms cannot be readily grown in the laboratory and remain unknown to science. Ground-breaking, culture-independent molecular techniques developed over the past 30 years have opened the door to this so-called microbial dark matter with an accelerating momentum driven byexponential increases in sequencing capacity. We are on the verge of obtaining representative genomes across all life for the first time. However, historical use of morphology, biochemical properties, behavioral traits, and single-marker genes to infer organismal relationships mean that the existing highly incomplete tree is riddled with taxonomic errors. -
Intracellular Oceanospirillales Inhabit the Gills of the Hydrothermal Vent Snail Alviniconcha with Chemosynthetic, Proteobacteri
bs_bs_banner Environmental Microbiology Reports (2014) doi:10.1111/1758-2229.12183 Intracellular Oceanospirillales inhabit the gills of the hydrothermal vent snail Alviniconcha with chemosynthetic, γ-Proteobacterial symbionts R. A. Beinart,1 S. V. Nyholm,2 N. Dubilier3 and could play a significant ecological role either as a P. R. Girguis1* host parasite or as an additional symbiont with 1Department of Organismic and Evolutionary Biology, unknown physiological capacities. Harvard University, Cambridge, MA 02138, USA. 2Department of Molecular and Cell Biology, University of Introduction Connecticut, Storrs, CT 06269, USA. In recent years, lineages from the γ-Proteobacterial order 3Symbiosis Group, Max Planck Institute for Marine Oceanospirillales have emerged as widespread associ- Microbiology, Bremen 28359, Germany. ates of marine invertebrates. In shallow-water habitats, Oceanospirillales are common and even dominant Summary members of the tissue and mucus-associated microbiota of temperate and tropical corals (Sunagawa et al., 2010; Associations between bacteria from the γ- Bayer et al., 2013a,b; Bourne et al., 2013; Chen et al., Proteobacterial order Oceanospirillales and marine 2013; La Rivière et al., 2013) and sponges (Kennedy invertebrates are quite common. Members of the et al., 2008; Sunagawa et al., 2010; Flemer et al., 2011; Oceanospirillales exhibit a diversity of interac- Bayer et al., 2013a,b; Bourne et al., 2013; Chen et al., tions with their various hosts, ranging from the 2013; La Rivière et al., 2013; Nishijima et al., 2013), and catabolism of complex compounds that benefit host they have been detected in the gills of commercially growth to attacking and bursting host nuclei. Here, important shellfish (Costa et al., 2012), as well as invasive we describe the association between a novel oysters (Zurel et al., 2011).