Numerical-Relativity Simulations of the Quasi-Circular Inspiral and Merger of Non-Spinning, Charged Black Holes: Methods and Comparison with Approximate Approaches
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Numerical Relativity for Vacuum Binary Black Hole Luisa T
Numerical Relativity for Vacuum Binary Black Hole Luisa T. Buchman UW Bothell SXS collaboration (Caltech) Max Planck Institute for Gravitational Physics Albert Einstein Institute GWA NW @ LIGO Hanford Observatory June 25, 2019 Outline • What is numerical relativity? • What is its role in the detection and interpretation of gravitational waves? What is numerical relativity for binary black holes? • 3 stages for binary black hole coalescence: • inspiral • merger • ringdown • Inspiral waveform: Post-Newtonian approximations • Ringdown waveform: perturbation theory • Merger of 2 black holes: • extremely energetic, nonlinear, dynamical and violent • the strongest GW signal • warpage of spacetime • strong gravity regime The Einstein equations: • Gμν = 8πTμν • encodes all of gravity • 10 equations which would take up ~100 pages if no abbreviations or simplifications used (and if written in terms of the spacetime metric alone) • pencil and paper solutions possible only with spherical (Schwarzschild) or axisymmetric (Kerr) symmetries. • Vacuum: G = 0 μν (empty space with no matter) Numerical Relativity is: • Directly solving the full dynamical Einstein field equations using high-performance computing. • A very difficult problem: • the first attempts at numerical simulations of binary black holes was in the 1960s (Hahn and Lindquist) and mid-1970s (Smarr and others). • the full 3D problem remained unsolved until 2005 (Frans Pretorius, followed quickly by 2 other groups- Campanelli et al., Baker et al.). Solving Einstein’s Equations on a Computer • -
Towards a Gauge Polyvalent Numerical Relativity Code: Numerical Methods, Boundary Conditions and Different Formulations
UNIVERSITAT DE LES ILLES BALEARS Towards a gauge polyvalent numerical relativity code: numerical methods, boundary conditions and different formulations per Carles Bona-Casas Tesi presentada per a l'obtenci´o del t´ıtolde doctor a la Facultat de Ci`encies Departament de F´ısica Dirigida per: Prof. Carles Bona Garcia i Dr. Joan Mass´oBenn`assar "The fact that we live at the bottom of a deep gravity well, on the surface of a gas covered planet going around a nuclear fireball 90 million miles away and think this to be normal is obviously some indication of how skewed our perspective tends to be." Douglas Adams. Acknowledgements I would like to acknowledge everyone who ever taught me something. Specially my supervisors who, at least in the beginning, had to suffer my eyes, puzzling at their faces, saying that I had the impression that what they were explaining to me was some unreachable knowledge. It turns out that there is not such a thing and they have finally managed to make me gain some insight in this world of relativity and computing. They have also infected me the disease of worrying about calculations and stuff that most people wouldn't care about and my hair doesn't seem very happy with it, but I still love them for that. Many thanks to everyone in the UIB relativity group and to all the PhD. students who have shared some time with me. Work is less hard in their company. Special thanks to Carlos, Denis, Sasha and Dana for all their very useful comments and for letting me play with their work and codes. -
Numerical Relativity
Paper presented at the 13th Int. Conf on General Relativity and Gravitation 373 Cordoba, Argentina, 1992: Part 2, Workshop Summaries Numerical relativity Takashi Nakamura Yulcawa Institute for Theoretical Physics, Kyoto University, Kyoto 606, JAPAN In GR13 we heard many reports on recent. progress as well as future plans of detection of gravitational waves. According to these reports (see the report of the workshop on the detection of gravitational waves by Paik in this volume), it is highly probable that the sensitivity of detectors such as laser interferometers and ultra low temperature resonant bars will reach the level of h ~ 10—21 by 1998. in this level we may expect the detection of the gravitational waves from astrophysical sources such as coalescing binary neutron stars once a year or so. Therefore the progress in numerical relativity is urgently required to predict the wave pattern and amplitude of the gravitational waves from realistic astrophysical sources. The time left for numerical relativists is only six years or so although there are so many difficulties in principle as well as in practice. Apart from detection of gravitational waves, numerical relativity itself has a final goal: Solve the Einstein equations numerically for (my initial data as accurately as possible and clarify physics in strong gravity. in GRIIS there were six oral presentations and ll poster papers on recent progress in numerical relativity. i will make a brief review of six oral presenta— tions. The Regge calculus is one of methods to investigate spacetimes numerically. Brewin from Monash University Australia presented a paper Particle Paths in a Schwarzshild Spacetime via. -
The Initial Data Problem for 3+1 Numerical Relativity Part 2
The initial data problem for 3+1 numerical relativity Part 2 Eric Gourgoulhon Laboratoire Univers et Th´eories (LUTH) CNRS / Observatoire de Paris / Universit´eParis Diderot F-92190 Meudon, France [email protected] http://www.luth.obspm.fr/∼luthier/gourgoulhon/ 2008 International Summer School on Computational Methods in Gravitation and Astrophysics Asia Pacific Center for Theoretical Physics, Pohang, Korea 28 July - 1 August 2008 Eric Gourgoulhon (LUTH) Initial data problem 2 / 2 APCTP School, 31 July 2008 1 / 41 Plan 1 Helical symmetry for binary systems 2 Initial data for orbiting binary black holes 3 Initial data for orbiting binary neutron stars 4 Initial data for orbiting black hole - neutron star systems 5 References for lectures 1-3 Eric Gourgoulhon (LUTH) Initial data problem 2 / 2 APCTP School, 31 July 2008 2 / 41 Helical symmetry for binary systems Outline 1 Helical symmetry for binary systems 2 Initial data for orbiting binary black holes 3 Initial data for orbiting binary neutron stars 4 Initial data for orbiting black hole - neutron star systems 5 References for lectures 1-3 Eric Gourgoulhon (LUTH) Initial data problem 2 / 2 APCTP School, 31 July 2008 3 / 41 Helical symmetry for binary systems Helical symmetry for binary systems Physical assumption: when the two objects are sufficiently far apart, the radiation reaction can be neglected ⇒ closed orbits Gravitational radiation reaction circularizes the orbits ⇒ circular orbits Geometrical translation: spacetime possesses some helical symmetry Helical Killing vector ξ: -
3+1 Formalism and Bases of Numerical Relativity
3+1 Formalism and Bases of Numerical Relativity Lecture notes Eric´ Gourgoulhon Laboratoire Univers et Th´eories, UMR 8102 du C.N.R.S., Observatoire de Paris, Universit´eParis 7 arXiv:gr-qc/0703035v1 6 Mar 2007 F-92195 Meudon Cedex, France [email protected] 6 March 2007 2 Contents 1 Introduction 11 2 Geometry of hypersurfaces 15 2.1 Introduction.................................... 15 2.2 Frameworkandnotations . .... 15 2.2.1 Spacetimeandtensorfields . 15 2.2.2 Scalar products and metric duality . ...... 16 2.2.3 Curvaturetensor ............................... 18 2.3 Hypersurfaceembeddedinspacetime . ........ 19 2.3.1 Definition .................................... 19 2.3.2 Normalvector ................................. 21 2.3.3 Intrinsiccurvature . 22 2.3.4 Extrinsiccurvature. 23 2.3.5 Examples: surfaces embedded in the Euclidean space R3 .......... 24 2.4 Spacelikehypersurface . ...... 28 2.4.1 Theorthogonalprojector . 29 2.4.2 Relation between K and n ......................... 31 ∇ 2.4.3 Links between the and D connections. .. .. .. .. .. 32 ∇ 2.5 Gauss-Codazzirelations . ...... 34 2.5.1 Gaussrelation ................................. 34 2.5.2 Codazzirelation ............................... 36 3 Geometry of foliations 39 3.1 Introduction.................................... 39 3.2 Globally hyperbolic spacetimes and foliations . ............. 39 3.2.1 Globally hyperbolic spacetimes . ...... 39 3.2.2 Definition of a foliation . 40 3.3 Foliationkinematics .. .. .. .. .. .. .. .. ..... 41 3.3.1 Lapsefunction ................................. 41 3.3.2 Normal evolution vector . 42 3.3.3 Eulerianobservers ............................. 42 3.3.4 Gradients of n and m ............................. 44 3.3.5 Evolution of the 3-metric . 45 4 CONTENTS 3.3.6 Evolution of the orthogonal projector . ....... 46 3.4 Last part of the 3+1 decomposition of the Riemann tensor . -