China's First Fund in Overseas Stock Market
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Special Economic Zones to Science and Technology Clusters
Upgrading China’s Competitiveness: From Special Economic Zones to Science and Technology Clusters Dr. Filip De Beule Em. Prof. Dr. Daniel Van Den Bulcke Institute of Development Policy and Management University of Antwerp i Preface While the establishment of economic zones at the beginning of China’s open door policy were careful attempts to open China’s door to the outside world and abandon its isolationist policy, the Chinese leadership today is undoubtedly very proud of these achievements. Twenty five years after the first four Special Economic Zones (SEZ) and twenty years after the development and construction of state- level economic and technological development zones, the China National Philatelic Corporation, which belongs to the Chinese Ministry of Posts and Telecommunications, issued a special stamp in 2004 to commemorate the establishment of the Economic and Technological Development Zones (ETDZ). An accompanying leaflet stated “This stamp was issued in commemoration of the glorious achievements of the state-level economic and technological zones in the past 20 years, highlighting the role and position of the construction of the development zones in China’s economic construction. Deng Xiaoping’s inscription is the main element in the design of the stamp, and abstract symbols are used to reflect the radiating and driving role of the development zones as windows and models.” This report attempts to describe and evaluate the policy of China to use economic zones as vanguards of development. It is based on desk research with a focus on the studies of clusters and a field trip to China in April 2004 with visits to a number of zones in Shanghai, Chengdu, Chongqing, Beijing and Dalian and interviews with managers of the zones and some Belgian companies located in the zones. -
Huizhou Is Envisioned As Guangdong Silicon Valley
News Focus No.3 2019 Huizhou is envisioned as PEGGY CHEUNG ADVISORY DEPARTMENT Guangdong Silicon Valley JAPANESE CORPORATE BANKING DIVISION FOR ASIA T +852-2821-3782 [email protected] MUFG Bank, Ltd. 20 FEB 2019 A member of MUFG, a global financial group When talking about China Silicon Valley or Innovation Hub, the first place that comes to mind would be the media darling-Shenzhen. Following in Shenzhen’s footsteps, the wave of innovation has not only been set off in its neighbouring cities such as Guangzhou and Dongguan, but also in Huizhou, where the local government is putting effort in building Guangdong Silicon Valley. This article will give a brief introduction on Huizhou’s movement towards establishment of Guangdong Silicon Valley and its current Social Implementation1 of innovation and advanced technology. 1. BACKGROUND Huizhou occupies a pivotal position in Shenzhen-Dongguan-Huizhou Economic Circle2 and lies in the core district of eastern Guangdong-Hong Kong-Macao Greater Bay Area (hereinafter “Greater Bay Area”). Since China’s reform and opening up, it has been acting as one of the major industrial cities in Pearl River Delta (hereinafter “PRD”) and has matured petrochemicals and electronic information industries as its pillar industries. Apart from undertaking overflowed industries from Shenzhen and Dongguan, over recent years, Huizhou has been accelerating its level of high-tech R&D activity, with the ultimate goal of evolving as an innovation hub for the emerging industries in Guangdong province. Huizhou was designated -
Analysis of the Characteristics and Causes of Coastline Variation in the Bohai Rim (1980–2010)
Environ Earth Sci (2016) 75:719 DOI 10.1007/s12665-016-5452-5 ORIGINAL ARTICLE Analysis of the characteristics and causes of coastline variation in the Bohai Rim (1980–2010) 1,2 1 1 Ning Xu • Zhiqiang Gao • Jicai Ning Received: 29 July 2015 / Accepted: 12 February 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract This paper retrieved categorical mainland Introduction coastline information in the Bohai Rim from 1980, 1990, 2000 and 2010 utilizing remote sensing and GIS tech- Coastal zone is a unique environment in which atmosphere, nologies and analyzed the characteristics and causes of the hydrosphere and lithosphere contact each other (Alesheikh spatial–temporal variation over the past 30 years. The et al. 2007; Sesli et al. 2009). Furthermore, the coastal zone results showed that during the research period, the length of is a difficult place to manage, involving a dynamic natural the coastline of the Bohai Rim increased continuously for a system that has been increasingly settled and pressurized total increase of 1071.3 km. The types of coastline changed by expanding socioeconomic systems (Turner 2000). For significantly. The amount of artificial coastlines increased coastal zone monitoring, coastline extraction in various continuously and dramatically from 20.4 % in 1980 to times is a fundamental work (Alesheikh et al. 2007). 72.2 % in 2010, while the length of the natural coastlines Coastline mapping and coastline change detection become decreased acutely. Areas that had coastlines that changed critical to coastal resource management, coastal environ- significantly were concentrated in Bohai Bay, the south and ment protection, sustainable coastal development, and west bank of Laizhou Bay and the north bank of Liaodong planning (Li et al. -
Environmental Ecological Response to Increasing Water Temperature in the Daya Bay, Southern China in 1982-2012
Natural Resources, 2016, 7, 184-192 Published Online April 2016 in SciRes. http://www.scirp.org/journal/nr http://dx.doi.org/10.4236/nr.2016.74017 Environmental Ecological Response to Increasing Water Temperature in the Daya Bay, Southern China in 1982-2012 Yanju Hao1, Danling Tang2*, Laura Boicenco3, Sufen Wang2 1Yantai Research Institute, China Agricultural University, Yantai, China 2Research Center for Remote Sensing of Marine Ecology & Environment, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China 3National Institute for Marine Research and Development “GrigoreAntipa”, Constanta, Romania Received 5 January 2016; accepted 15 April 2016; published 18 April 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The increase of water temperature, due to thermal discharges from two nuclear power stations, was one of the most significant environmental changes since 1982 in the Daya Bay, located in the north of the South China Sea. This study investigates the long-term (1982-2012) environmental changes in Daya Bay in response to the increase of water temperature, via comprehensively in- terpreting and analyzing both satellite and in situ observations along with previous data. The re- sults show that: 1) salinity, dissolved oxygen (DO), chemical oxygen demand (COD) and nutrients had been enhanced after the thermal discharges started in 1994; 2) the concentration of Chl-a in- creased while the net-phytoplankton abundance decreased; 3) diversity of the phytoplankton community had decreased; 4) fishery production had declined; and 5) frequency of Harmful Algal Bloom occurrence had increased. -
China Versus Vietnam: an Analysis of the Competing Claims in the South China Sea Raul (Pete) Pedrozo
A CNA Occasional Paper China versus Vietnam: An Analysis of the Competing Claims in the South China Sea Raul (Pete) Pedrozo With a Foreword by CNA Senior Fellow Michael McDevitt August 2014 Unlimited distribution Distribution unlimited. for public release This document contains the best opinion of the authors at the time of issue. It does not necessarily represent the opinion of the sponsor. Cover Photo: South China Sea Claims and Agreements. Source: U.S. Department of Defense’s Annual Report on China to Congress, 2012. Distribution Distribution unlimited. Specific authority contracting number: E13PC00009. Copyright © 2014 CNA This work was created in the performance of Contract Number 2013-9114. Any copyright in this work is subject to the Government's Unlimited Rights license as defined in FAR 52-227.14. The reproduction of this work for commercial purposes is strictly prohibited. Nongovernmental users may copy and distribute this document in any medium, either commercially or noncommercially, provided that this copyright notice is reproduced in all copies. Nongovernmental users may not use technical measures to obstruct or control the reading or further copying of the copies they make or distribute. Nongovernmental users may not accept compensation of any manner in exchange for copies. All other rights reserved. This project was made possible by a generous grant from the Smith Richardson Foundation Approved by: August 2014 Ken E. Gause, Director International Affairs Group Center for Strategic Studies Copyright © 2014 CNA FOREWORD This legal analysis was commissioned as part of a project entitled, “U.S. policy options in the South China Sea.” The objective in asking experienced U.S international lawyers, such as Captain Raul “Pete” Pedrozo, USN, Judge Advocate Corps (ret.),1 the author of this analysis, is to provide U.S. -
Impacts of Shipping Emissions on PM2.5 Pollution in China
Atmos. Chem. Phys., 18, 15811–15824, 2018 https://doi.org/10.5194/acp-18-15811-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Impacts of shipping emissions on PM2:5 pollution in China Zhaofeng Lv1,2, Huan Liu1,2, Qi Ying3, Mingliang Fu4,5, Zhihang Meng1,2, Yue Wang1,2, Wei Wei6, Huiming Gong7, and Kebin He1,2 1State Key Joint Laboratory of ESPC, School of the Environment, Tsinghua University, Beijing 100084, China 2State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China 3Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA 4State Key Laboratory of environmental criteria and risk assessment (SKLECRA), Chinese research academy of environmental sciences, Beijing 100012, China 5Vehicle emission control center, Ministry of ecology and environment of the people’s republic of China, Beijing 100012, China 6Department of Environmental Science and Engineering, Beijing University of Technology, Beijing 100124, China 7National Laboratory of Automotive Performance & Emission Test, Beijing Institute of Technology, Beijing 100081, China Correspondence: Huan Liu ([email protected]) Received: 29 May 2018 – Discussion started: 27 June 2018 Revised: 3 October 2018 – Accepted: 15 October 2018 – Published: 2 November 2018 Abstract. With the fast development of seaborne trade and CMAQ was used to estimate the contributions of shipping relatively more efforts on reducing emissions from other emissions from maritime areas within 0–12, 12–50, 50–100 sources in China, shipping emissions contribute more and and 100–200 Nm to PM2:5 concentrations. The results indi- more significantly to air pollution. -
Mapping Tidal Flats with Landsat 8 Images and Google Earth Engine: a Case Study of the China’S Eastern Coastal Zone Circa 2015
Mapping Tidal Flats with Landsat 8 Images and Google Earth Engine: A Case Study of the China’s Eastern Coastal Zone circa 2015 Kangyong Zhang 1,2, Xuanyan Dong 1,2, Zhigang Liu 1,3, Wenxiu Gao 3, Zhongwen Hu 1,4,* and Guofeng Wu 1,4 1 Key Laboratory for Geo-Environmental Monitoring of Coastal Zone of the Ministry of Natural Resources & Guangdong Key Laboratory of Urban Informatics & Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University, Shenzhen 518060, China; [email protected] (K.Z.); [email protected] (X.D.); [email protected] (Z.L.); [email protected] (G.W.) 2 College of Civil Engineering, Shenzhen University, Shenzhen 518060, China 3 School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China; [email protected] 4 College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China * Correspondence: [email protected] (Z.H.); [email protected] (G.W.); Received: 26 February; Accepted: 12 March 2019; Published: 16 April 2019 Abstract: Accurate and up-to-date tidal flat mapping is of much importance to learning how coastal ecosystems work in a time of anthropogenic disturbances and rising sea levels, which will provide scientific instruction for sustainable management and ecological assessments. For large-scale and high spatial-resolution mapping of tidal flats, it is difficult to obtain accurate tidal flat maps without multi-temporal observation data. In this study, we aim to investigate the potential and advantages of the freely accessible Landsat 8 Operational Land Imager (OLI) imagery archive and Google Earth Engine (GEE) for accurate tidal flats mapping. -
National Report: the Role of China's Environmental Non-Governmental
National Report: The Role of China’s Environmental Non-Governmental Organizations in Marine Litter Control December 2013 National Report: The Role of China’s Environmental Non-Governmental Organizations in Marine Litter Control December 2013 Preparation of this report was supported by the Global Programme of Action for the Protection of Marine Environment from Land-based Activities (GPA) through the Northwest Pacific Action Plan (NOWPAP) of UNEP. The report was prepared by the Institute of Water Environment, Chinese Research Academy of Environment Sciences (CRAES), a national multi-disciplinary research institution in the field of environmental science and technology (8 Dayangfang Beiyuan Road, Chaoyang District, Beijing 100012, China). The document was drafted by Dr. Hao Chen who is the NOWPAP marine litter focal point of China. All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic, mechanical, photocopy or otherwise, without prior permission in writing from the CRAES Contents 1. Introduction .............................................................................................................................. 1 2. Legal status of China’s Environmental NGOs .......................................................................... 3 3. ICC events and public awareness of marine litter control ........................................................ 7 3.1 Distribution .................................................................................................................... -
Particle Physics Research in China
Particle Physics Research in China Hesheng Chen Institute of High Energy Physics Beijing 100049, China Outline 1. Introduction 2. BEPC/BEPCII 3. Daya Bay reactor neutrino experiment 4. Particle astrophysics experiments a) Yanbajing cosmic ray observatory b) Space experiments 5. Future plan 6. Closing remarks 2 Frontiers of Particle Intl. Cooperation: – LHCexp. Physics in China – ILC/CLIC? – … • BEPCII • Daya Bay ν • Daya Bay ν II • Cosmic rays • Space experiments • Deep underground Institute of High Energy Physics • Institute of Modern Physics: established at 1950 • Institute of High Energy Physics: independent Institute for Particle physics at 1973 → Comprehensive and largest fundamental research center in China – 1300 employees, 3/4 of them are physicists and engineers, – 550 PhD Students and 60 postdoctors • Goal of IHEP: multiple discipline research center based on large scientific facilities. 4 Major research fields at IHEP • Particle physics: – Charm physics @ BEPC – LHC exp. – Yangbajing cosmic ray observatory – particle astrophysics: HXMT, – Neutrino physics : Daya Bay reactor n exp. • Accelerator technology and applications – High Lumi. e+e- collider: BEPCII – High power proton accelerator: CSNS,ADS • Radiation technologies – Synchrotron radiation source and applications – Spallation neutron source and application • Construction and operation of large scientific facilities • Multiple discipline research: life science, nano-sciences, nuclear imaging, environment…… • 5 University Groups • Peking Univ. • Tsinghua Univ. • University of Sciences and Technology of China • Shandong Univ. • Huazhong Normal Univ. • Shanghai Jiaotong Univ. • Nanjing Univ. • …… 6 NSFC: one of major funding agencies for particle physics in China Supports particle physics research projects national wide, including • Research in experiments • Theory • International cooperation: LHC exp. …… • R&D of accelerator and detector • Innovation in the experimental facilities • …… 7 2. -
A Fine-Scale Mangrove Map of China Derived from 2-Meter Resolution Satellite Observations and Field Data
International Journal of Geo-Information Technical Note A Fine-Scale Mangrove Map of China Derived from 2-Meter Resolution Satellite Observations and Field Data Tao Zhang 1 , Shanshan Hu 2,* , Yun He 1, Shucheng You 1, Xiaomei Yang 3 , Yuhang Gan 1 and Aixia Liu 1 1 Land Satellite Remote Sensing Application Center (LASAC), Beijing 100048, China; [email protected] (T.Z.); [email protected] (Y.H.); [email protected] (S.Y.); [email protected] (Y.G.); [email protected] (A.L.) 2 Beijing Laboratory of Water Resources Security, College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China 3 LREIS, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] * Correspondence: [email protected] Abstract: Mangrove forests are important ecosystems in the coastal intertidal zone, but China’s mangroves have experienced a large reduction in area from the 1950s, and the remaining mangrove forests are exhibiting increased fragmentation. A detailed mangrove dataset of China is crucial for mangrove ecosystem management and protection, but the fragmented mangrove patches are hardly mapped by medium resolution satellite imagery. To overcome these difficulties, we presented a fine-scale mangrove map for 2018 using the 2-meter resolution Gaofen-1 and Ziyuan-3 satellite imagery together with field data. We employed a hybrid method of object-based image analysis (OBIA), interpreter editing, and field surveying for mangrove mapping. The field survey route reached 9500 km, and 2650 patches were verified during the field work. Accuracy assessment by confusion matrix showed that the kappa coefficient reached 0.98, indicating a highly thematic accuracy of the mangrove dataset. -
Influence of Potential Future Sea-Level Rise on Tides in The
Journal of Coastal Research 00 0 000–000 Coconut Creek, Florida Month 0000 Influence of Potential Future Sea-Level Rise on Tides in the China Sea Cuiping Kuang†*, Huidi Liang†, Xiaodan Mao†, Bryan Karney‡, Jie Gu§, Hongcheng Huang†, Wei Chen†, and Honglin Song† †College of Civil Engineering ‡College of Civil Engineering §College of Marine Sciences Tongji University University of Toronto Shanghai Ocean University Shanghai 200092, China Toronto M5S 1A4, Canada Shanghai 201306, China ABSTRACT Kuang, C.; Liang, H.; Mao, X.; Karney, B.; Gu, J.; Huang, H.; Chen, W., and Song, H., 0000. Influence of potential future sea-level rise on tides in the China Sea. Journal of Coastal Research, 00(0), 000–000. Coconut Creek (Florida), ISSN 0749-0208. This study investigates the diurnal and semidiurnal tidal responses of the entire China Sea to a potential rise in sea level of 0.5–2 m. A modified two-dimensional tidal model based on MIKE21 is primarily configured and validated for the present situation; then, three (0.5, 1, 2 m) sea-level rise (SLR) scenarios are simulated with this model. The predicted results show that the principal lunar semidiurnal (M2) and diurnal (K1) tidal constituents respond to SLR in a spatially nonuniform manner. Generally, changes of M2 and K1 amplitudes in shallow waters are larger than those in the deep sea, and significant tidal alterations mainly occur in the Bohai and Yellow seas, Jianghua Bay, Hangzhou Bay, Taiwan Strait, Yangtze River estuary, Pearl River estuary, and Beibu Bay. Possible mechanisms further discussed for these changes mainly relate to bottom friction decreasing, amphidromic point migration, and resonant effect change. -
Assessing and Zoning of Typhoon Storm Surge Risk with GIS Technique: a Case Study of the Coastal Area of Huizhou
https://doi.org/10.5194/nhess-2020-130 Preprint. Discussion started: 12 June 2020 c Author(s) 2020. CC BY 4.0 License. Assessing and zoning of typhoon storm surge risk with GIS technique: A case study of the coastal area of Huizhou Si Wang1, Lin Mu1 2, Zhenfeng Yao3, Jia Gao1, Enjin Zhao1 1College of Marine Science and Technology, China University of Geosciences, Wuhan, 430074, China 5 2Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518057, China 3Department of Natural Resources of Huizhou Bureau, Huizhou, 516001, China Correspondence to: Lin Mu (e-mail: [email protected]). Abstract. Storm surge is one of the most destructive marine disasters to life and property for Chinese coastal regions, especially for Guangdong province. In Huizhou city, Guangdong province, due to the high concentration of chemical and 10 petroleum industries and the high population density, the low-lying coastal area is susceptible to the storm surge. Therefore, a comprehensive risk assessment of storm surge over the coastal area of Huizhou can delimit zones that could be affected to reduce disaster losses. In this paper, typhoon intensity for the minimum central pressure of 880 hPa, 910 hPa, 920 hPa, 930 hPa, and 940 hPa (corresponding to 1000-year, 100-year, 50-year, 20-year, and 10-year return period) scenarios were designed to cover possible situations. The Jelesnianski method and the Advanced Circulation (ADCIRC) model coupled with 15 the Simulating Waves Nearshore (SWAN) model were utilized to simulate inundation extents and depths of storm surge over the computational domain under these representative scenarios. Subsequently, the output data from the coupled simulation model (ADCIRC–SWAN) were imported to Geographical Information System (GIS) software to conduct the hazard assessment for each of the designed scenarios.