ข Oกําหนดคuณภาพหรืoมาตรฐานวaตถueจืoปน Oาหารตามปรaกาศสํานaกงานคณ
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Food Additives - Coloring Permitted in Thailand Report Categories: Sanitary/Phytosanitary/Food Safety Approved By: Mr
THIS REPORT CONTAINS ASSESSMENTS OF COMMODITY AND TRADE ISSUES MADE BY USDA STAFF AND NOT NECESSARILY STATEMENTS OF OFFICIAL U.S. GOVERNMENT POLICY Voluntary - Public Date: 1/26/2011 GAIN Report Number: TH1010 Thailand Post: Bangkok Food Additives - Coloring Permitted in Thailand Report Categories: Sanitary/Phytosanitary/Food Safety Approved By: Mr. John Wade, Agricultural Counselor Prepared By: Ms. Sukanya Sirikeratikul, Marketing Specialist Report Highlights: TH1010: This report provides a list of color additives permitted to be used in foods in Thailand. The report also includes relevant ministerial notifications on food additives and the set maximum permitted amount of each color additive to be used in specific food product. General Information: Food additives mean the substances which normally are not used as food or essential ingredients of food, whether or not such substances have nutritional benefits, but which are added for the benefits of production technology, food coloring, food flavoring, packing, storage or transport which may affect food quality or standard or property. They also include the substances not added to the food but contained in certain package in the same container with food for the purpose mentioned earlier i.e. moisture absorber, oxygen absorber, etc. In Thailand, food additives are specified as specifically-controlled food of which the quality or standards are defined. Use of food additives must follow the set objectives for specified kinds of food and maximum permissible quantity, food additive functional -
(12) United States Patent (10) Patent No.: US 8,268,014 B2 Fröhling (45) Date of Patent: *Sep
USOO8268O14B2 (12) United States Patent (10) Patent No.: US 8,268,014 B2 Fröhling (45) Date of Patent: *Sep. 18, 2012 (54) HAIR DYEING COMPOSITION compounds of formulae (2); (3) and (4): wherein D is the radical of a diazo component of the formula (2a); (2b); (2c); (75) Inventor: Beate Fröhling, Neustadt (DE) (2d); (2f); (2g) or (2h). The invention also relates to the dyeing methods for dyeing keratinous fibers comprising Such dyeing (73) Assignee: BASFSE Ludwigshafen (DE) composition. (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 (1) U.S.C. 154(b) by 0 days. R6 2 Rs This patent is Subject to a terminal dis- R O R4 claimer. NN O nN.1 (21) Appl. No.: 13/148,685 R k 2 (22) PCT Filed: Feb. 19, 2010 -- (2) D-N (86). PCT No.: PCT/EP2010/052097 Y-k S371 (c)(1), (3) (2), (4) Date: Sep. 30, 2011 D-N-K" (87) PCT Pub. No.: WO2010/097338 H 4. PCT Pub. Date: Sep. 2, 2010 R11 (4) (65) Prior Publication Data / \ R-N+ \ R13 US 2012/OO17931 A1 Jan. 26, 2012 o N-y (30) Foreign Application Priority Data / S1 R15 W Feb. 25, 2009 (EP) ..................................... 09 153589 V (51) Int. Cl. R14 A61O 5/10 (2006.01) (2a) CO7D 265/00 (2006.01) X (52) U.S. Cl. ............. 8/405; 8/407; 8/409; 8/426; 8/466; : l 8/565; 8/567; 8/568; 8/570; 8/572; 8/574; le 544/103 Rs (58) Field of Classification Search ............. -
SIGHI Food Compatibility List
Swiss Interest Group Histamine Intolerance (SIGHI) www.mastzellaktivierung.info | www.histaminintoleranz.ch Food Compatibility List Sort order: alphabetic, with categories. Updated: 2016-04-01 Compatibility list for diagnostic and thera- The specifications apply only for the pure foods peutic elimination diet at histaminosis (mast with no additives! For example, it applies only for cell activity syndrome MCAS, mastocytosis, pure natural cream, but not for cream with addi- tives. Additives are sometimes also hidden in sta- histamine intolerance), compiled from vari- ple foods where you would not expect them. ous sources and based on experience reports Therefore, please always read the list of ingredi- ents on the packaging. Compatibility scale Lactose Mechanisms affecting histamine metabolism 0 Free from lactose The list serves as a rough guide for the assess- 1 Low lactose content or may sometimes contain ment of the histamine potential, i.e. for the dose- lactose depending on the recipe dependent and partly individually different com- 2 Medium lactose content. Try out acceptable amount. patibility, which is influenced by various mecha- 3 High lactose content nisms. The reason for the incompatibility is spec- - No general statement possible ified in the list with the following letters: ? Insufficient or contradictory information H!: Highly perishable, rapid formation of Gluten histamine! 0 Gluten-free H: High histamine content 1 May contain gluten 3 Contains gluten A: Other biogenic amines - No general statement possible L : Liberators of mast cell mediators ? Insufficient or contradictory information (=histamine liberators) B: Blocker (=inhibitors) of diamine oxidase Histamine or of other histamine degrading enzymes 0 Well tolerated, no symptoms expected at usual in- take 1 Moderately compatible, minor symptoms, occa- sional consumption of small quantities is often tol- Not all foods are equally intolerable for all con- erated cerned, depending on the individual physical 2 Incompatible, significant symptoms at usual intake causes of histaminosis. -
DC ICC R4 An: (30) Foreign Application Priority Data S-S-S-N- R2 R3 Feb
US 201200 12128A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0012128 A1 Fröhling (43) Pub. Date: Jan. 19, 2012 (54) HAIR DYEING COMPOSITION C-Calkoxy-, halogen-, amino-, C-C-mono or -dialky lamino-Substituted C-C alkyl; Rs is hydrogen; or (75) Inventor: Beate Fröhling, Neustadt (DE) C-C alkyl; R is hydrogen; C-C alkyl, or CN; R is unsubstituted or OH- or CN-substituted C-C alkyl; R is hydrogen; or C-C alkyl; R and R independently from (73) Assignee: BASFSE, LUDWIGSHAFEN (DE) each other are hydrogen; C-C alkyl; or C-C alkoxy, or Rs and R together with the nitrogen and carbon atoms joining (21) Appl. No.: 13/148,690 them togetherform a 5- or 6-membered ring; Rs is hydrogen; or C-C alkyl, and An is a colorless anion; and (c) a qua (22) PCT Filed: Feb. 19, 2010 ternary ammonium salt. (86). PCT No.: PCT/EP2010/052099 (1) R6 N Rs S371 (c)(1), 21 (2), (4) Date: Sep. 30, 2011 R DC ICC R4 An: (30) Foreign Application Priority Data S-S-S-N- R2 R3 Feb. 25, 2009 (EP) ................................... 09 1535807 (2) D-N -- Publication Classification V An; and (51) Int. Cl. N-K A6 IK 8/49 (2006.01) (3) A61O 5/10 (2006.01) / f (52) U.S. Cl. .................................. 132/208; 8/426; 8/.407 R-/ \ \ Ji? o N-N An: (57) ABSTRACT VR 14 Disclosed is a hair dyeing composition comprising (a) a dye of formula (1); (b) at least one dye selected from the com () pounds of formulae (2); wherein D is the radical of a diazo R13 component of the formula (2a); K is the radical of a coupling (2a) component selected from aniline derivatives; phenol deriva R7: tives; and a radical of a heterocyclic coupling component; X is O—; —S ; or N(Rs)—;Y is CH=; —CRs—; or N=: R. -
List of Colorants in Cosmetic Products
List of Colorants in Cosmetic Products This rule has been translated into English according to the original Chinese version. If there is any inconsistency or ambiguity between these two versions, the Chinese version shall prevail. Explanation of Colorants Classification: Class 1: Colorants allowed in all cosmetic products Class 2: Colorants allowed in all cosmetic products except those intended to be applied in the vicinity of the eyes Class 3: Colorants allowed exclusively in cosmetic products intended not to come into contact with the mucous membranes Class 4: Colorants allowed exclusively in cosmetic products intended to come into contact only briefly with the skin Colour Index Number/ Scope of Number Alias Name Restriction Ingredient Name Application 1 CI 10006 Pigment Green 8 4 Acid Green 1 3 Using in hair dye 2 CI 10020 Ext. D&C Green No. 1 products is forbidden. Naphthol Green B Acid Yellow 1 2 3 CI 10316 Ext. D&C Yellow No. 7 Naphthol Yellow S Pigment Yellow 1 3 4 CI 11680 Ext. D&C Yellow No. 5 Hansa Yellow G 5 CI 11710 Pigment Yellow 3 3 Pigment Orange 1 4 6 CI 11725 Hansa Yellow 3R Food Orange 3 1 Using in hair dye 7 CI 11920 products is forbidden. Solvent Red 3 3 Using in hair dye 8 CI 12010 products is forbidden. Pigment Red 4 1 1. Limited content: D&C Red No. 36 3% 9 CI 12085 Permanent Red 2. Using in hair dye products is forbidden. 1 Colour Index Number/ Scope of Number Alias Name Restriction Ingredient Name Application Pigment Red 3 4 10 CI 12120 D&C Red No. -
The Role of Carotenoids in Coloring Fish
De Piscium Colore Carotenoidibus The Role of Carotenoids in Coloring Fish An Overview of Data from the Literature Composit et scripsit: Antonius H.M. Terpstra Philosophiae Doctor Universitate Vadensi Orando, Laborando et Cogitando Patefiet Verum Θαυμασια η αρχη τησ φιλοσοφιησ (Plato) The Netherlands, Anno Domini MMXV (2015) Page 1 of 10 De Piscium Colore Carotenoidibus - The Role of Carotenoids in Coloring Fish Antonius H.M. Terpstra Ph.D. The Role of Carotenoids in Coloring Fish Summary Xantophylles play an important role as an pigment in coloring fish. Xantophylles, such as astaxanthin, lutein etc. are oxy-carotenoids and are derived from the food. They can color both the skin and the flesh, but it depends on the fish species whether the skin or the flesh is colored. The pigments are located in the chromatophores which are highly branched dendrite like cells. Types of Carotenoids Carotenoids can be subdivided into: 1. Carotenes (oxygen-free carotenoids) such as lycopenes (in tomatoes) and α, β and γ carotenes (in carrots). Carotenes have a yellowish color but do not color the fish. 2. Xanthophylls or oxy-carotenoids (oxygen-containing carotenoids, xanthophylls means yellow leaves). These compounds have in contrast to carotenes one or more oxygen atoms. These compounds can color the fish, either the fillet or the skin and can also color egg yolks. Examples of xanthophylls are: Astaxanthin (in shrimps and trout, used to color trout and salmon fillet, trade names Carophyll pink by DSM or Lucanthin pink by BASF) Canthaxanthin (in cantharelle mushrooms, used to color eggs, trade name Carophyll red by DSM) Capsanthin (in red pepper, the capsicum) Zeaxanthin (in Zea Mais, red mais or corn, spirulina, alfalfa, grass meal) Lutein (luteus means yellow, in mais or corn, spirulina, alfalfa, grass meal) Apo ester (used to color eggs, Carophyll yellow, Food Orange 7 E 160f, the ethyl ester of β – apo – 8’- carotenic acid). -
Carotenal, Ethyl Ester of Β-Apo-8’-Carotenoic Acid, Lutein, Zeaxanthin and Concluding Remarks
The EFSA Journal (2009) 1098, 1-48 SCIENTIFIC OPINION Safety of use of colouring agents in animal nutrition1 Part III: β-apo-8’-carotenal, ethyl ester of β-apo-8’-carotenoic acid, lutein, zeaxanthin and concluding remarks Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed (Question No EFSA-Q-2003-060) Adopted on 12 May 2009 ∗ PANEL MEMBERS Georges Bories, Paul Brantom, Joaquim Brufau de Barberà, Andrew Chesson, Pier Sandro Cocconcelli, Bogdan Debski, Noël Dierick, Jürgen Gropp, Ingrid Halle, Christer Hogstrand, Joop de Knecht, Lubomir Leng, Sven Lindgren, Anne-Katrine Lundebye Haldorsen, Alberto Mantovani, Miklós Mézes, Carlo Nebbia, Walter Rambeck, Guido Rychen, Atte von Wright and Pieter Wester SUMMARY Following a request from the European Commission, the European Food Safety Authority (EFSA) was asked to deliver a scientific opinion on the safety of use of colouring agents in animal nutrition. β-apo-8’-carotenal (trans-β-apo-8’-carotenaldehyde, known also as CI Food Orange 6) occurs abundantly in nature, although in very low concentrations. The effective feed concentration to colour egg yolk is 40 mg β-apo-8’-carotenal kg-1 complete feed for laying hens. However, when a red-pigmenting carotenoid like canthaxanthin is additionally used, the same effect will be reached with 10 mg β-apo-8’-carotenal kg-1 complete feed. Data for skin pigmentation are not available. Very limited information is available concerning the metabolic fate of β-apo-8’-carotenal in poultry. Dietary β-apo-8’-carotenal is deposited in the egg yolk as its oxidation product β-apo- 8’-carotenoic acid. -
Laying Down Specific Purity Criteria Concerning Colours for Use in Foodstuffs
22 . 9 . 95 EN Official Journal of the European Communities No L 226/1 I (Acts whose publication is obligatory) COMMISSION DIRECTIVE 95/45/EC of 26 July 1995 laying down specific purity criteria concerning colours for use in foodstuffs ( Text with EEA relevance ) THE COMMISSION OF THE EUROPEAN COMMUNITIES Whereas food additives , prepared by production methods or starting materials significantly different from those included in the evaluation of the Scientific Committee for Having regard to the Treaty establishing the European Food, or different from those mentioned in this Directive, Community, shall be submitted for evaluation by the Scientific Committee for Food for the purposes of a full evaluation with emphasis on the purity criteria ; Having regard to Council Directive 89/107/EEC of 21 December 1988 on the approximation of the laws of the Whereas the measures provided for in this Directive Member States concerning food additives authorized for are in accordance with the opinion of the Standing use in foodstuffs intended for human consumption ('), as Committee on Foodstuffs, last amended by Directive 94/34/EC ( 2 ), and in particular Article 3 ( 3 ) ( a ) thereof, After consulting the Scientific Committee for Food, HAS ADOPTED THIS DIRECTIVE : Whereas it is necessary to establish purity criteria for all Article 1 colours mentioned in European Parliament and Council Directive 94/36/EC of 30 June 1994 on colours for use in foodstuffs ( 3 ); The purity criteria referred to in Article 3 ( 3 ) ( a ) of Directive 89/107/EEC for colours mentioned in Directive 94/36/EC are set out in the Annex hereto . -
Industrial Chemicals, Ashfords Dictionary, Chemical Name Index
2 Chemical name index A A ACA 4-AA ACA AA ACAC AA acamprosate calcium AAA acarbose AABA ACB AADMC 7-ACCA AAEM ACE AAMX acebutolol AAOA aceclidine AAOC aceclofenac AAOT acemetacin AAPP acenaphthene AAPT acenocoumarol 4-ABA acephate ABA acepromazine abacavir acequinocyl ABAH acesulfame-K abamectin acetaldehyde ABFA acetaldehyde ethyl phenethyl diacetal ABL acetaldehyde oxime ABPA acetaldehyde n-propyl phenethyl diacetal ABS acetaldoxime ABS acetal resins O-ABTF acetal resins P-ABTF acetamide ACN acetamidine hydrochloride 7-ACA 5-acetamido-2-aminobenzenesulfonic acid 7-ANCA 6-acetamido-2-aminophenol-4-sulfonic acid Name Index: Ashford’s Dictionary of Industrial Chemicals 3-acetamidoaniline 3-acetamidoaniline acetic acid, s-butyl ester 4-acetamidoaniline acetic acid, calcium salt p-acetamidoanisole acetic acid, chromium salt 4-acetamidobenzenesulfonyl chloride acetic acid, cinnamyl ester 2-acetamidocinnamic acid acetic acid, citronellyl ester 3-acetamido-2-hydroxyaniline-5-sulfonic acid acetic acid, cobalt salt 1-acetamido-7-hydroxynaphthalene acetic acid, decahydro-β-naphthyl ester 8-acetamido-1-hydroxynaphthalene-3,6-disulfonic acid acetic acid, dicyclopentenyl ester 1-acetamido-7-naphthol acetic acid, diethylene glycol monobutyl ether ester 4-acetamidonitrobenzene acetic acid, 2-ethoxyethyl ester p-acetamidophenol acetic acid, ethoxypropyl ester 3-acetamidopropylsulfonic acid, calcium salt acetic acid, ethyl diglycol ester 5-acetamido-2,4,6-triiodo-N-methylisophthalamic acid acetic acid, ethylene glycol diester 4-acetamido-2-ethoxybenzoic -
Dyes, Colors & Pigements
Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org DYES , COLORS & PIGMENTS Writing By TAREK ISMAIL KAKHIA 0 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Natural dye Skeins of wool colored with natural plant dyes. Contents : 1 Origins 2 Processes 3 Common dyestuffs o 3.1 Reds and pinks o 3.2 Oranges o 3.3 Yellows o 3.4 Greens o 3.5 Blues o 3.6 Purples o 3.7 Browns o 3.8 Greys and blacks o 3.9 Lichen o 3.10 Fungi 4 Luxury dyestuffs o 4.1 Royal purple o 4.2 Crimson and scarlet o 4.3 The rise of formal black 5 Decline and rediscovery 6 Notes 7 References 1 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org - Introduction : Natural dyes are dyes or colorants derived from plants, invertebrates, or minerals. The majority of natural dyes are vegetable dyes from plant sources – roots, berries, bark, leaves, and wood — and other organic sources such as fungi and lichens. Archaeologists have found evidence of textile dyeing dating back to the Neolithic period. In China, dyeing with plants, barks and insects has been traced back more than 5,000 years. The essential process of dyeing changed little over time. Typically, the dye material is put in a pot of water and then the textiles to be dyed are added to the pot, which is heated and stirred until the color is transferred. Textile fiber may be dyed before spinning (dyed in the wool), but most textiles are yarn- dyed or piece-dyed after weaving. -
Substances That May Be Used in Listed Medicines in Australia
Substances that may be used in Listed medicines in Australia December 2007 Historical document Therapeutic Goods Administration About the Therapeutic Goods Administration (TGA) · The TGA is a division of the Australian Government Department of Health and Ageing, and is responsible for regulating medicines and medical devices. · The TGA administers the Therapeutic Goods Act 1989 (the Act), applying a risk management approach designed to ensure therapeutic goods supplied in Australia meet acceptable standards of quality, safety and efficacy (performance), when necessary. · The work of the TGA is based on applying scientific and clinical expertise to decision-making, to ensure that the benefits to consumers outweigh any risks associated with the use of medicines and medical devices. · The TGA relies on the public, healthcare professionals and industry to report problems with medicines or medical devices. The TGA investigates reports received by it to determine any necessary regulatory action. · To report a problem with a medicine or medical device, please see the information on the TGA website. Historical document Copyright © Commonwealth of Australia 2011 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General’s Department, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca Substances that may be used in Listed medicines in Australia Page 2 of 305 December 2007 Therapeutic Goods Administration Substances that may be used in Listed medicines in Australia The following substances are eligible for use in medicines Listed on the Australian Register of Therapeutic Goods for supply in Australia. -
Fungal and Yeast Carotenoids
Vol. 10(2), pp. 30-44, July-December 2019 DOI: 10.5897/JYFR2019.0192 Article Number: 206083662198 ISSN: 2141-2413 Copyright ©2019 Author(s) retain the copyright of this article Journal of Yeast and Fungal Research http://www.academicjournals.org/JYFR Review Fungal and yeast carotenoids Eman Mostafa M. Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt. Received 19 August, 2019; Accepted 9 October, 2019. This review reports and discusses all available information about the fungal carotenoids such general characters, derivatives, common names, chemical structure, molecular formula, color, bioactivity, and industrial applications in medicine, pharmacology, food processing, cosmetics, dyeing and others. It also reviews the classification of the fungal carotenoids, biosynthetic pathway, distribution and function inside the fungal cells. Approximately, 34 fungal carotenoids derivatives are widely distributed in fungal genera species and fungal groups. Fermented carotenoids produce by fungi from agro- industrial wastes have many advantages and solve the production problems. Development of the fungal carotenoids productivity is reported by two main strategies such as metabolic and genetic engineering. Key words: Fungal carotenoids, natural pigment, applications, bioactivity. INTRODUCTION Science civilization human tried to find the natural source Fungal carotenoids have numerous applications on of pigments for coloring their foods, clothes, and industrial scales such folk and modern medicine, everything. Overpopulation around the world required pharmacology, nutritional food colorants in many food development in the coloring industry and expansion in industries, cosmetics and perfume, dyeing, supplementary using the synthetic pigments which causes numerous foods and feeds, chemotaxonomic classifications and problems considerably environmental pollution with toxic diagnostic markers.