The Expression and Role of Trefoil Factors in Human Tumors

Total Page:16

File Type:pdf, Size:1020Kb

The Expression and Role of Trefoil Factors in Human Tumors 1617 Review Article The expression and role of trefoil factors in human tumors Yifan Zhang1, Yang Liu1,2, Lei Wang3, Haiyan Song1,2 1Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; 2China-Canada Centre of Research for Digestive Diseases, Shanghai 200032, China; 3Department of Liver Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China Contributions: (I) Conception and design: H Song; (II) Administrative support: H Song; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: Y Zhang, Y Liu; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Haiyan Song. Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China. Email: [email protected]. Abstract: Trefoil factor (TFF) family is a type of small secreted peptide characterized by a stable trefoil structure, and it includes three members: TFF1, TFF2 and TFF3. TFFs were initially found mainly distributed in the gastrointestinal mucosa and were subsequently found in the uterus, breast, hypothalamus, pituitary, respiratory tract, conjunctiva and other tissues, with the biological function of mucosal protection, epithelial restitution, inflammatory regulation, etc. Recent studies have found that TFFs’ expression was up- regulated in multiple malignant tumors, including gastric cancer, colon cancer, hepatocellular carcinoma (HCC), breast cancer, prostate cancer, etc. In addition, TFFs’ levels in these tumor tissues or in the serum of patients were closely correlated with malignancy and prognosis. TFFs promote tumorigenesis and metastasis by enhancing cell proliferation, invasion, metastasis, and angiogenesis and by inhibiting cell apoptosis. On the contrary, several recent studies have shown a down-regulation of TFFs in some cancers, and a tumor suppressing role of TFFs through the inhibition of tumor cell proliferation and the promotion of apoptosis. Do TFFs play a tumor-promoting or tumor-inhibiting role? Can they be used as a reliable biomarker for tumor diagnosis and prognosis, or as a treatment target? What is the underlying regulatory mechanism? Currently, these questions still need to be elucidated. This review summarizes current studies about the expression and role of TFFs in human tumors. Keywords: Trefoil factor (TFF); tumor; role; regulatory mechanism; biomarker Submitted Sep 07, 2018. Accepted for publication Jul 11, 2019. doi: 10.21037/tcr.2019.07.48 View this article at: http://dx.doi.org/10.21037/tcr.2019.07.48 Introduction One such motif is found in TFF1 and TFF3, whereas TFF2 possesses two trefoil domains. The trefoil domain is The trefoil factor (TFF) family consists of three members: very stable; such that TFFs are strongly resistant to acid, TFF1, TFF2, and TFF3. They are also called breast cancer-associated peptide (pS2), spasmolytic peptide (SP), protease hydrolysis and heat. Therefore, TFFs can maintain and intestinal trefoil factors (ITF). The gene encoding the their biological activity in the complex physiological human TFF family is located on chromosome 21q22.3 (1). environment of the gastrointestinal tract, with the function This family is made of small cysteine-rich polypeptide of mucosal protection and epithelial restitution (2). whose secondary structure consists of 38–39 amino acids In normal tissues, TFFs are mainly expressed in mucosal formed by 6 highly conserved cysteine residues to form epithelium, co-secreted with mucins in the gastrointestinal three intramolecular disulfide bonds folded into a “trefoil” tract and respiratory tract to form protective barriers, as structure. The “trefoil domain” is also called the P domain. well as expressed in the central nervous system, eyes, and © Translational Cancer Research. All rights reserved. Transl Cancer Res 2019;8(4):1609-1617 | http://dx.doi.org/10.21037/tcr.2019.07.48 1610 Zhang et al. Role of TFFs in tumor other tissues (3). Among the TFF family, TFF1 is mainly gastric cancer was significantly higher than that in the expressed in the mucosal epithelial cells of the gastric body healthy counterparts (20). The increased expression of and gastric antrum, followed by low-level expression in the TFF3 protein in breast cancer was positively correlated empty ileum, colon, salivary glands, pancreas and other with tumor size, lymph node metastasis, poor survival and mucous epithelial tissues (4). TFF2 is mainly expressed in prognosis (26). In addition, a two-step immunohistochemical the mucous cells of the gastric body and gastric antrum method was used to detect the expression of TFF3 in and the lower duodenum (5). TFF3 is mainly expressed 90 pairs of hepatocellular carcinomas (HCC) tumor tissues in the small intestine and colon goblet cells, as well as in and non-cancerous adjacent tissues. The results showed the uterus, breast, hypothalamus, pituitary, salivary gland, that the positive expression rate of TFF3 was 62.1% in respiratory tract, ocular conjunctiva, nasal mucosa, gastric tumor tissues and 33.8% in adjacent tissues. The difference juice and duodenum ampulla (6). between the two groups was statistically significant(17) . TFFs function to protect mucosa, promote epithelial Contrary to the aforementioned studies, the expression of repair, inhibit inflammation, regulate cell proliferation, TFF1 and TFF2 in normal gastric mucosa, paracancerous apoptosis and migration. Rapid increase in expression tissues and gastric cancer tissues decreased gradually, of TFF1 and TFF2 at the margins of digestive tract suggesting that TFF1 and TFF2 proteins may be specific ulcers promotes migration of epithelial cells (7). TFF2 inhibitors of gastric cancer and important protective promotes the repair of gastric mucosal injury by increasing factors for the digestive tract mucosa (21). There are the migration of human colonic epithelial cells and by two explanations for the deletion of TFF1 expression in inhibiting the occurrence of acute gastric injury (8). gastric cancer. The first is a somatic mutation, since the TFF3 plays a pivotal role in maintaining the integrity of TFF1 gene locus 21q22 is frequently mutated and allelic the gastrointestinal mucosa and promoting repair (9). In deletion is common (36). The second explanation is the addition, TFF3 expression increases in corneal diseases and hypermethylation of the promoter region of the TFF1 promotes corneal repair (10). gene in gastric cancer and intestinal metaplasia, resulting Over the past few decades, a large number of studies in transcriptional silencing of the TFF1 gene (37). Buache have found abnormal expression of TFFs in many types et al. (38) found that the incidence rate, number and size of tumors, where they were involved in tumorigenesis of breast tumors induced by dimethylbenzanthracene and tumor development, which are closely related to (DMBA) in TFF1-KO mice were higher than those in wild- the malignancy and prognosis of tumors. However, type mice. TFF1 can act as a tumor suppressor and inhibit contradictory results were also found in some tumors. the development of tumors in breast epithelial cells. This is consistent with the clinical findings of primary breast cancer, in which patients with TFF1 positive expression The expression of TFFs in tumors received better prognosis. In addition, in type I endometrial As shown in Table 1, studies have found increased expression carcinoma, TFF3 up-regulation was found to be positively of TFF members in multiple tumors. In addition to the correlated to the outcome of patients (9). high expression of TFF1 in gastric cancer, TFF1 and TFF3 in 97 patients with colon cancer were significantly The role and mechanism of TFFs higher than those in 79 healthy people (32). Using an immunohistochemical method, researchers found that In vitro and in vivo experiments showed that TFFs can the expression of TFF3 in thyroid papillary carcinoma affect tumor development mainly by affecting tumor cell was higher than in adjacent precarcinomatous tissue in apoptosis, cell proliferation, metastasis and angiogenesis, 31 cases of thyroid papillary carcinoma (13). A clinical which are summarized in Figure 1. study showed that the positive expression rate of TFF3 increased from normal gastric tissues to paracancerous Apoptosis tissues and gastric cancer tissues, which were 5.0%, 40.0% and 58.6% respectively. The expression of TFF3 TFF1 can not only protect epithelial cells from apoptosis in gastric cancer tissues was related to the stage of local induced by chemical toxic reagents, but can also prevent lymph node metastasis and prognosis (19). Another study gastric cancer cells from apoptosis induced by etoposide (63). found that the serum TFF3 concentration in patients with TFF2 can inhibit the apoptosis of breast cancer cells such © Translational Cancer Research. All rights reserved. Transl Cancer Res 2019;8(4):1609-1617 | http://dx.doi.org/10.21037/tcr.2019.07.48 Translational Cancer Research, Vol 8, No 4 August 2019 1611 Table 1 Expression change of TFFs in different type of tumors Expression change of TFFs Tumor type Tumor vs. normal tissues or Serum of patients Ref. Ref. positive ratio in tumor tissues vs. healthy people Retinal neuroblastoma TFF1 ↑ (11) – – Oral carcinoma TFF2 ↓, TFF3 ↓ (12) – – Thyroid papillary carcinoma 83.87% TFF3 ↑ (13) – – Lung cancer – – TFF3 ↑ (14) Cholangiocarcinoma
Recommended publications
  • Bioinformatics Analysis and Identi Cation of Potential Biomarkers In
    Bioinformatics Analysis and Identication of Potential Biomarkers in Gastric Cancer Jingdi Yang Nanchang University - Donghu Campus Bo Peng Nanchang University - Donghu Campus Xianzheng Qin Nanchang University Medical College: Medical College of Nanchang University Tian Zhou ( [email protected] ) Nanchang University Research Keywords: gastric cancer, differentially expressed genes, microarray, Kaplan-Meier analysis, COL1A1, BGN Posted Date: November 20th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-111288/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/24 Abstract Background: Although the morbidity and mortality of gastric cancer are declining, gastric cancer is still one of the most common causes of death. Early detection of gastric cancer is of great help to improve the survival rate, but the existing biomarkers are not sensitive to diagnose early gastric cancer. The aim of this study is to identify the novel biomarkers for gastric cancer. Methods: Three gene expression proles (GSE27342, GSE63089, GSE33335) were downloaded from Gene Expression Omnibus database to select differentially expressed genes. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis were performed to explore the biological functions of differentially expressed genes. Cytoscape was utilized to construct protein-protein interaction network and hub genes were analyzed by plugin cytoHubba of Cytoscape. Furthermore, Gene Expression Proling Interactive Analysis and Kaplan-Meier plotter were used to verify the identied hub genes. Results: 35 overlapping differentially expressed genes were screened from gene expression datasets, which consisted of 11 up-regulated genes and 24 down-regulated genes. Gene Ontology functional enrichment analysis revealed that differentially expressed genes were signicantly enriched in digestion, regulation of biological quality, response to hormone and steroid hormone, and homeostatic process.
    [Show full text]
  • Anti-Ps2 / Trefoil Factor 1 Antibody (ARG41084)
    Product datasheet [email protected] ARG41084 Package: 100 μl anti-pS2 / Trefoil factor 1 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes pS2 / Trefoil factor 1 Tested Reactivity Hu Tested Application FACS, ICC/IF, IHC-P, IP, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name pS2 / Trefoil factor 1 Antigen Species Human Immunogen Synthetic peptide derived from Human pS2 / Trefoil factor 1. Conjugation Un-conjugated Alternate Names D21S21; pNR-2; Trefoil factor 1; PNR-2; BCEI; hP1.A; HPS2; pS2; Polypeptide P1.A; HP1.A; Protein pS2; Breast cancer estrogen-inducible protein Application Instructions Application table Application Dilution FACS 1:50 ICC/IF 1:50 - 1:200 IHC-P 1:50 - 1:200 IP 1:50 WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 9 kDa Observed Size 11 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.4), 150 mM NaCl, 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol www.arigobio.com 1/2 Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol TFF1 Gene Full Name trefoil factor 1 Background Members of the trefoil family are characterized by having at least one copy of the trefoil motif, a 40-amino acid domain that contains three conserved disulfides.
    [Show full text]
  • Location Analysis of Estrogen Receptor Target Promoters Reveals That
    Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17␤-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand.
    [Show full text]
  • S41467-020-16223-7.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-16223-7 OPEN Trefoil factors share a lectin activity that defines their role in mucus Michael A. Järvå 1,2, James P. Lingford1,2, Alan John1,2, Niccolay Madiedo Soler1,2, Nichollas E. Scott 3 & ✉ Ethan D. Goddard-Borger 1,2 The mucosal epithelium secretes a host of protective disulfide-rich peptides, including the trefoil factors (TFFs). The TFFs increase the viscoelasticity of the mucosa and promote cell 1234567890():,; migration, though the molecular mechanisms underlying these functions have remained poorly defined. Here, we demonstrate that all TFFs are divalent lectins that recognise the GlcNAc-α-1,4-Gal disaccharide, which terminates some mucin-like O-glycans. Degradation of this disaccharide by a glycoside hydrolase abrogates TFF binding to mucins. Structural, mutagenic and biophysical data provide insights into how the TFFs recognise this dis- accharide and rationalise their ability to modulate the physical properties of mucus across different pH ranges. These data reveal that TFF activity is dependent on the glycosylation state of mucosal glycoproteins and alludes to a lectin function for trefoil domains in other human proteins. 1 The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia. 2 Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia. 3 Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, ✉ Parkville, VIC 3010, Australia. email: [email protected] NATURE COMMUNICATIONS | (2020) 11:2265 | https://doi.org/10.1038/s41467-020-16223-7 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16223-7 he three human TFFs (TFF1, TFF2, and TFF3)1 are ubi- considering the glycosylation state of mucosal proteins when Tquitous in mucosal environments.
    [Show full text]
  • Trefoil Factor 3 Overexpression in Prostatic Carcinoma
    Trefoil Factor 3 Overexpression in Prostatic Carcinoma: Prognostic Importance Using Tissue Microarrays Dennis A Faith, William B Isaacs, James D Morgan, Helen L Fedor, Jessica L Hicks, Leslie A Mangold, Patrick C Walsh, Alan W Partin, Elizabeth A. Platz, Jun Luo, and Angelo M De Marzo Brady Urological Institute [D.A.F., J.L.,L.M., P.C.W., A.W.P., W.B.I, A.M.D..], Department of Pathology [J.D.M., H.F., J.H., A.M.D.], The Sidney Kimmel Comprehensive Cancer Center [W.B.I., A.M.D] , The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287; Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205 [E.P.]; Funded by Public Health Services NIH/NCI Specialized Program in Research Excellence (SPORE) in Prostate Cancer #P50CA58236 (Johns Hopkins), The Prostate Cancer Foundation, and by Philanthropic Support from Susan and Donald Sturm Correspondence and Reprint Requests: Angelo M. De Marzo, M.D., Ph.D., Jun Luo, Ph.D. Department of Pathology, Marburg 411 The Johns Hopkins University, Brady Urological Institute CRB 153 The Johns Hopkins University School 1650 Orleans Street, of Medicine Baltimore, MD 21231-1000 600 N. Wolfe St Phone: (410) 614-5686 Baltimore, MD 21287 Fax: (410) 502-9817 E-mail: [email protected] Funded by Public Health Services NIH/NCI #R01CA084997, NIH/#R01CA70196 and NIH/NCI Specialized Program in Research Excellence (SPORE) in Prostate Cancer #P50CA58236. TFF3 Expression in Prostate Cancer Page 2 ABSTRACT Human intestinal trefoil factor 3 (TFF3) is a member of a family of polypeptides encoded by a cluster of genes on chromosome 21.
    [Show full text]
  • Molecular Alterations in the Stomach of Tffl-Deficient Mice
    International Journal of Molecular Sciences Article Molecular Alterations in the Stomach of Tff1-Deficient Mice: Early Steps in Antral Carcinogenesis Eva B. Znalesniak, Franz Salm and Werner Hoffmann * Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany; [email protected] (E.B.Z.) * Correspondence: werner.hoff[email protected] Received: 2 December 2019; Accepted: 14 January 2020; Published: 18 January 2020 Abstract: TFF1 is a peptide of the gastric mucosa co-secreted with the mucin MUC5AC. It plays a key role in gastric mucosal protection and repair. Tff1-deficient (Tff1KO) mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas. Thus, these mice represent a model for gastric tumorigenesis. Here, we compared the expression of selected genes in Tff1KO mice and the corresponding wild-type animals (RT-PCR analyses). Furthermore, we systematically investigated the different molecular forms of Tff1 and its heterodimer partner gastrokine-2 (Gkn2) in the stomach (Western blot analyses). As a hallmark, a large portion of murine Tff1 occurs in a monomeric form. This is unexpected because of its odd number of seven cysteine residues. Probably the three conserved acid amino acid residues (EEE) flanking the 7th cysteine residue allow monomeric secretion. As a consequence, the free thiol of monomeric Tff1 could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. Furthermore, a minor subset of Tff1 forms a disulfide-linked heterodimer with IgG Fc binding protein (Fcgbp). Of special note, in Tff1KO animals a homodimeric form of Gkn2 was observed. In addition, Tff1KO animals showed strongly reduced Tff2 transcript and protein levels, which might explain their increased sensitivity to Helicobacter pylori infection.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Supplementary Table 2
    Supplementary Table 2. Differentially Expressed Genes following Sham treatment relative to Untreated Controls Fold Change Accession Name Symbol 3 h 12 h NM_013121 CD28 antigen Cd28 12.82 BG665360 FMS-like tyrosine kinase 1 Flt1 9.63 NM_012701 Adrenergic receptor, beta 1 Adrb1 8.24 0.46 U20796 Nuclear receptor subfamily 1, group D, member 2 Nr1d2 7.22 NM_017116 Calpain 2 Capn2 6.41 BE097282 Guanine nucleotide binding protein, alpha 12 Gna12 6.21 NM_053328 Basic helix-loop-helix domain containing, class B2 Bhlhb2 5.79 NM_053831 Guanylate cyclase 2f Gucy2f 5.71 AW251703 Tumor necrosis factor receptor superfamily, member 12a Tnfrsf12a 5.57 NM_021691 Twist homolog 2 (Drosophila) Twist2 5.42 NM_133550 Fc receptor, IgE, low affinity II, alpha polypeptide Fcer2a 4.93 NM_031120 Signal sequence receptor, gamma Ssr3 4.84 NM_053544 Secreted frizzled-related protein 4 Sfrp4 4.73 NM_053910 Pleckstrin homology, Sec7 and coiled/coil domains 1 Pscd1 4.69 BE113233 Suppressor of cytokine signaling 2 Socs2 4.68 NM_053949 Potassium voltage-gated channel, subfamily H (eag- Kcnh2 4.60 related), member 2 NM_017305 Glutamate cysteine ligase, modifier subunit Gclm 4.59 NM_017309 Protein phospatase 3, regulatory subunit B, alpha Ppp3r1 4.54 isoform,type 1 NM_012765 5-hydroxytryptamine (serotonin) receptor 2C Htr2c 4.46 NM_017218 V-erb-b2 erythroblastic leukemia viral oncogene homolog Erbb3 4.42 3 (avian) AW918369 Zinc finger protein 191 Zfp191 4.38 NM_031034 Guanine nucleotide binding protein, alpha 12 Gna12 4.38 NM_017020 Interleukin 6 receptor Il6r 4.37 AJ002942
    [Show full text]
  • Trefoil Factor 3 (TFF3) (NM 003226) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC223558L2V Trefoil Factor 3 (TFF3) (NM_003226) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: Trefoil Factor 3 (TFF3) (NM_003226) Human Tagged ORF Clone Lentiviral Particle Symbol: TFF3 Synonyms: ITF; P1B; TFI Vector: pLenti-C-mGFP (PS100071) ACCN: NM_003226 ORF Size: 390 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC223558). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_003226.2, NP_003217.2 RefSeq Size: 685 bp RefSeq ORF: 243 bp Locus ID: 7033 UniProt ID: Q07654 Domains: PD Protein Families: Secreted Protein MW: 14.25 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Trefoil Factor 3 (TFF3) (NM_003226) Human Tagged ORF Clone Lentiviral Particle – RC223558L2V Gene Summary: Members of the trefoil family are characterized by having at least one copy of the trefoil motif, a 40-amino acid domain that contains three conserved disulfides.
    [Show full text]
  • Chromosome 21 Leading Edge Gene Set
    Chromosome 21 Leading Edge Gene Set Genes from chr21q22 that are part of the GSEA leading edge set identifying differences between trisomic and euploid samples. Multiple probe set IDs corresponding to a single gene symbol are combined as part of the GSEA analysis. Gene Symbol Probe Set IDs Gene Title 203865_s_at, 207999_s_at, 209979_at, adenosine deaminase, RNA-specific, B1 ADARB1 234539_at, 234799_at (RED1 homolog rat) UDP-Gal:betaGlcNAc beta 1,3- B3GALT5 206947_at galactosyltransferase, polypeptide 5 BACE2 217867_x_at, 222446_s_at beta-site APP-cleaving enzyme 2 1553227_s_at, 214820_at, 219280_at, 225446_at, 231860_at, 231960_at, bromodomain and WD repeat domain BRWD1 244622_at containing 1 C21orf121 240809_at chromosome 21 open reading frame 121 C21orf130 240068_at chromosome 21 open reading frame 130 C21orf22 1560881_a_at chromosome 21 open reading frame 22 C21orf29 1552570_at, 1555048_at_at, 1555049_at chromosome 21 open reading frame 29 C21orf33 202217_at, 210667_s_at chromosome 21 open reading frame 33 C21orf45 219004_s_at, 228597_at, 229671_s_at chromosome 21 open reading frame 45 C21orf51 1554430_at, 1554432_x_at, 228239_at chromosome 21 open reading frame 51 C21orf56 223360_at chromosome 21 open reading frame 56 C21orf59 218123_at, 244369_at chromosome 21 open reading frame 59 C21orf66 1555125_at, 218515_at, 221158_at chromosome 21 open reading frame 66 C21orf7 221211_s_at chromosome 21 open reading frame 7 C21orf77 220826_at chromosome 21 open reading frame 77 C21orf84 239968_at, 240589_at chromosome 21 open reading frame 84
    [Show full text]
  • Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm
    International Journal of Molecular Sciences Review Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm Werner Hoffmann Institute ofReview Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, LeipzigerT Str.refoil 44, 39120 Factor Magdeburg, Family Germany; (TFF werner.ho) Peptidesff[email protected] and Their Received:Diverse 19 May 2020; Molecular Accepted: 19 June Functions 2020; Published: in 25 JuneMucus 2020 Barrier Abstract:ProtectionTrefoil factor family and peptidesMore: (TFF1,Chang TFF2,ing TFF3) the are Paradigm typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute Werner Hoffmann amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair byInstitute enhancing of Molecul cellar migrationBiology and Medicinal (“restitution”) Chemistry, Otto via-von their-Guericke weak University chemotactic Magdeburg and, anti-apoptotic Leipziger Str. 44, 39120 Magdeburg, Germany; [email protected] effects. For a long time, as a paradigm, this was considered as their major biological function. Within Received: 19 May 2020; Accepted: 19 June; Published: 25 June 2020 recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., withAbstract: gastrokine-2 Trefoil andfactor IgGfamily Fc peptides binding (TFF1, protein TFF2, TFF3) (FCGBP). are typically Furthermore, co-secreted lectintogether activities with were recognizedmucins as enabling. Tff1 represents binding a gastric to atumor lipopolysaccharide suppressor gene in mice of .Helicobacter TFFs are also synthesized pylori (TFF1, in minute TFF3) or to a amounts in the immune and central nervous systems.
    [Show full text]
  • TFF2, a MUC6-Binding Lectin Stabilizing the Gastric Mucus Barrier and More (Review)
    806 INTERNATIONAL JOURNAL OF ONCOLOGY 47: 806-816, 2015 TFF2, a MUC6-binding lectin stabilizing the gastric mucus barrier and more (Review) WERNER HOFFMANN Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke-University Magdeburg, D-39120 Magdeburg, Germany Received June 16, 2015; Accepted July 7, 2015 DOI: 10.3892/ijo.2015.3090 Abstract. The peptide TFF2 (formerly ‘spasmolytic polypep- Contents tide’), a member of the trefoil factor family (TFF) containing two TFF domains, is mainly expressed together with the mucin 1. Introduction MUC6 in the gastric epithelium and duodenal Brunner's glands. 2. TFF2 and its function in the gastric mucus barrier Pathologically, TFF2 expression is observed ectopically during 3. Conclusions and future perspectives stone diseases, chronic inflammatory conditions and in several metaplastic and neoplastic epithelia; most prominent being the ‘spasmolytic polypeptide-expressing metaplasia’ (SPEM), 1. Introduction which is an established gastric precancerous lesion. TFF2 plays a critical role in maintaining gastric mucosal integrity Mucous epithelia cover the inner surfaces of our body and are and appears to restrain tumorigenesis in the stomach. Recently, essential for interaction with the outside world (e.g., respira- porcine TFF2 has been shown to interact with the gastric tion, uptake and digestion of food, excretion, reproduction, mucin MUC6 and thus stabilize the gastric mucus barrier. visual and auditory systems). These delicate epithelia are On the one hand, TFF2 binds to MUC6 via non-covalent exposed to a myriad of noxious agents and thus rely on multiple lectin interactions with the glycotope GlcNAcα1→4Galβ1→R. mucosal protection and defense mechanisms (1), including On the other hand, TFF2 is probably also covalently bound the: i) mucosal barrier (i.e., the extracellular mucous gel, the to MUC6 via disulfide bridges.
    [Show full text]