Forming Bacteria in Foods Ανάπτυξη Και Εφαρμογή Μαθηματικών Μοντέλων Πρόβλεψης Της Συμπεριφοράς Θερμόφιλων Σποριογόνων Βακτηρίων Στα Τρόφιμα

Total Page:16

File Type:pdf, Size:1020Kb

Forming Bacteria in Foods Ανάπτυξη Και Εφαρμογή Μαθηματικών Μοντέλων Πρόβλεψης Της Συμπεριφοράς Θερμόφιλων Σποριογόνων Βακτηρίων Στα Τρόφιμα ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF AGRICULTURE, FORESTRY AND NATURAL ENVIRONMENT SCHOOL OF AGRICULTURE ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΓΕΩΠΟΝΙΑΣ, ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΓΕΩΠΟΝΙΑΣ MYRSINI N. KAKAGIANNI Biologist, MSc ΜΥΡΣΙΝΗ Ν. ΚΑΚΑΓΙΑΝΝΗ Πτυχιούχος Βιολόγος, MSc Development and application of predictive models for the growth of thermophilic spore - forming bacteria in foods Ανάπτυξη και εφαρμογή μαθηματικών μοντέλων πρόβλεψης της συμπεριφοράς θερμόφιλων σποριογόνων βακτηρίων στα τρόφιμα PhD THESIS ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ THESSALONIKI / 2018 ΘΕΣΣΑΛΟΝΙΚΗ / 2018 MYRSINI N. KAKAGIANNI Biologist, MSc Development and application of predictive models for the growth of thermophilic spore - forming bacteria in foods Ph.D. THESIS Submitted at School of Agriculture of Aristotle University of Thessaloniki DATE OF ORAL PRESENTATION: Friday 13 July 2018 THESIS COMMITTEE (Decision ΓΣΕΣ 122/01-06-2018): FULL NAME LEVEL ROLE INSTITUTION Konstantinos P. Aristotle University of Professor Supervisor Koutsoumanis Thessaloniki Member of Three – Aristotle University of Konstantinos Biliaderis Professor member Committee Thessaloniki Assistant Member of Three – Aristotle University of Eugenios Katsanidis Professor member Committee Thessaloniki Agricultural University of George – John Nychas Professor Member Athens Associate Aristotle University of Apostolos S. Angelidis Member Professor Thessaloniki Associate Agricultural University of Efstathios Panagou Member Professor Athens Assistant Aristotle University of Athanasia Goula Member Professor Thessaloniki ΜΥΡΣΙΝΗ Ν. ΚΑΚΑΓΙΑΝΝΗ Πτυχιούχος Βιολόγος, MSc Ανάπτυξη και εφαρμογή μαθηματικών μοντέλων πρόβλεψης της συμπεριφοράς θερμόφιλων σποριογόνων βακτηρίων στα τρόφιμα ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ Υποβλήθηκε στο Τμήμα Γεωπονίας του Αριστοτελείου Πανεπιστημίου Θεσσαλονίκης ΗΜΕΡΟΜΗΝΙΑ ΥΠΟΣΤΗΡΙΞΗΣ: Παρασκευή 13 Ιουλίου 2018 ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ (Απόφαση ΓΣΕΣ 122/01-06-2018): ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΒΑΘΜΙΔΑ ΙΔΙΟΤΗΤΑ ΙΔΡΥΜΑ Κωνσταντίνος Π. Αριστοτέλειο Πανεπιστήμιο Καθηγητής Επιβλέπων Κουτσουμανής Θεσσαλονίκης Μέλος Κωνσταντίνος Αριστοτέλειο Πανεπιστήμιο Καθηγητής Τριμελούς Μπιλιαδέρης Θεσσαλονίκης Επιτροπής Μέλος Επίκουρος Αριστοτέλειο Πανεπιστήμιο Ευγένιος Κατσανίδης Τριμελούς Καθηγητής Θεσσαλονίκης Επιτροπής Γεώργιος – Ιωάννης Γεωπονικό Πανεπιστήμιο Καθηγητής Μέλος Νυχάς Αθηνών Αναπληρωτής Αριστοτέλειο Πανεπιστήμιο Απόστολος Σ. Αγγελίδης Μέλος Καθηγητής Θεσσαλονίκης Αναπληρωτής Γεωπονικό Πανεπιστήμιο Ευστάθιος Πανάγου Μέλος Καθηγητής Αθηνών Επίκουρος Αριστοτέλειο Πανεπιστήμιο Αθανασία Γούλα Μέλος Καθηγήτρια Θεσσαλονίκης © Myrsini N. Kakagianni, 2018 © PhD thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2018 Development and application of predictive models for the growth of thermophilic spore - forming bacteria in foods Ανάπτυξη και εφαρμογή μαθηματικών μοντέλων πρόβλεψης της συμπεριφοράς θερμόφιλων σποριογόνων βακτηρίων στα τρόφιμα ISBN «Η έγκριση της παρούσης διδακτορικής διατριβής από το Τμήμα Γεωπονίας δεν υποδηλώνει αποδοχή των γνωμών και απόψεων του συγγραφέως» (Ν. 5343/1932, άρθρο 202, παρ. 2) Μέρος της παρούσας διατριβής υλοποιήθηκε στο πλαίσιο της Δράσης «Συνεργασία» ΕΣΠΑ 2007 - 2013 και του προγράμματος Erasmus+ και συγχρηματοδοτήθηκε από: -Ευρωπαϊκή ΄Ενωση - Ευρωπαϊκό Κοινωνικό Ταμείο -Γενική Γραμματεία Έρευνας και Τεχνολογίας στον Αποστόλη και το Νικόλα Ευχαριστίες Αρχικά, θα ήθελα να εκφράσω τη βαθύτατη ευγνωμοσύνη μου στον κ. Κωνσταντίνο Κουτσουμανή για την πολύτιμη καθοδήγηση και τη συνεχή στήριξή του κατά τη διάρκεια όλων αυτών των ετών. Τον ευχαριστώ θερμά για το χρόνο, τις ιδέες και την εμπιστοσύνη που έδειξε στο πρόσωπό μου δίνοντάς μου την ευκαιρία να συνεχίσω τις πανεπιστημιακές μου σπουδές με την εκπόνηση της διδακτορικής αυτής μελέτης και να εξελιχθώ ως ερευνήτρια. Τον ευχαριστώ, επίσης, που μου έμαθε τη σημασία της συνεργασίας των επιστημών αλλά και τη μετάδοση της γνώσης από γενιά σε γενιά προκειμένου να είμαστε σε θέση να προβούμε σε αξιόλογα αποτελέσματα. Θεωρώ τον εαυτό μου τυχερό που ήμουν ένα από τα μέλη της ερευνητικής του ομάδας καθώς μου μετέδωσε πολλές και πλούσιες γνώσεις στο χώρο της Ποσοτικής Μικροβιολογίας. Επίσης, θα ήθελα να ευχαριστήσω όλα τα μέλη της εξεταστικής μου επιτροπής, τους καθηγητές κ. Κωνσταντίνο Μπιλιαδέρη, κ. Ευγένιο Κατσανίδη, κ. Γεώργιο – Ιωάννη Νυχά, κ. Ευστάθιο Πανάγου, κ. Απόστολο Αγγελίδη και κα. Αθανασία Γούλα, που αξιολόγησαν αυτή τη διατριβή και ενήργησαν ως «αντίπαλοι» κατά την υπεράσπισή της. Θα ήθελα να εκφράσω τις θερμές μου ευχαριστίες στο Βασίλη Βαλδραμίδη, Αν. Καθηγητή του Πανεπιστημίου της Μάλτας, για την εμπιστοσύνη του και την ευκαιρία που μου έδωσε να υλοποιήσω ένα μικρό μέρος της διδακτορικής αυτής μελέτης, υπό την επίβλεψή του, στο εργαστήριό του. Εκτιμώ βαθιά την εξαίρετη συνεργασία μας, την πολύτιμη καθοδήγησή του και την ανιδιοτελή μετάδοση των γνώσεών του στο αντικείμενο της ποσοτικής μικροβιολογίας. Ιδιαίτερες ευχαριστίες θα ήθελα να εκφράσω στο δάσκαλό μου κ. Μηνά Γιάγκου για την εμπιστοσύνη που έδειξε στο πρόσωπό μου και την ευκαιρία που μου έδωσε να γνωρίσω τον κόσμο της Ανοσοβιολογίας. Έπαιξε καθοριστικό ρόλο στη ζωή μου καθώς ήταν ο άνθρωπος που μετά από συζητήσεις με παρότρυνε να συνεχίσω τις μεταπτυχιακές μου σπουδές εξερευνώντας το χώρο των τροφίμων. Ένα μεγάλο ευχαριστώ οφείλω στους συναδέλφους, συνεργάτες και συμφοιτητές, συμπεριλαμβανομένων και των προπτυχιακών φοιτητών (Φωτεινή Μπόμπολα, Φανή Τσίνα, Αγγελική Χωραΐτη, Χριστίνα Νταμπούδη, Όλια Χαρισμιάδου, Μαρία Ρέπα, Μαίρη Τσιλφίδου και Μαρία Παπακρασά), για τη βοήθεια και ουσιαστική συμβολή τους καθ’ όλη τη διάρκεια της διδακτορικής διατριβής. Την ιδιαίτερη ευγνωμοσύνη και αγάπη μου θα ήθελα να εκφράσω στη Μαίρη Γουγουλή, για την άριστη συνεργασία και την αμέριστη βοήθεια οποτεδήποτε της ζήτησα, και τη Δάφνη Δημακοπούλου – Παπάζογλου, για τη σημαντική συμβολή της σε παρατηρήσεις και διορθώσεις της παρούσας διδακτορικής διατριβής, τη φιλία και συμπαράστασή της όλα αυτά τα χρόνια, ενώ παράλληλα μαζί με την Αλεξία Λιανού, Ζάφη Ασπρίδου, και Ζαχαρένια Ζαμπουλάκη ζήσαμε αξέχαστες στιγμές, όμορφες και δύσκολες, δημιουργώντας ένα ιδανικό κλίμα συνεργασίας, δημιουργικότητας και σκληρής δουλειάς. Είστε πλέον αναπόσπαστο κομμάτι της καρδιάς μου. Ιδιαιτέρως θα ήθελα να ευχαριστήσω τους φίλους μου Δημήτρη Βασιλείου για την καθοριστική βοήθειά του όσον αφορά τη συλλογή των θερμοκρασιακών δεδομένων καθώς και την Ελένη Νάστα για την επιμέλεια του εξωφύλλου της συγκεκριμένης διατριβής. Τέλος, ένα μεγάλο ευχαριστώ θα ήθελα να εκφράσω στον Αποστόλη μου για τις διορθώσεις του στην παρούσα διδακτορική διατριβή, την αγάπη, την υποστήριξη και την υπομονή του όλα αυτά τα χρόνια, ενώ πάρα πολλές φορές με βοήθησε να επαναπροσδιορίσω τις προτεραιότητές μου. Είμαι παντοτινά ευγνώμων στους γονείς μου, Μαίρη και Νίκο, αλλά και την αδερφή μου, Βίκυ, για την αγάπη τους, τη συνεχή και ανεξάντλητη συμπαράσταση και υποστήριξη σε κάθε μου απόφαση όλα τα χρόνια των σπουδών μου. Μυρσίνη Contents List of Tables 13 List of Figures 15 List of Abbreviations 19 Abstract 25 Περίληψη 29 Chapter 1 Literature Review and Thesis Outline 33 Chapter 2 Development and application of Geobacillus 97 stearothermophilus growth model for predicting spoilage of evaporated milk Chapter 3 Development and validation of predictive models for the 117 effect of storage temperature and pH on the growth boundaries and kinetics of Alicyclobacillus acidoterrestris ATCC 49025 in fruit drinks Chapter 4 Effect of storage temperature on the lag time of Geobacillus 141 stearothermophilus individual spores Chapter 5 Mapping the risk of evaporated milk spoilage in the 159 Mediterranean region based on the effect of temperature conditions on Geobacillus stearothermophilus growth Chapter 6 General Discussion and potential applications of the 174 developed models to the food industry References 186 List of Publications 233 List of Tables Table 2.1. Estimated values and statistics for the parameters of the cardinal 106 model with inflection (Equation (2.1)) describing the effect of temperature on the maximum specific growth rate (μmax) of Geobacillus stearothermophilus ATCC 7953 in tryptone soy broth. Table 2.2. Comparison between observed and predicted spoilage time of the 115 evaporated milk, stored under nonisothermal conditions, by Geobacillus stearothermophilus ATCC 7953. Table 3.1. Estimated values and fitting statistics for the parameters of the 129 logistic polynomial regression model for the combined temperature and pH limits of Alicyclobacillus acidoterrestris growth in K broth. Table 3.2. Probability of Alicyclobacillus acidoterrestris growth predicted by the 129 growth/no growth boundaries model for different combinations of temperature and pH. Table 3.3. Effect of pH on the maximum specific growth rate (μmax) of 131 Alicyclobacillus acidoterrestris in K broth at 48 °C. Points represent the observed μmax values, the solid line corresponds to the fitting on the cardinal pH model to the data, and the dotted lines depict the 95% confidence and prediction intervals. Table 3.4. Comparison between observed behavior of Alicyclobacillus 133 acidoterrestris and probability of growth predicted by the developed growth/no growth interface model in commercial pasteurized fruit drinks tested in validation studies Table 4.1. Statistics of the individual spore lag time (λ) of Geobacillus 149 stearothermophilus. Table 4.2. Parameter estimation of the Gamma distribution fitted to the 149 individual spore lag times of Geobacillus stearothermophilus. The probability density function of the Gamma distribution
Recommended publications
  • Region 19 Antarctica Pg.781
    Appendix B – Region 19 Country and regional profiles of volcanic hazard and risk: Antarctica S.K. Brown1, R.S.J. Sparks1, K. Mee2, C. Vye-Brown2, E.Ilyinskaya2, S.F. Jenkins1, S.C. Loughlin2* 1University of Bristol, UK; 2British Geological Survey, UK, * Full contributor list available in Appendix B Full Download This download comprises the profiles for Region 19: Antarctica only. For the full report and all regions see Appendix B Full Download. Page numbers reflect position in the full report. The following countries are profiled here: Region 19 Antarctica Pg.781 Brown, S.K., Sparks, R.S.J., Mee, K., Vye-Brown, C., Ilyinskaya, E., Jenkins, S.F., and Loughlin, S.C. (2015) Country and regional profiles of volcanic hazard and risk. In: S.C. Loughlin, R.S.J. Sparks, S.K. Brown, S.F. Jenkins & C. Vye-Brown (eds) Global Volcanic Hazards and Risk, Cambridge: Cambridge University Press. This profile and the data therein should not be used in place of focussed assessments and information provided by local monitoring and research institutions. Region 19: Antarctica Description Figure 19.1 The distribution of Holocene volcanoes through the Antarctica region. A zone extending 200 km beyond the region’s borders shows other volcanoes whose eruptions may directly affect Antarctica. Thirty-two Holocene volcanoes are located in Antarctica. Half of these volcanoes have no confirmed eruptions recorded during the Holocene, and therefore the activity state is uncertain. A further volcano, Mount Rittmann, is not included in this count as the most recent activity here was dated in the Pleistocene, however this is geothermally active as discussed in Herbold et al.
    [Show full text]
  • Environmental and Oceanographic Conditions at the Continental Margin of the Central Basin, Northwestern Ross Sea (Antarctica) Since the Last Glacial Maximum
    geosciences Article Environmental and Oceanographic Conditions at the Continental Margin of the Central Basin, Northwestern Ross Sea (Antarctica) Since the Last Glacial Maximum Fiorenza Torricella 1,*, Romana Melis 2 , Elisa Malinverno 3, Giorgio Fontolan 2 , Mauro Bussi 2, Lucilla Capotondi 4 , Paola Del Carlo 5 , Alessio Di Roberto 5, Andrea Geniram 2 , Gerhard Kuhn 6 , Boo-Keun Khim 7, Caterina Morigi 1 , Bianca Scateni 1,5 and Ester Colizza 2,* 1 Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria 53, 56126 Pisa, Italy; [email protected] (C.M.); [email protected] (B.S.) 2 Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, 34128 Trieste, Italy; [email protected] (R.M.); [email protected] (G.F.); [email protected] (M.B.); [email protected] (A.G.) 3 Dipartimento di Scienze dell’Ambiente e della Terra, Università di Milano-Bicocca, Piazza della Scienza 4, 20126 Milano, Italy; [email protected] 4 Istituto di Scienze Marine-Consiglio Nazionale delle Ricerche ISMAR-CNR, Via P. Gobetti 101, 40129 Bologna, Italy; [email protected] 5 Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, Via C. Battisti 53, 56125 Pisa, Italy; Citation: Torricella, F.; Melis, R.; [email protected] (P.D.C.); [email protected] (A.D.R.) 6 Malinverno, E.; Fontolan, G.; Bussi, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany; [email protected] M.; Capotondi, L.; Del Carlo, P.; Di 7 Department of Oceanography, Pusan National University, Busan 46241, Korea; [email protected] Roberto, A.; Geniram, A.; Kuhn, G.; * Correspondence: fi[email protected] (F.T.); [email protected] (E.C.) et al.
    [Show full text]
  • Appendices Physico-Chemical
    http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. An Investigation of Microbial Communities Across Two Extreme Geothermal Gradients on Mt. Erebus, Victoria Land, Antarctica A thesis submitted in partial fulfilment of the requirements for the degree of Master’s Degree of Science at The University of Waikato by Emily Smith Year of submission 2021 Abstract The geothermal fumaroles present on Mt. Erebus, Antarctica, are home to numerous unique and possibly endemic bacteria. The isolated nature of Mt. Erebus provides an opportunity to closely examine how geothermal physico-chemistry drives microbial community composition and structure. This study aimed at determining the effect of physico-chemical drivers on microbial community composition and structure along extreme thermal and geochemical gradients at two sites on Mt. Erebus: Tramway Ridge and Western Crater. Microbial community structure and physico-chemical soil characteristics were assessed via metabarcoding (16S rRNA) and geochemistry (temperature, pH, total carbon (TC), total nitrogen (TN) and ICP-MS elemental analysis along a thermal gradient 10 °C–64 °C), which also defined a geochemical gradient.
    [Show full text]
  • Sevasti Filippidou
    Sevasti Filippidou University of Neuchatel, 2016 Sporulation Capability and Metabolic Mechanisms of Endospore-Forming Firmicutes under Conditions Limiting for Growth and Survival A dissertation submitted to the University of Neuchatel for the degree of Docteure ès Sciences by Sevasti Filippidou, MSc Molecular Genetics Accepted by the Jury: Prof. Pilar Junier, thesis director, University of Neuchatel Prof. Maarten Voordow, University of Neuchatel Prof. Melanie Blokesch, EPFL, Lausanne Dr. David Russel Johnson, Eawag, Dübendorf Dr. Paul Herron, University of Strathclyde, Glasgow, UK Defended the 11th April 2016 University of Neuchatel Faculté des sciences Secrétariat-décanat de Faculté Rue Emile-Argand 11 2000 Neuchâtel - Suisse Tél: + 41 (0)32 718 2100 E-mail: [email protected] IMPRIMATUR POUR THESE DE DOCTORAT La Faculté des sciences de l'Université de Neuchâtel autorise l'impression de la présente thèse soutenue par Madame Sevasti Filippidou Titre: “Sporulation capability and metabolic mechanisms of endospore-forming Firmicutes under conditions limiting for growth and survival” sur le rapport des membres du jury composé comme suit: - Prof. Pilar Junier, directrice de thèse, Université de Neuchâtel, Suisse - Prof. ass. Maarten Voordouw, Université de Neuchâtel, Suisse - Prof. Melanie Blokesch, EPF Lausanne, Suisse - Dr David R. Johnson, EAWAG, Dübendorf, Suisse - Dr Paul Herron, University of Strathclyde, Glasgow, UK Neuchâtel, le 28 avril 2016 Le Doyen, Prof. B. Colbois Imprimatur pour thèse de doctorat www.unine.ch/sciences This work is dedicated to The memory of Marilena Vourkou, for her inspiration to life, Entropia, that has shaped me to what I am, Dimitris Serafis, without whom I wouldn’t have reached that far.
    [Show full text]
  • Alicyclobacillus Sp. Strain CC2, a Thermo-Acidophilic Bacterium Isolated from Deception Island (Antarctica) Containing a Thermostable Superoxide Dismutase Enzyme
    • Article • Advances in Polar Science doi: 10.13679/j.advps.2014.2.00092 June 2014 Vol. 25 No. 2: 92-96 Alicyclobacillus sp. strain CC2, a thermo-acidophilic bacterium isolated from Deception Island (Antarctica) containing a thermostable superoxide dismutase enzyme Daniela N. Correa-Llantén*, Maximiliano J. Amenábar, Patricio A. Muñoz, María T. Monsalves, Miguel E. Castro & Jenny M. Blamey Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Santiago 8340457, Chile Received 29 July 2013; accepted 26 May 2014 Abstract A gram-positive, rod-shaped, aerobic, thermo-acidophilic bacterium CC2 (optimal temperature 55℃ and pH 4.0), belonging to the genus Alicyclobacillus was isolated from geothermal soil collected from “Cerro Caliente”, Deception Island, Antarctica. Owing to the harsh environmental conditions found in this territory, microorganisms are exposed to conditions that trigger the generation of reactive oxygen species (ROS). They must have an effective antioxidant defense system to deal with this oxidative stress. We focused on one of the most important enzymes: superoxide dismutase, which was partially purified _ and characterized. This study presents the first report of a thermo-acidophilic bacterium isolated from Deception Island with a x±s thermostable superoxide dismutase (SOD). Keywords Antarctica, thermo-acidophile, SOD, geothermal, Deception Island Citation: Correa-Llantén D N, Amenábar M J, Muñoz P A, et al. Alicyclobacillus sp. strain CC2, a thermo-acidophilic bacterium isolated from Deception Island (Antarctica) containing a thermostable superoxide dismutase enzyme. Adv Polar Sci, 2014, 25:92-96, doi: 10.13679/j.advps.2014.2.00092 1 Introduction steaming beaches and ash-layered glaciers, and provide a unique environment for extremophilic microbial growth.
    [Show full text]
  • Geothermal Activity Helps Life Survive Glacial Cycles
    Geothermal activity helps life survive glacial cycles Ceridwen I. Frasera,1,2, Aleks Teraudsa,b,1, John Smelliec, Peter Conveyd,e, and Steven L. Chownf aFenner School of Environment and Society, Australian National University, Canberra, ACT 0200, Australia; bTerrestrial and Nearshore Ecosystems, Australian Antarctic Division, Department of the Environment, Kingston, TAS 7050, Australia; cDepartment of Geology, University of Leicester, Leicester LE1 7RH, United Kingdom; dBritish Antarctic Survey, Cambridge CB3 0ET, United Kingdom; eGateway Antarctica, University of Canterbury, Christchurch 8140, New Zealand; and fSchool of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia Edited by James P. Kennett, University of California, Santa Barbara, CA, and approved February 19, 2014 (received for review November 14, 2013) Climate change has played a critical role in the evolution and 22)] that require an ice-free habitat, such as microarthropods, structure of Earth’s biodiversity. Geothermal activity, which can nematodes, and mosses, survive on what is thought to have been maintain ice-free terrain in glaciated regions, provides a tantalizing a continent almost completely covered in ice? solution to the question of how diverse life can survive glaciations. Geothermal sites may hold the answer. Numerous Antarctic No comprehensive assessment of this “geothermal glacial refugia” volcanoes are currently active or have been active since and hypothesis has yet been undertaken, but Antarctica provides during the LGM, and these form
    [Show full text]
  • POL Volume 2 Issue 16 Back Matter
    THE POLAR RECORD INDEX NUMBERS 9—16 JANUARY 1935—JULY 1938 PRINTED IN GREAT BRITAIN FOR THE SCOTT POLAR RESEARCH INSTITUTE CAMBRIDGE: AT THE UNIVERSITY PRESS 1939 THE POLAR RECORD INDEX Nos. 9-16 JANUARY 1935—JULY 1938 The names of ships are in italics. Expedition titles are listed separately at Uie end Aagaard, Bjarne, II. 112 Alazei Mountains, 15. 5 Abruzzi, Duke of, 15. 2 Alazei Plateau, 12. 125 Adams, Cdr. .1. B., 9. 72 Alazei River, 14. 95, 15. 6 Adams, M. B., 16. 71 Albert I Peninsula, 13. 22 Adderley, J. A., 16. 97 Albert Harbour, 14. 136 Adelaer, Cape, 11. 32 Alberta, 9. 50 Adelaide Island, 11. 99, 12. 102, 103, 13. Aldan, 11. 7 84, 14. 147 Aldinger, Dr H., 12. 138 Adelaide Peninsula, 14. 139 Alert, 11. 3 Admiralty Inlet, 13. 49, 14. 134, 15. 38 Aleutian Islands, 9. 40-47, 11. 71, 12. Advent Bay, 10. 81, 82, 11. 18, 13. 21, 128, 13. 52, 53, 14. 173, 15. 49, 16. 15. 4, 16. 79, 81 118 Adytcha, River, 14. 109 Aleutian Mountains, 13. 53 Aegyr, 13. 30 Alexander, Cape, 11. GO, 15. 40 Aerial Surveys, see Flights Alexander I Land, 12. 103, KM, 13. 85, Aerodrome Bay, II. 59 80, 14. 147, 1-19-152 Aeroplanes, 9. 20-30, 04, (i5-(>8, 10. 102, Alcxamtrov, —, 13. 13 II. 60, 75, 79, 101, 12. 15«, 158, 13. Alexcyev, A. D., 9. 15, 14. 102, 15. Ki, 88, 14. 142, 158-103, 16. 92, 93, 94, 16. 92,93, see also unilcr Flights Alftiimyri, 15.
    [Show full text]
  • Range-Wide Pattern of Genetic Variation in Colobanthus Quitensis
    Polar Biology https://doi.org/10.1007/s00300-018-2383-5 ORIGINAL PAPER Range‑wide pattern of genetic variation in Colobanthus quitensis Justyna Koc1 · Piotr Androsiuk1 · Katarzyna Joanna Chwedorzewska2,3 · Marely Cuba‑Díaz4 · Ryszard Górecki1 · Irena Giełwanowska1 Received: 18 May 2017 / Revised: 18 July 2018 / Accepted: 19 July 2018 © The Author(s) 2018 Abstract There is only one species representing Magnoliopsida which is considered as native to the Antarctic, i.e., Antarctic pearlwort (Colobanthus quitensis). Although it was intensively studied toward the morphophysiological adaptation to extreme environ- mental conditions of that area, there is still a lack of sufcient data on its genetic variability. Nine C. quitensis populations from Chile and the Maritime Antarctic were sampled to estimate the pattern of genetic variation in relation to the geographic distribution of analyzed populations and postglacial history of the species. The retrotransposon-based DNA marker system used in our studies appeared to be efective in revealing genetic polymorphism between individuals and genetic diferentia- tion among populations. Although the level of polymorphism was low (9.57%), the Analysis of Molecular Variance showed that overall population diferentiation was high (FST = 0.6241) and revealed signifcant diferentiation between the Northern and Southern Group of populations as well as the population from Conguillio Park. The observed genetic subdivision of C. quitensis populations was confrmed by Bayesian clustering and results of Principal Coordinates Analysis. The South- ern Group of populations was characterized by generally higher genetic diversity, which was expressed by the values of the efective number of alleles, expected heterozygosity and by the distribution of private alleles.
    [Show full text]
  • Amanda Gonçalves Bendia a Vida Microbiana Em Um
    AMANDA GONÇALVES BENDIA A VIDA MICROBIANA EM UM VULCÃO ANTÁRTICO: DIVERSIDADE E ADAPTAÇÃO PROCARIÓTICA NA ILHA DECEPTION Tese apresentada ao Programa de Pós- Graduação em Microbiologia do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Título de Doutor em Ciências. São Paulo 2016 AMANDA GONÇALVES BENDIA A VIDA MICROBIANA EM UM VULCÃO ANTÁRTICO: DIVERSIDADE E ADAPTAÇÃO PROCARIÓTICA NA ILHA DECEPTION Tese apresentada ao Programa de Pós-Graduação em Microbiologia do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Título de Doutor em Ciências. Área de concentração: Programa de Pós-Graduação em Microbiologia Orientador: Prof(a). Dr(a). Vivian Helena Pellizari Versão original São Paulo 2016 CATALOGAÇÃO NA PUBLICAÇÃO (CIP) Serviço de Biblioteca e informação Biomédica do Instituto de Ciências Biomédicas da Universidade de São Paulo Ficha Catalográfica elaborada pelo(a) autor(a) Gonçalves Bendia, Amanda A vida microbiana em um vulcão antártico: diversidade e adaptação procariótica na Ilha Deception / Amanda Gonçalves Bendia; orientadora Vivian Pellizari. -- São Paulo, 2016. 184 p. Tese (Doutorado)) -- Universidade de São Paulo, Instituto de Ciências Biomédicas. 1. Extremófilos. 2. Antártica. 3. Ambientes geotermais. 4. Diversidade microbiana. 5. Adaptação microbiana . I. Pellizari, Vivian , orientador. II. Título. UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS BIOMÉDICAS ______________________________________________________________________ Candidato(a): Amanda Gonçalves Bendia Título da Tese: A vida microbiana em um vulcão antártico: diversidade e adaptação procariótica na Ilha Deception Orientador(a): Prof.(a) Dr(a) Vivian Helena Pelizzari A Comissão Julgadora dos trabalhos de Defesa da Tese de Doutorado, em sessão pública realizada a ..... / ..... / 2016, considerou ( ) Aprovado(a) ( ) Reprovado(a) Examinador(a): Assinatura: .....................................................................................
    [Show full text]
  • High Altitude Geothermal Sites Of
    Measure 13 (2014) Annex Management Plan For Antarctic Specially Protected Area No. 175 HIGH ALTITUDE GEOTHERMAL SITES OF THE ROSS SEA REGION (including parts of the summits of Mount Erebus, Ross Island and Mount Melbourne and Mount Rittmann, northern Victoria Land) Introduction: There exist a few isolated sites in Antarctica where the ground surface is warmed by geothermal activity above the ambient air temperature. Steam emissions from fumaroles (openings at the Earth’s surface that emit steam and gases) condense forming a regular supply of water which, coupled with warm soil temperatures, provides an environment that selects for a unique and diverse assemblage of organisms. Geothermal sites are rare and small in extent covering no more than a few hectares on the Antarctic continent and circumpolar islands (or maritime sites). The biological communities that occur at continental geothermal sites are at high altitude and differ markedly to those communities that occur at maritime geothermal sites due to the differences in the abiotic environment. There are three high altitude geothermal sites in the Ross Sea region, known to have unique biological communities. These are the summits of Mount Erebus, on Ross Island, and Mount Melbourne and Mount Rittmann, both in northern Victoria Land. The only other known high altitude site in Antarctica where evidence of fumarolic activity has been seen is at Mount Berlin in Marie Byrd Land, West Antarctica, although no biological research has been conducted at this site. High altitude geothermal sites are vulnerable to the introduction of new species, particularly from human vectors, as they present an environment where organisms typical of more temperate regions can survive.
    [Show full text]
  • Dispersal of the Moss Campylopus Pyriformis on Geothermal Ground Near the Summits of Mount Erebus and Mount Melbourne, Victoria Land, Antarctica
    Antarctic Science 13 (3): 28iF285 (2001) 0 Antarctic Science Ltd Printed in the United Kingdom Dispersal of the moss Campylopus pyriformis on geothermal ground near the summits of Mount Erebus and Mount Melbourne, Victoria Land, Antarctica M.L. SKOTNICKI1*,P.M. SELKIRK*, P. BROADY3,K.D. ADAM4andJ.A. NINHAMI 'Photobioenergetics. Research School of Biological Sciences, Institute of Advanced Studies, Australian National University. Canberra, ACT 2601, Australia 'Department of Biological Sciences, Macquarie University, Sydney, NS W 21 09, Australia 3Department of Plant and Microbial Sciences, University of Canterbury, Christchurch, New Zealand 4Department of Biological Sciences, University of Waikato, Hamilton, New Zealand *Corresponding author: skotnick@rsbs. anu.edu au Abstract: Mount Melbourne in northern Victoria Land, Antarctica, is a glaciated 2733 m volcanic cone. The moss Campylopuspyruormisoccurs on two small areas of steam-warmed snow-free ground near its summit. This moss species also occurs in temperate regions world-wide, but has not been recorded elsewhere in continental Antarctica. RAPD (Random Amplified Polymorphic DNA) studtes of 26 samples of C. pyriformis from two areas of heated ground on Mount Melbourne showed there was genetic diversitywithin the population. Genetic evidence for dispersal between the two sites, together with some genetic variation within individual colonies, indicates a single colonisation event has probably occurred at this extremely isolated location followed by multiple mutations. A single sample of moss protonema was collected 25 years ago from steam-warmed ground near the summit of another volcano, Mount Erebus (3794 m), on Ross Island some 300 km south of Mount Melbourne. The moss could not be identified based on morphological and reproductive criteria, as all attempts to differentiate it to a recognisable gametophyte were unsuccessful.
    [Show full text]
  • Final Report of the XXVI ATCM
    Final Report of XXVI ATCM FINAL REPORT 16/07/2003 1 Final Report of XXVI ATCM CONTENTS SUBJECT PAGE Acronyms and Abbreviations 4 PART I: FINAL REPORT OF XXVI ATCM 6 Appendix 1: Procedure for the Appointment of the Executive 40 Secretary of the Secretariat of the Antarctic Treaty Appendix 2: Indicative estimates of the costs of the Secretariat of 45 The Antarctic Treaty. Part II: MEASURES, DECISIONS AND RESOLUTIONS ADOPTED 48 AT XXVI ATCM Annex A: Measures 49 Measure 1 (2003) Secretariat of the Antarctic Treaty 50 Measure 2 (2003) Antarctic protected area system: 62 management plans for antarctic specially protected areas. ASPA No 105, Beaufort Island, Ross Sea; 63 ASPA No 114, Northern Coronation Island, South 82 Orkney Islands; ASPA No 118, Cryptogam Ridge, Mt Melbourne, 95 North Victoria Land and summit of Mt Melbourne, North Victoria Land; ASPA No 135, North-East Bailey Peninsula, Budd 106 Coast, Wilkes Land ASPA No 143, Marine Plain, Mule Peninsula, Vestfold 134 Hills, Princess Elizabeth Land; ASPA No 152, Western Bransfield Strait, Antarctic 155 Peninsula; ASPA No 153, Eastern Dallmann Bay, Antarctic 167 Peninsula; ASPA No 154, Botany Bay, Cape Geology, Victoria 180 Land; ASPA No 156, Lewis Bay, Mount Erebus, Ross Island, 193 Ross Sea; ASPA No 160, Frazier Islands, Wilkes Land; 201 ASPA No 161, Terra Nova Bay, Ross Sea. 221 Measure 3 (2003): Antarctic Protected Areas System: 240 Revised List of Historic Sites and Monuments Annex B: Decisions 256 Decision 1 (2003) Apportioning Contributions to the 257 Secretariat of the Antarctic Treaty Decision 2 (2003) Provisional application of Measure 1 260 (2003) Decision 3 (2003) Staff Regulations for the Secretariat 264 of the Antarctic Treaty 2 Final Report of XXVI ATCM Decision 4 (2003) Financial Regulations for the 276 Secretariat of the Antarctic Treaty Decision 5 (2003) Meeting of Experts on Tourism and 285 Non–Governmental Activities.
    [Show full text]