Demystifying Maturity-Onset Diabetes of the Young (MODY)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
DIAGMOL Town, ZIPCODE :…………………………………………………… Director : Prof
Mr. Mrs. (IN UPPER CASE, please) Name:……………………………………………………. Maiden Name:……………………………………. DMGL / Service de Médecine Génétique Centre d’accueil des prélèvements (CAP) First name :………………………………………………… Bâtiment des Laboratoires (BATLab), local 8D-0-850.1 Date of birth : ............ / ........... / …………… 4 rue Gabrielle-Perret-Gentil, 1211 Genève 14 Legal representative (for minors) : father mother Molecular and Genomic Diagnostics Laboratory Name/first name :…………………………………………… Street/N°:……………………………………………………… http://www.hug-ge.ch/feuilles-de-demande DIAGMOL Town, ZIPCODE :…………………………………………………… Director : Prof. Stylianos ANTONARAKIS Hospitalisation Unit: …………… Physician :…………………… Lab managers: N° EdS : …………………………………………………………… Dr J.-L. BLOUIN, Dr Th. NOUSPIKEL, Dr. M. GUIPPONI Invoice address: Patient Prescriptor Insurance [email protected], [email protected], [email protected] Type of case : Disease AI Accident Pregnancy Lab direct or results: Phone/FAX: +41 (0) 22 37 21 826 / 21 860 N° AVS (Mandatory for AI) : ………………………...................... Sample Entrance Center (CAP) : Phone +41 (0) 22 37 21 800 Insurance : ………………… Insured N° : ……………………… PHYSICIAN PHYSICIAN (NAME/First name - Street/N°- Town, ZIPCODE - Phone/FAX. IN UPPER CASES, PLEASE) COPY TO OTHER PHYSICIAN (NAME/First name - Street/N°- Town, ZIPCODE - Phone/FAX. IN UPPER CASES, PLEASE) « The laboratory is granted permission by the Physician/Patient to transmit copies of the report to other physicians» Opposition of the patient to the registration of this request results in the electronic patient record (DPI) of the HUG If the patient belongs to a family already known to the laboratory, please indicate index case NAME: CLINICAL INFORMATIONS given by the physician: Ethnic origins Father Mother Currently pregnant Date of last menses Number of weeks of amenorrhea SAMPLE(S) Most of our tests work from 4 ml of blood in EDTA (children <2 ans : 1 On every and single NAME First name ml : ok) or from purified DNA (some exceptions apply for some tests) tube. -
Sorbonne Université/China Scholarship Council Program 2021
Sorbonne Université/China Scholarship Council program 2021 Thesis proposal Title of the research project: Hnf1b regulation during kidney development and regeneration Joint supervision: no Joint PhD (cotutelle): no Thesis supervisor: … Muriel Umbhauer. Email address of the thesis supervisor: [email protected] Institution: …… Sorbonne Université …. Doctoral school (N°+name): ED …. …… ED 515 Complexité du Vivant Research laboratory: UMR7622 CNRS Laboratory of developmental biology Name of the laboratory director: … Sylvie Schneider-Maunoury Email address of the laboratory director: [email protected] Subject description (2 pages max): 1) Study context The POU homeodomain transcription factor hepatocyte nuclear factor 1β (Hnf1b) plays an essential role in vertebrate kidney development. Heterozygous mutations in human HNF1B cause the complex multisystem syndrome known as Renal Cysts And Diabetes (RCAD). The most prominent clinical features of this autosomal dominant disorder are non-diabetic renal disease resulting from abnormal renal development and diabetes mellitus (reviewed by Clissold RL et al., 2015). During early mouse kidney development, Hnf1b has been shown to be required for ureteric bud branching and initiation of nephrogenesis (Lokmane et al., 2010). Hnf1b conditional inactivation in murine nephron progenitors has revealed an additional role in segment fate Xenopus is a well established and attractive model to study kidney development (Krneta-Stankic V. et al, 2017). Renal function at larval stages relies on two pronephroi located on both sides of the body, each consisting on one giant nephron displaying the same structural and functional organisation than the mammalian nephron. Moreover, pronephric and metanephric differentiation and morphogenesis share most of the signalling cascades and gene regulatory networks. -
Overlap of Vitamin a and Vitamin D Target Genes with CAKUT- Related Processes [Version 1; Peer Review: 1 Approved with Reservations]
F1000Research 2021, 10:395 Last updated: 21 JUL 2021 BRIEF REPORT Overlap of vitamin A and vitamin D target genes with CAKUT- related processes [version 1; peer review: 1 approved with reservations] Ozan Ozisik1, Friederike Ehrhart 2,3, Chris T Evelo 2, Alberto Mantovani4, Anaı̈s Baudot 1,5 1Aix Marseille University, Inserm, MMG, Marseille, 13385, France 2Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, 6200 MD, The Netherlands 3Department of Bioinformatics, NUTRIM/MHeNs, Maastricht University, Maastricht, 6200 MD, The Netherlands 4Istituto Superiore di Sanità, Rome, 00161, Italy 5Barcelona Supercomputing Center (BSC), Barcelona, 08034, Spain v1 First published: 18 May 2021, 10:395 Open Peer Review https://doi.org/10.12688/f1000research.51018.1 Latest published: 18 May 2021, 10:395 https://doi.org/10.12688/f1000research.51018.1 Reviewer Status Invited Reviewers Abstract Congenital Anomalies of the Kidney and Urinary Tract (CAKUT) are a 1 group of abnormalities affecting the kidneys and their outflow tracts, which include the ureters, the bladder, and the urethra. CAKUT version 1 patients display a large clinical variability as well as a complex 18 May 2021 report aetiology, as only 5% to 20% of the cases have a monogenic origin. It is thereby suspected that interactions of both genetic and 1. Elena Menegola, Università degli Studi di environmental factors contribute to the disease. Vitamins are among the environmental factors that are considered for CAKUT aetiology. In Milano, Milan, Italy this study, we collected vitamin A and vitamin D target genes and Any reports and responses or comments on the computed their overlap with CAKUT-related gene sets. -
Abstracts from the 9Th Biennial Scientific Meeting of The
International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):15 DOI 10.1186/s13633-017-0054-x MEETING ABSTRACTS Open Access Abstracts from the 9th Biennial Scientific Meeting of the Asia Pacific Paediatric Endocrine Society (APPES) and the 50th Annual Meeting of the Japanese Society for Pediatric Endocrinology (JSPE) Tokyo, Japan. 17-20 November 2016 Published: 28 Dec 2017 PS1 Heritable forms of primary bone fragility in children typically lead to Fat fate and disease - from science to global policy a clinical diagnosis of either osteogenesis imperfecta (OI) or juvenile Peter Gluckman osteoporosis (JO). OI is usually caused by dominant mutations affect- Office of Chief Science Advsor to the Prime Minister ing one of the two genes that code for two collagen type I, but a re- International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):PS1 cessive form of OI is present in 5-10% of individuals with a clinical diagnosis of OI. Most of the involved genes code for proteins that Attempts to deal with the obesity epidemic based solely on adult be- play a role in the processing of collagen type I protein (BMP1, havioural change have been rather disappointing. Indeed the evidence CREB3L1, CRTAP, LEPRE1, P4HB, PPIB, FKBP10, PLOD2, SERPINF1, that biological, developmental and contextual factors are operating SERPINH1, SEC24D, SPARC, from the earliest stages in development and indeed across generations TMEM38B), or interfere with osteoblast function (SP7, WNT1). Specific is compelling. The marked individual differences in the sensitivity to the phenotypes are caused by mutations in SERPINF1 (recessive OI type obesogenic environment need to be understood at both the individual VI), P4HB (Cole-Carpenter syndrome) and SEC24D (‘Cole-Carpenter and population level. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7 -
Liver Glucose Metabolism in Humans
Biosci. Rep. (2016) / 36 / art:e00416 / doi 10.1042/BSR20160385 Liver glucose metabolism in humans Mar´ıa M. Adeva-Andany*1, Noemi Perez-Felpete*,´ Carlos Fernandez-Fern´ andez*,´ Cristobal´ Donapetry-Garc´ıa* and Cristina Pazos-Garc´ıa* *Nephrology Division, Hospital General Juan Cardona, c/ Pardo Bazan´ s/n, 15406 Ferrol, Spain Synopsis Information about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and con- nected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein. Glucokinase phosphorylates glucose to glucose 6-phosphate inside the hepatocyte, ensuring that an adequate flow of glucose enters the cell to be metabolized. Glucose 6-phosphate may proceed to several metabolic path- ways. During the post-prandial period, most glucose 6-phosphate is used to synthesize glycogen via the formation of glucose 1-phosphate and UDP–glucose. Minor amounts of UDP–glucose are used to form UDP–glucuronate and UDP– galactose, which are donors of monosaccharide units used in glycosylation. A second pathway of glucose 6-phosphate metabolism is the formation of fructose 6-phosphate, which may either start the hexosamine pathway to produce UDP-N-acetylglucosamine or follow the glycolytic pathway to generate pyruvate and then acetyl-CoA. Acetyl-CoA may enter the tricarboxylic acid (TCA) cycle to be oxidized or may be exported to the cytosol to synthesize fatty acids, when excess glucose is present within the hepatocyte. Finally, glucose 6-phosphate may produce NADPH and ribose 5-phosphate through the pentose phosphate pathway. -
UNIVERSITY of CALIFORNIA, IRVINE Combinatorial Regulation By
UNIVERSITY OF CALIFORNIA, IRVINE Combinatorial regulation by maternal transcription factors during activation of the endoderm gene regulatory network DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences by Kitt D. Paraiso Dissertation Committee: Professor Ken W.Y. Cho, Chair Associate Professor Olivier Cinquin Professor Thomas Schilling 2018 Chapter 4 © 2017 Elsevier Ltd. © 2018 Kitt D. Paraiso DEDICATION To the incredibly intelligent and talented people, who in one way or another, helped complete this thesis. ii TABLE OF CONTENTS Page LIST OF FIGURES vii LIST OF TABLES ix LIST OF ABBREVIATIONS X ACKNOWLEDGEMENTS xi CURRICULUM VITAE xii ABSTRACT OF THE DISSERTATION xiv CHAPTER 1: Maternal transcription factors during early endoderm formation in 1 Xenopus Transcription factors co-regulate in a cell type-specific manner 2 Otx1 is expressed in a variety of cell lineages 4 Maternal otx1 in the endodermal conteXt 5 Establishment of enhancers by maternal transcription factors 9 Uncovering the endodermal gene regulatory network 12 Zygotic genome activation and temporal control of gene eXpression 14 The role of maternal transcription factors in early development 18 References 19 CHAPTER 2: Assembly of maternal transcription factors initiates the emergence 26 of tissue-specific zygotic cis-regulatory regions Introduction 28 Identification of maternal vegetally-localized transcription factors 31 Vegt and OtX1 combinatorially regulate the endodermal 33 transcriptome iii -
Genes in Eyecare Geneseyedoc 3 W.M
Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease. -
MODY 2 Presenting As Neonatal Hyperglycaemia: a Need to Reshape the Definition of ªneonatal Diabetesº?
Letters 1331 MODY 2 presenting as neonatal sidered a stringent criterium for selecting patients. We ob- served that the moderate low birth weight of patients No. 1 hyperglycaemia: a need to reshape and No. 3 was probablyinfluenced bya mutation of paternal the definition of ªneonatal diabetesº? origin and subsequent low fetal insulin secretion. Mutations in the GK represent the more frequent cause of Dear Sir, MODY in some series [3] and it has been calculated that up Neonatal diabetes mellitus is defined as a rare condition to 6% of familial Type II non-insulin-dependent) diabetes 1:400.000 live births) of unknown origin, characterised byhy- mellitus could bear a MODY 2 allele [3]. We and others have perglycaemia occurring in the first month of life that requires ex- frequentlyobserved that the mutation-carryingparent of chil- ogenous insulin therapy[1, 2]. The derangement of glucose me- dren with MODY 2 is unaware of his or her hyperglycaemia. tabolism in newborns affected bythis condition could be perma- As a consequence, some previouslydescribed cases of perma- nent permanent neonatal diabetes mellitus, PNDM) or could nent neonatal diabetes of unknown origin might be linked to orcouldnot)recurafterremissionofhyperglycaemiatransient GK mutations in both alleles, even in the absence of consan- neonataldiabetesmellitus,TNDM)[1,2]. Inapedigreewith ma- guineityloop i.e. compound heterozygous). Neonatal, insu- turityonset diabetes of the youngMODY) harbouring the glu- lin-requiring, permanent diabetes mellitus is the main feature cokinase GK, MODY 2) mutation Q38P, we followed a new of GK knock-out mice models [5]. pregnancyofthenon-mutantmotheroftheindexcase.Wefound We believe that the definition of neonatal diabetes currently that 15 days after delivery her child presented hyperglycaemia inuse[1,2]needstoberevisedinorderto:firstly,permanently in- 11.7 mmol) with dehydration and mild ketosis Table 1, patient corporate the concept that TNDM in some cases linked to pa- No. -
Homozygous Hypomorphic HNF1A Alleles Are a Novel Cause of Young-Onset Diabetes and Result in Sulphonylurea-Sensitive Diabetes
Diabetes Care 1 Shivani Misra,1 Neelam Hassanali,2 Homozygous Hypomorphic Amanda J. Bennett,2 Agata Juszczak,2 Richard Caswell,3 Kevin Colclough,3 HNF1A Alleles Are a Novel Cause Jonathan Valabhji,4 Sian Ellard,3 of Young-Onset Diabetes and Nicholas S. Oliver,1,4 and Anna L. Gloyn2,5,6 Result in Sulphonylurea-Sensitive Diabetes https://doi.org/10.2337/dc19-1843 OBJECTIVE Heterozygous loss-of-function mutations in HNF1A cause maturity-onset diabetes of the young (MODY). Affected individuals can be treated with low-dose sulpho- nylureas. Individuals with homozygous HNF1A mutations causing MODY have not been reported. RESEARCH DESIGN AND METHODS We phenotyped a kindred with young-onset diabetes and performed molecular genetic testing, a mixed meal tolerance test, a sulphonylurea challenge, and in vitro assays to assess variant protein function. RESULTS A homozygous HNF1A variant (p.A251T) was identified in three insulin-treated 1 family members diagnosed with diabetes before 20 years of age. Those with the Diabetes, Endocrinology and Metabolism, Im- NOVEL COMMUNICATIONS IN DIABETES homozygous variant had low hs-CRP levels (0.2–0.8 mg/L), and those tested dem- perial College London, London, U.K. 2Oxford Centre for Diabetes, Endocrinology and onstrated sensitivity to sulphonylurea given at a low dose, completely transitioning off Metabolism, University of Oxford, Oxford, U.K. insulin. In silico modeling predicted a variant of unknown significance; however, in vitro 3Institute of Biomedical and Clinical Science, Uni- studies supported a modest reduction in transactivation potential (79% of that for the versity of Exeter Medical School, Exeter, U.K. -
Maternal Or Paternal Diabetes and Its Crucial Role in Offspring Birth
H OH metabolites OH Editorial Maternal or Paternal Diabetes and Its Crucial Role in Offspring Birth Weight and MODY Diagnosis Valeria Calcaterra 1,2,* , Angela Zanfardino 3 , Gian Vincenzo Zuccotti 2,4 and Dario Iafusco 3 1 Pediatric and Adolescence Unit, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy 2 Pediatric Unit, “V. Buzzi” Children’s Hospital, 20154 Milano, Italy; [email protected] 3 Department of Pediatrics, Regional Center of Pediatric Diabetology “G. Stoppoloni”, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; [email protected] (A.Z.); [email protected] (D.I.) 4 Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milano, Italy * Correspondence: [email protected] Received: 17 September 2020; Accepted: 26 September 2020; Published: 28 September 2020 Abstract: Maturity-onset diabetes of the young (MODY) represents a heterogenous group of monogenic autosomal dominant diseases, which accounts for 1–2% of all diabetes cases. Pregnancy represents a crucial time to diagnose MODY forms due to the 50% risk of inheritance in offspring of affected subjects and the potential implications on adequate fetal weight. Not only a history of maternal diabetes may affect the birth weight of offspring, paternal diabetes should also be taken into consideration for a correct pathogenetic diagnosis. The crucial role of maternal and paternal diabetes inheritance patterns and the impact of this inherited mutation on birthweight and the MODY diagnosis was discussed. Keywords: mother; father; diabetes; birthweight; MODY Maturity-onset diabetes of the young (MODY) represents a heterogenous group of monogenic autosomal dominant diseases, which accounts for 1–2% of all diabetes cases [1].