BSBI News April 2010 No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1. -
28. GALIUM Linnaeus, Sp. Pl. 1: 105. 1753
Fl. China 19: 104–141. 2011. 28. GALIUM Linnaeus, Sp. Pl. 1: 105. 1753. 拉拉藤属 la la teng shu Chen Tao (陈涛); Friedrich Ehrendorfer Subshrubs to perennial or annual herbs. Stems often weak and clambering, often notably prickly or “sticky” (i.e., retrorsely aculeolate, “velcro-like”). Raphides present. Leaves opposite, mostly with leaflike stipules in whorls of 4, 6, or more, usually sessile or occasionally petiolate, without domatia, abaxial epidermis sometimes punctate- to striate-glandular, mostly with 1 main nerve, occasionally triplinerved or palmately veined; stipules interpetiolar and usually leaflike, sometimes reduced. Inflorescences mostly terminal and axillary (sometimes only axillary), thyrsoid to paniculiform or subcapitate, cymes several to many flowered or in- frequently reduced to 1 flower, pedunculate to sessile, bracteate or bracts reduced especially on higher order axes [or bracts some- times leaflike and involucral], bracteoles at pedicels lacking. Flowers mostly bisexual and monomorphic, hermaphroditic, sometimes unisexual, andromonoecious, occasionally polygamo-dioecious or dioecious, pedicellate to sessile, usually quite small. Calyx with limb nearly always reduced to absent; hypanthium portion fused with ovary. Corolla white, yellow, yellow-green, green, more rarely pink, red, dark red, or purple, rotate to occasionally campanulate or broadly funnelform; tube sometimes so reduced as to give appearance of free petals, glabrous inside; lobes (3 or)4(or occasionally 5), valvate in bud. Stamens (3 or)4(or occasionally 5), inserted on corolla tube near base, exserted; filaments developed to ± reduced; anthers dorsifixed. Inferior ovary 2-celled, ± didymous, ovoid, ellipsoid, or globose, smooth, papillose, tuberculate, or with hooked or rarely straight trichomes, 1 erect and axile ovule in each cell; stigmas 2-lobed, exserted. -
After Comparative Morphology, Cytology Chorology Species, Tetrap
Cytotaxonomic notes on some Galium species Galium boreale L. II (Taxonomy G. boreale L. and allied species) BY E. Kliphuis (Communicated by Prof. Dr. J. Lanjouw at the meeting of May 26, 1973) Summary of Comparative morphological investigation Galium boreale L. on herbarium specimen from different parts of the area confirmed the complexity of this species as stated by others. This is discussed. Based on fruit-indument characters it is concluded that four varieties can be distinguished. Introduction Galium boreale L. is a polymorphic species occurring on the northern hemisphere with a circumpolar distribution. Love and Love (1954), after studies of comparative morphology, cytology and chorology concluded that Galium boreale consist of two distinct species, viz.—a tetraploid 2(n =44) occurring in Europe to deep in Asiatic Russia and a hexaploid the 2(n =66) occurring on American continent and extending to within Eastern Asia. The tetraploid would be identical with Galium boreale as described by Linnaeus (1763), the hexaploid with Galium septentrionale as described by Roemer and Schultes in 1818. Urschler, (1955), accepting this conclusions recognized on fruit-indument character within Galium boreale L. the vars. boreale and hyssopifolium (Hofifm.) D.C. and within Galium septentrionale R. et S. the vars. septentrionale, incurvatum Urschl. and Urschl. Later revealed glabrum investigators the presence of hexaploid plants also in Europe besides tetraploids (Piotrowicz, 1961; Rahn, 1961; Kliphuis, 1973). These two cytotypes are morphological inseparable when using the combinations of characters considered critical by Love and Love (Rahn, 1961; Kliphuis, 1973). More extensive research involving biometry and cultivation—and crossing—experiments equally failed to furnish reliable characters by which to distinguish the two cytotypes (Kliphuis, 1973). -
Comparative Evaluation of Phenolic Profile, Antioxidative and Cytotoxic Activities of Different Geranium Species
Iranian Journal of Pharmaceutical Research (2017), 16 (Special Issue): 178-187 Copyright © 2017 by School of Pharmacy Received: January 2015 Shaheed Beheshti University of Medical Sciences and Health Services Accepted: June 2015 Original Article Comparative Evaluation of Phenolic Profile, Antioxidative and Cytotoxic Activities of Different Geranium Species Didem Şöhretoğlu*, Yasin Genç and Şebnem Harput Hacettepe University, Faculty of Pharmacy, Department of Pharmacognosy, TR-06100 Ankara, Turkey. Introduction or added to pastry (3, 5, 6) Geranium species have been shown to possess antiprotozoal, The course of biochemical and physiological α-glucosidase and HIV reverse transcriptase actions results in the production of harmful inhibitory, antioxidant, antibacterial, and free radicals and reactive oxygen species in antiviral activity against influenza A and B human body. These free radicals and reactive viruses (7-12). Due to their diverse therapeutic oxygen species damage important biomolecules benefits and traditional usage, it is interesting such as DNA, lipids, and proteins; ultimately to research Geranium species from biological becoming the leading source of different serious and phytochemical point of view (3, 7, 13). The chronic disorders like cancer, aging, diabetes, aim of the present study is to assess any possible atherosclerosis and several neurodegenerative radical scavenging and cytotoxic activities of disorders (1). To overcome this hazard, nature different Geranium extracts which are widely provides us a defense shield in the form of used in traditional Turkish medicine in order to dietary antioxidants from plants (2). Different find promising herbal extracts and compounds synthetic antioxidants are routinely used in for drug discovery. medical practices, but may be unsafe because In this study, in vitro antiradical properties of their side effects and toxicity to off-target as well as cytotoxic activities of different organs of concern. -
RHS Members' Seed Scheme: Seed List 2018
RHS Members’ Seed Scheme 2018 rhs.org.uk/seedlist 1 RHS Seed Collections 2018 See page 5 for collection details AGM Collection Cottage Garden Collection Chelsea Collection Shade Collection Greening Grey Britain Plants for Pollinators 2 RHS Members’ Seed Scheme The RHS Members’ Seed Scheme draws upon Orders should be made online at the Society’s diverse plant collections and rhs.org.uk/seedlist, anytime between wealth of expertise to offer members the 1 November and 31 March. Alternatively, you exclusive opportunity to buy seed harvested can request an order form and a printed copy from RHS gardens. Our seedlist is produced of our seedlist by contacting our Membership each year by a small, dedicated team of staff Services Team: and volunteers, based at Wisley, who collect, Tel: 020 3176 5810 clean and pack seed for members. Email: [email protected] The RHS aims to enrich everyone’s life through Or in writing to: plants so we hope you will be inspired to have a go at growing from seed, which can be fun and Membership Services Team (seeds) rewarding. Covering 200 species, our seedlist The Royal Horticultural Society contains a range of plants including annuals, 80 Vincent Square herbaceous perennials, trees and shrubs, some London SW1P 2PE of which are rare and unusual. If you are not ordering online and are wanting Applying for Seed to process your order by post, then you will need to place your order before the end of This year we have increased the allocation of January as paper order forms will not be sent seed packets from 12 to 15 (please note only out after this time. -
Plants, People and Places Roy Lancaster CBE VMH
©Roy Lancaster Lancaster ©Roy President’s perspective – plants, people and places Roy Lancaster CBE VMH The English Garden at Chantilly. f there is one plant which urban gardens, especially yellow anthers in April, but I is guaranteed to catch those where soil-space is they are present throughout the eye of visitors to our limited if not absent, and winter as jewel-like clusters home in the often dim light it is shade tolerant too. Of of red buds contrasting of January it is Skimmia relatively slow growth, it strikingly with the foliage. japonica ‘Magic Marlot’ forms a rounded, compact This is a male form and (fig 1). This dwarf, hardy, hummock or mound (mine bears no berries. evergreen shrub has lived in is 25 x 45cm after 10 years), Not content with the its green-glazed container on clothed with the neatest of Skimmia, opposite our door our doorstep for several years leaves to 5cm long, narrow in a narrow border I grow now and never fails to please. and pointed. These are two- another small, variegated Indeed, it answers most if tone green with a distinct evergreen shrub, Daphne not all the requirements creamy-white margin. The odora ‘Rebecca’ (fig. 2). of some gardeners for a fragrant terminal flower Ultimately larger than the shrub for today’s smaller, clusters open white with Skimmia and less compact, ©Roy Lancaster Lancaster ©Roy Lancaster ©Roy Fig. 1 Skimmia japonica ‘Magic Marlot’. Fig 2 Daphne odora ‘Rebecca’. 3 it is nevertheless what I call Later that month I and our notebooks with a cracker of a plant with answered a knock on our hard-earned expertise and larger, longer, green leaves, door to find our old friend valued opinions. -
Botanical Reference Collection (331KB)
Botanical reference collection FAMILY STACE accession SPECIES VERNACULAR NAME 2 Eccremocarpus scaber ? Chilean Glory flower 3 Capparis spinosa Caper 4 Carica papaya Pawpaw 7 Passiflora sp. Passionflower 8 Phoenix dactylifera Date Palm 9 Podophyllum emodi Himalayan May Apple 10 Styrax officinalis Benzoe 1 Asclepias tuberosa Butterfly weed FAMILY STACE ACANTHACEAE accession SPECIES VERNACULAR NAME 1242 Acanthus spinosus Spiny Bear's-breeches FAMILY STACE ACERACEAE accession SPECIES VERNACULAR NAME 293 Acer pseudoplatanus Sycamore 1757 Acer campestre Field maple 1749 Acer campestre Field Maple 297 Acer nepolitanum 296 Acer campestre Field Maple 294 Acer campestre Field Maple 292 Acer monspessulanus Montpelier Maple 295 Acer campestre Field Maple FAMILY STACE AIZOACEAE accession SPECIES VERNACULAR NAME 1668 Carpobrotus edulis Hottentot-fig FAMILY STACE ALISMATACEAE accession SPECIES VERNACULAR NAME 1050 Alisma plantago-aquatica Water-plantain 1051 Alisma plantago-aquatica Water-plantain 19 August 2005 Page 1 of 63 FAMILY STACE AMARANTHACEAE accession SPECIES VERNACULAR NAME 1673 Amaranthus albus White Pigweed 1672 Amaranthus hybridus Green Amaranth 227 Amaranthus retroflexus Common Amaranth 226 Amaranthus hybridus Green Amaranth 225 Amaranthus caudatus viridis Love-lies-bleeding FAMILY STACE ANACARDIACEAE accession SPECIES VERNACULAR NAME 1239 Pistacia lentiscus Mastic 1240 Pistacia terebinthus Terebrinth FAMILY STACE APIACEAE accession SPECIES VERNACULAR NAME 1813 Carum Caraways 562 Bupleurum rotundifolium Thorow-wax 561 Conium maculatum -
Phylogeny and Historical Biogeography of Geraniaceae In
Systematic Botany (2008), 33(2): pp. 326–342 © Copyright 2008 by the American Society of Plant Taxonomists Phylogeny and Historical Biogeography of Geraniaceae in Relation to Climate Changes and Pollination Ecology Omar Fiz, Pablo Vargas, Marisa Alarcón, Carlos Aedo, José Luis García, and Juan José Aldasoro1 Real Jardín Botanico de Madrid, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain 1Author for correspondence ([email protected]) Communicating Editor: Mark P. Simmons Abstract—Chloroplast (trnL–F and rbcL) sequences were used to reconstruct the phylogeny of Geraniaceae and Hypseocharitaceae. According to these data Hypseocharitaceae and Geraniaceae are monophyletic. Pelargonium and Monsonia are sisters to the largest clade of Geraniaceae, formed by Geranium, Erodium and California. According to molecular dating and dispersal-vicariance analysis, the split of the stem branches of Geraniaceae probably occurred during the Oligocene, in southern Africa or in southern Africa plus the Mediterranean area. However, their diversification occurred during the Miocene, coinciding with the beginning of major aridification events in their distribution areas. An ancestor of the largest clade of Geraniaceae (Geranium, Erodium, and California) colonised a number of habitats in the northern hemisphere and in South American mountain ranges. In summary, the evolution of the Geraniaceae is marked by the dispersal of ancestors from Southern Africa to cold, temperate and often disturbed habitats in the rest of world, where only generalist pollination and facultative autogamy could ensure sufficient seed production and survival. Keywords—autocompatibility, dispersal-vicariance, drought-tolerance, molecular dating, nectaries, P/O indexes. The Geraniaceae are included in the order Geraniales along are characteristic of the Afro-Arabian land mass (Hutchin- with the families Francoaceae, Greyiaceae, Ledocarpaceae, son 1969). -
Rubiaceae): Evolution of Major Clades, Development of Leaf-Like Whorls, and Biogeography
TAXON 59 (3) • June 2010: 755–771 Soza & Olmstead • Molecular systematics of Rubieae Molecular systematics of tribe Rubieae (Rubiaceae): Evolution of major clades, development of leaf-like whorls, and biogeography Valerie L. Soza & Richard G. Olmstead Department of Biology, University of Washington, Box 355325, Seattle, Washington 98195-5325, U.S.A. Author for correspondence: Valerie L. Soza, [email protected] Abstract Rubieae are centered in temperate regions and characterized by whorls of leaf-like structures on their stems. Previous studies that primarily included Old World taxa identified seven major clades with no resolution between and within clades. In this study, a molecular phylogeny of the tribe, based on three chloroplast regions (rpoB-trnC, trnC-psbM, trnL-trnF-ndhJ) from 126 Old and New World taxa, is estimated using parsimony and Bayesian analyses. Seven major clades are strongly supported within the tribe, confirming previous studies. Relationships within and between these seven major clades are also strongly supported. In addition, the position of Callipeltis, a previously unsampled genus, is identified. The resulting phylogeny is used to examine geographic distribution patterns and evolution of leaf-like whorls in the tribe. An Old World origin of the tribe is inferred from parsimony and likelihood ancestral state reconstructions. At least eight subsequent dispersal events into North America occurred from Old World ancestors. From one of these dispersal events, a radiation into North America, followed by subsequent diversification in South America, occurred. Parsimony and likelihood ancestral state reconstructions infer the ancestral whorl morphology of the tribe as composed of six organs. Whorls composed of four organs are derived from whorls with six or more organs. -
Monitoring of Natural Habitats
INSPECTION OF ENVIRONMENTAL PROTECTION Monitoring of natural habitats Methodological guide for natural habitat 9180 Sycamore and maple-lime forests of slopes, screes and ravines Tilio platyphyllis-Acerion pseudoplatani by Krzysztof Świerkosz, Jan Bodziarczyk Translated by Roman Tertil, Letterman Sp. z o.o., ul. Kramerowska 15/2, 31-130 Kraków LIBRARY OF ENVIRONMENTAL MONITORING Warszawa 2017 CONTENTS 9180* Sycamore and maple-lime forests of slopes, screes and ravines Tilio platyphyllis-Acerion pseudoplatani .............................................................................................. 3 I. INFORMATION CONCERNING THE NATURAL HABITAT .................................................................. 3 1. Phytosociological identifiers ................................................................................................................. 3 2. Description of the natural habitat ......................................................................................................... 3 3. Ecological conditions ............................................................................................................................ 4 4. Typical plant species............................................................................................................................. 4 5. Distribution in Poland ........................................................................................................................... 7 II. METHODOLOGY ......................................................................................................................... -
A Guide to Frequent and Typical Plant Communities of the European Alps
- Alpine Ecology and Environments A guide to frequent and typical plant communities of the European Alps Guide to the virtual excursion in lesson B1 (Alpine plant biodiversity) Peter M. Kammer and Adrian Möhl (illustrations) – Alpine Ecology and Environments B1 – Alpine plant biodiversity Preface This guide provides an overview over the most frequent, widely distributed, and characteristic plant communities of the European Alps; each of them occurring under different growth conditions. It serves as the basic document for the virtual excursion offered in lesson B1 (Alpine plant biodiversity) of the ALPECOLe course. Naturally, the guide can also be helpful for a real excursion in the field! By following the road map, that begins on page 3, you can determine the plant community you are looking at. Communities you have to know for the final test are indicated with bold frames in the road maps. On the portrait sheets you will find a short description of each plant community. Here, the names of communities you should know are underlined. The portrait sheets are structured as follows: • After the English name of the community the corresponding phytosociological units are in- dicated, i.e. the association (Ass.) and/or the alliance (All.). The names of the units follow El- lenberg (1996) and Grabherr & Mucina (1993). • The paragraph “site characteristics” provides information on the altitudinal occurrence of the community, its topographical situation, the types of substrata, specific climate conditions, the duration of snow-cover, as well as on the nature of the soil. Where appropriate, specifications on the agricultural management form are given. • In the section “stand characteristics” the horizontal and vertical structure of the community is described. -
Is Early Flowering in Myrmecochorous Plants an Adaptation for Ant
Is early flowering in myrmecochorous plants an adaptation for ant dispersal? JAVIER GUITIÁN and JOSÉ L. GARRIDO Departamento de Botánica, Facultad de Biología, Campus Sur, Universidad de Santiago de Compostela, 15708, Santiago de Compostela, A Coruña, Spain Abstract To analyze the extent to which early flowering of specialized myrmecochorous plants (i.e. plants producing elaiosome-bearing seeds) may be the result of adaptation for ant dis- persal, we investigated flowering and fruiting patterns of common herb and shrub-layer species in a beechwood forest at the western end of the Cantabrian Range (Spain). Over the same period, we estimated ant abundance, the availability of alternative foods for ants, and the rate of removal of seeds by ants. Our results indicate: (i) that the flowering peaks of most strict myrmecochores occurred approximately 4 weeks earlier than in non- myrmecochores; (ii) that the fruiting peak of both groups of plants occurred around the same time, in early July; (iii) that the peak in ant abundance coincides with the seed availability peak, and precedes the peak in availability of alternative ant foods; and (iv) that the probability of seed removal by Formica rufibarbis (the only ant species present in the study area) varies over the season, peaking in early July. In conclusion, our results show that despite differences in seed size, plants with ant-dispersed seeds show highly synchronous flowering, suggesting that strict myrmecochores in our study area may have adapted their phenologies to the seasonal availability of dispersers. Keywords: elaiosome, flowering phenology, fruiting phenology, seed removal, seed size, myrmecochory. Introduction outside the nest where it may germinate.