The initial data problem for 3+1 numerical relativity Part 2 Eric Gourgoulhon Laboratoire Univers et Th´eories (LUTH) CNRS / Observatoire de Paris / Universit´eParis Diderot F-92190 Meudon, France
[email protected] http://www.luth.obspm.fr/∼luthier/gourgoulhon/ 2008 International Summer School on Computational Methods in Gravitation and Astrophysics Asia Pacific Center for Theoretical Physics, Pohang, Korea 28 July - 1 August 2008 Eric Gourgoulhon (LUTH) Initial data problem 2 / 2 APCTP School, 31 July 2008 1 / 41 Plan 1 Helical symmetry for binary systems 2 Initial data for orbiting binary black holes 3 Initial data for orbiting binary neutron stars 4 Initial data for orbiting black hole - neutron star systems 5 References for lectures 1-3 Eric Gourgoulhon (LUTH) Initial data problem 2 / 2 APCTP School, 31 July 2008 2 / 41 Helical symmetry for binary systems Outline 1 Helical symmetry for binary systems 2 Initial data for orbiting binary black holes 3 Initial data for orbiting binary neutron stars 4 Initial data for orbiting black hole - neutron star systems 5 References for lectures 1-3 Eric Gourgoulhon (LUTH) Initial data problem 2 / 2 APCTP School, 31 July 2008 3 / 41 Helical symmetry for binary systems Helical symmetry for binary systems Physical assumption: when the two objects are sufficiently far apart, the radiation reaction can be neglected ⇒ closed orbits Gravitational radiation reaction circularizes the orbits ⇒ circular orbits Geometrical translation: spacetime possesses some helical symmetry Helical Killing vector ξ: