Appendix a NOP Distribution List, Scoping Comments, and Index
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Legenere Limosa (Legenere)
7. LEGENERE LIMOSA (LEGENERE) a. Description and Taxonomy Taxonomy.—Greene (1890) originally published the scientific name Howellia limosa for legenere. He gave the type locality only as “the lower Sacramento” (Greene 1890:81). Based on label information from Greene’s collections, the type locality has been further described as “Fields of the lower Sacramento Valley near Elmira, Solano County, California” (McVaugh 1943:14). McVaugh (1943) determined that this species differed sufficiently from Howellia to be transferred to a new genus, Legenere. Thus, the currently accepted name for this species is Legenere limosa. Legenere is the only species in its genus (Morin 1993), which is in the bellflower family (Campanulaceae). Another common name for this species is Greene’s legenere (Morin and Niehaus 1977, Holland 1984). Description and Identification.—Legenere limosa is an inconspicuous annual. The entire plant is hairless. The main stems are 10 to 30 centimeters (3.9 to 11.8 inches) long and decumbent, although any branches are erect. Extra roots often arise from the lower nodes. The leaves, which are produced underwater, are 1 to 3 centimeters (0.4 to 1.2 inches) long and narrowly triangular; they fall off the plant before flowers appear. The egg-shaped or oval bracts are 6 to 12 millimeters (0.24 to 0.47 inch) long and remain throughout the flowering period. A single flower arises above each bract. Legenere limosa flowers may or may not have corollas, and a single plant can produce both types of flowers. When present, the corollas are white or yellowish, 3.5 to 4 millimeters (0.14 to 0.16 inch) long, and two-lipped. -
Mcgrath State Beach Plants 2/14/2005 7:53 PM Vascular Plants of Mcgrath State Beach, Ventura County, California by David L
Vascular Plants of McGrath State Beach, Ventura County, California By David L. Magney Scientific Name Common Name Habit Family Abronia maritima Red Sand-verbena PH Nyctaginaceae Abronia umbellata Beach Sand-verbena PH Nyctaginaceae Allenrolfea occidentalis Iodinebush S Chenopodiaceae Amaranthus albus * Prostrate Pigweed AH Amaranthaceae Amblyopappus pusillus Dwarf Coastweed PH Asteraceae Ambrosia chamissonis Beach-bur S Asteraceae Ambrosia psilostachya Western Ragweed PH Asteraceae Amsinckia spectabilis var. spectabilis Seaside Fiddleneck AH Boraginaceae Anagallis arvensis * Scarlet Pimpernel AH Primulaceae Anemopsis californica Yerba Mansa PH Saururaceae Apium graveolens * Wild Celery PH Apiaceae Artemisia biennis Biennial Wormwood BH Asteraceae Artemisia californica California Sagebrush S Asteraceae Artemisia douglasiana Douglas' Sagewort PH Asteraceae Artemisia dracunculus Wormwood PH Asteraceae Artemisia tridentata ssp. tridentata Big Sagebrush S Asteraceae Arundo donax * Giant Reed PG Poaceae Aster subulatus var. ligulatus Annual Water Aster AH Asteraceae Astragalus pycnostachyus ssp. lanosissimus Ventura Marsh Milkvetch PH Fabaceae Atriplex californica California Saltbush PH Chenopodiaceae Atriplex lentiformis ssp. breweri Big Saltbush S Chenopodiaceae Atriplex patula ssp. hastata Arrowleaf Saltbush AH Chenopodiaceae Atriplex patula Spear Saltbush AH Chenopodiaceae Atriplex semibaccata Australian Saltbush PH Chenopodiaceae Atriplex triangularis Spearscale AH Chenopodiaceae Avena barbata * Slender Oat AG Poaceae Avena fatua * Wild -
Reclassification of North American Haplopappus (Compositae: Astereae) Completed: Rayjacksonia Gen
AmericanJournal of Botany 83(3): 356-370. 1996. RECLASSIFICATION OF NORTH AMERICAN HAPLOPAPPUS (COMPOSITAE: ASTEREAE) COMPLETED: RAYJACKSONIA GEN. NOV.1 MEREDITH A. LANE2 AND RONALD L. HARTMAN R. L. McGregor Herbarium(University of Kansas NaturalHistory Museum Division of Botany) and Departmentof Botany,University of Kansas, Lawrence, Kansas 66047-3729; and Rocky MountainHerbarium, Department of Botany,University of Wyoming,Laramie, Wyoming82071-3165 Rayjacksonia R. L. Hartman& M. A. Lane, gen. nov. (Compositae: Astereae), is named to accommodate the "phyllo- cephalus complex," formerlyof Haplopappus Cass. sect. Blepharodon DC. The new combinationsare R. phyllocephalus (DC.) R. L. Hartman& M. A. Lane, R. annua (Rydb.) R. L. Hartman& M. A. Lane, and R. aurea (A. Gray) R. L. Hartman & M. A. Lane. This transfercompletes the reclassificationof the North American species of Haplopappus sensu Hall, leaving that genus exclusively South American.Rayjacksonia has a base chromosomenumber of x = 6. Furthermore,it shares abruptlyampliate disk corollas, deltatedisk style-branchappendages, and corolla epidermalcell type,among other features,with Grindelia, Isocoma, Olivaea, Prionopsis, Stephanodoria, and Xanthocephalum.Phylogenetic analyses of morphologicaland chloroplastDNA restrictionsite data, taken together,demonstrate that these genera are closely related but distinct. Key words: Astereae; Asteraceae; Compositae; Haplopappus; Rayjacksonia. During the past seven decades, taxonomic application lopappus sensu Hall (1928) are reclassifiedand are cur- -
Nakedstem Sunray (Enceliopsis Nudicaulis [A. Gray] A. Nelson)
NAKEDSTEM SUNRAY Enceliopsis nudicaulis (A. Gray) A. Nelson Asteraceae – Aster family Corey L. Gucker and Nancy L. Shaw | 2020 ORGANIZATION NOMENCLATURE Nakedstem sunray (Enceliopsis nudicaulis) (A. Names, subtaxa, chromosome number(s), hybridization. Gray) A. Nelson belongs to the Ecliptinae subtribe and Heliantheae tribe within the Asteraceae family. Nomenclature follows Welsh et al. (2016). NRCS Plant Code. ENNU (USDA NRCS 2019). Range, habitat, plant associations, elevation, soils. Synonyms. Encelia nudicaulis A. Gray Common Names. Nakedstem sunray, Ash Life form, morphology, distinguishing characteristics, reproduction. Meadows sunray, nakedstem, naked-stemmed daisy, sunray (USFWS 1983; Curtis 2006; Welsh et al. 2016; USDA NRCS 2019). Growth rate, successional status, disturbance ecology, importance to Subtaxa. Some systematists (Cronquist 1972; animals/people. Welsh et al. 2016) recognize nakedstem sunray varieties: corrugata and bairdii, although others do not support varietal distinctions (Sanders and Current or potential uses in restoration. Clark 1987; Curtis 2006). Chromosome Number. Reported chromosome numbers include: 2n = 32, 34, and 36; but most Seed sourcing, wildland seed collection, seed cleaning, storage, consistently reported are 2n = 34 and 36 (Reveal testing and marketing standards. and Styer 1974; Hickman 1993; Curtis 2006; Welsh et al. 2016). Recommendations/guidelines for producing seed. Hybridization. The possibility of hybrids within the Enceliopsis genus have been suggested based on DNA evidence. Sequencing of two nuclear and two chloroplast regions suggests that a single Recommendations/guidelines for producing planting stock. plant collected from co-occurences of nakedstem sunray and Panamint daisy (E. covillei) in California may represent a hybrid or backcrossed individual (Fehlberg and Ranker 2007). Hybrids of nakedstem Recommendations/guidelines, wildland restoration successes/ failures. -
Site Locations and Description
April 29, 2019 11719 Amy Newby Director, Parks & Recreation City of San Carlos 600 Elm Street San Carlos, California 94070 Subject: Biological Resources Constraints Assessment for the City of San Carlos Fuel Management Project, San Carlos, San Mateo County, California Dear Ms. Newby: At the request of the City of San Carlos, Dudek conducted a biological constraints assessment for the proposed Fuel Management Project (project) that includes four distinct public parks in the City of San Carlos, San Mateo County, California: Big Canyon Park, Crestview Park, Eaton Park, and Highlands Park (Figures 1 and 2). The currently proposed project would entail a series of vegetation management activities that will abate hazardous vegetation in the four city parks. These parks are largely undeveloped with walking trails that intersect the landscape. Specific goals of the vegetation management project include the following: (1) conduct targeted fuel reduction treatments using hand crews, masticators, track chippers, herbicides, and herbivory to reduce highly combustible underbrush and chaparral within the defensible space zone of adjacent private ownerships, (2) create strategic fuel breaks using hand crews, masticators, track chippers, and herbivory to reduce highly combustible underbrush and chaparral along access roads and ridgelines, and (3) remove dead/diseased and non-native trees as part of a comprehensive fuel reduction effort. As part of the assessment, a reconnaissance-level field survey was conducted to identify and characterize existing biological conditions within the project site including the nature and extent of both common and sensitive natural vegetation communities, wetlands and other aquatic features potentially under the jurisdiction of state and federal resource agencies, and the potential for special-status plant and animal species to occur. -
Arizona Exotic and Native Plants That Are Toxic to Animals and Humans by Anthony Knight1 Photos by the Author Unless Otherwise Noted
Arizona Exotic and Native Plants that are Toxic to Animals and Humans by Anthony Knight1 Photos by the author unless otherwise noted. Introduction Larkspurs are most prevalent in pine and aspen forests. All larkspur species are toxic, especially the tall larkspur species A great diversity of native and exotic plants grow in Arizona, Delphinium barbeyi and D. glaucum. Respiratory failure and some of which if consumed in quantity by horses, livestock, death in cattle result from the action of neuromuscular- dogs, and even humans can cause a variety of symptoms blocking diterpenoid alkaloids like methyllycaconitine that including vomiting, diarrhea, liver failure, abortion, fetal present in all parts of the plant and especially in pre- deformity, and death. flowering. Plants contain a wide variety of chemical compounds many of Over 70 species of locoweeds grow in Arizona. Most belong to which evolved to deter herbivores and insects from eating the the genus Astragalus, with two species in the genus Oxytropis. plant. With few exceptions plant poisoning only occurs when Astragalus is the largest genus of flowering plants in Arizona large quantities of the plant are consumed. In other words it is but not all are poisonous. Those that are poisonous attribute the quantity of the plant consumed that causes poisoning! their toxicity to an endophytic fungus growing within the Frequently poisoning of livestock and horses occurs when plant that produces the toxic alkaloid swainsonine. Other pastures or rangelands are overgrazed, when toxic plants are species of Astragalus can accumulate toxic levels of the incorporated in hay, or when animals are introduced to plants mineral selenium that is toxic to livestock and horses. -
3.10 Biological Resources
3.10 BIOLOGICAL RESOURCES 3.10.1 AFFECTED ENVIRONMENT Gold mining activities that consisted of dredging alluvial deposits occurred on the project site from historic times through 1962. The dredging operations significantly altered the natural landscape of the site by creating massive piles of tailings that cover extensive portions of the site. These piles resulted in the creation of basins in between tailings that filled with water because of their low-lying locations on the landscape and because of mining-related manipulation of the site’s surface water and groundwater supplies. Further alterations to the natural landscape occurred when the site was used for development and testing of rocket engines. In recent years, large portions of the project site have been used mainly for grazing of livestock (horses and cattle). Reconnaissance-level surveys of the project site were conducted by EDAW biologists on December 13, 2004, and January 12 and 13, 2005. These surveys consisted of walking meandering transects throughout the project site. The purpose of the surveys was to characterize and map biological resources present on the project site in sufficient detail to support a determination of overall habitat quality. To provide a thorough characterization of the habitat types present, data were collected at 35 representative sampling points at the project site. Each habitat type present at the project site, as determined using aerial photographs, included at least one sampling point. At each sampling point the biologists surveyed an area within -
4.4 BIOLOGICAL RESOURCES 4.4.1 Regulatory Setting
Ascent Environmental Administrative Draft – For Internal Review and Deliberation Biological Resources 4.4 BIOLOGICAL RESOURCES This section describes the potential effects of the project on biological resources. This section also addresses biological resources known or with potential to occur in the project vicinity, including common vegetation and habitat types, sensitive plant communities, and special-status plant and animal species. The analysis includes a description of the existing environmental conditions, the methods used for assessment, the potential direct and indirect impacts of project implementation not included in the 2005 Subsequent Environmental Impact Report (SEIR) for the Hay Road Landfill Project (Solano County 2005), and mitigation measures recommended to address impacts determined to be significant or potentially significant. The data and documents reviewed in preparation of this analysis included: 2005 SEIR for the Hay Road Landfill Project (Solano County 2005); Burrowing Owl Habitat Assessment (ESA 2016a); California Tiger Salamander Habitat Assessment (ESA 2016b); Branchiopod Survey Report (ESA 2016c); Special-status Plant Survey Report (ESA 2016d); Organics Transload Facility Habitat Assessment (ESA 2017a); Hydro Flow Analysis (ESA 2017b); Contra Costa Goldfields Survey Report (ESA 2017c); Delta Green Ground Beetle Survey Report and Supplemental Habitat Assessment Report (Entomological Consulting Services, Ltd. 2016, 2018); reconnaissance-level survey of the project site conducted on August 7, 2017; records search and GIS query of the California Natural Diversity Database (CNDDB) within 5 miles of the project site (2018); California Native Plant Society (CNPS), Rare Plant Program database search of the Allendale, Dixon, Saxon, Elmira, Dozier, Liberty Island, Denverton, Birds Landing, and Rio Vista U.S. Geological Service 7.5-minute quadrangles (CNPS 2018); eBird online database of bird observations (eBird 2018); and aerial photographs of the project site and surrounding area. -
Asters of Yesteryear (Updated April 2018)
Asters of Yesteryear (Updated April 2018) About this Update: The document was originally posted in a shorter version, to accompany the brief article "Where Have all our Asters Gone?" in the Fall 2017 issue of Sego Lily. In that version it consisted simply of photos of a number of plants that had at some time been included in Aster but that no longer are, as per Flora of North America. In this version I have added names to the photos to indicate how they have changed since their original publication: Date and original name as published (Basionym) IF name used in Intermountain Flora (1994) UF name used in A Utah Flora (1983-2016) FNA name used in Flora of North America (2006) I have also added tables to show the renaming of two groups of species in the Astereae tribe as organized in Intermountain Flora. Color coding shows how splitting of the major genera largely follows fault lines already in place No color Renamed Bright Green Conserved Various Natural groupings $ Plant not in Utah It is noteworthy how few species retain the names used in 1994, but also how the renaming often follows patterns already observed. Asters of Yesteryear (Updated April 2018) Here are larger photos (16 inches wide or tall at normal screen resolution of 72 dpi) of the plants shown in Sego Lily of Fall 2017, arranged by date of original publication. None of them (except Aster amellus on this page) are now regarded as true asters – but they all were at one stage in their history. Now all are in different genera, most of them using names that were published over 100 years ago. -
And White Snakeroot (Ageratina Altissima) Under Different Storage Conditions
Evaluation of the Stability of Benzofuran Ketones in Rayless Goldenrod (Isocoma pluriflora) and White Snakeroot (Ageratina altissima) Under Different Storage Conditions Stephen T. Lee,* T. Zane Davis, and Daniel Cook USDA-ARS Poisonous Plant Research Laboratory, Logan, Utah, USA *Corresponding author: Stephen Lee, [email protected] Abstract White snakeroot (Ageratina altissima) and rayless goldenrod (Isocoma pluriflora) cause “trembles” and “milk sickness” in livestock and humans, respectively. The toxin in white snakeroot and rayless goldenrod was identified in 1927 and 1930, respectively, as tremetol. It was reported that the toxin in white snakeroot disappears as it is dried and that completely dried plants were incapable of producing “trembles” or “milk sickness.” However, it has been suggested that the toxins in rayless goldenrod were not degraded by drying and both fresh and dry plants are toxic. Later, tremetol isolated from white snakeroot and rayless goldenrod was determined to be a complex mixture containing various benzofuran ketones including tremetone 1, dehydrotremetone 2, and hydroxytremetone in white snakeroot and tremetone 1, dehydrotremetone 2, and 3- oxyangeloyltremetone 3 in rayless goldenrod. In this report, the stability of the benzofuran ketones in white snakeroot and rayless goldenrod was studied by measuring the concentrations of the benzofuran ketones in ground and in intact dried leaves stored at different temperatures over an approximately 6-year time period. Keywords: Ageratina altissima, dehydrotremetone, Eupatorium rugosum, Isocoma pluriflora, rayless goldenrod, tremetone, white snakeroot Introduction White snakeroot (Ageratina altissima (L.) R.M. posture as affected animals are reluctant to move and King & H. Rob. var. altissima) (family, Asteraceae) stand hunched up with a flexed back. -
Phylogeny of Hinterhubera, Novenia and Related
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae) Vesna Karaman Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Karaman, Vesna, "Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae)" (2006). LSU Doctoral Dissertations. 2200. https://digitalcommons.lsu.edu/gradschool_dissertations/2200 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. PHYLOGENY OF HINTERHUBERA, NOVENIA AND RELATED GENERA BASED ON THE NUCLEAR RIBOSOMAL (nr) DNA SEQUENCE DATA (ASTERACEAE: ASTEREAE) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Vesna Karaman B.S., University of Kiril and Metodij, 1992 M.S., University of Belgrade, 1997 May 2006 "Treat the earth well: it was not given to you by your parents, it was loaned to you by your children. We do not inherit the Earth from our Ancestors, we borrow it from our Children." Ancient Indian Proverb ii ACKNOWLEDGMENTS I am indebted to many people who have contributed to the work of this dissertation. -
Cramvernal Pool Endemics-Final.Pdf
Vernal Pool Systems and Individual Vernal Pools Version 6.1 APPENDIX 1 Vernal Pool Endemic Plant List Use this list to determine if a species is a vernal pool endemic Bsed on Appendix C from: T. Keeler-Wolf, D.R. Elam, K. Lewis, S.A. Flint. 1998. California Vernal Pool Assessment Preliminary Report. State of California, The Resources Agency, Department of Fish and Game. 161 pp. www.dfg.ca.gov/biogeodata/wetlands/pdfs/VernalPoolAssessmentPreliminaryReport.pdf May 2013 ! CRAM%Vernal%Pool%Endemic%Plants%List May%2013 Scientific%Name Family Genus Species infraspecific_rank %infraspecific_epithet Agrostis(elliottiana POACEAE Agrostis elliottiana Agrostis(hendersonii POACEAE Agrostis hendersonii Agrostis(microphylla POACEAE Agrostis microphylla Alopecurus(carolinianus POACEAE Alopecurus carolinianus Alopecurus(saccatus POACEAE Alopecurus saccatus Anagallis(minima MYRSINACEAE Anagallis minima Astragalus(tener(var.(ferrisiae FABACEAE Astragalus tener var. ferrisiae Astragalus(tener(var.(tener FABACEAE Astragalus tener var. tener Atriplex(cordulata CHENOPODIACEAE Atriplex cordulata Atriplex(cordulata(var.(cordulata CHENOPODIACEAE Atriplex cordulata var. cordulata Atriplex(cordulata(var.(erecticaulis CHENOPODIACEAE Atriplex cordulata var. erecticaulis Atriplex(depressa CHENOPODIACEAE Atriplex depressa Atriplex(minuscula CHENOPODIACEAE Atriplex minuscula Atriplex(parishii CHENOPODIACEAE Atriplex parishii Atriplex(persistens CHENOPODIACEAE Atriplex persistens Atriplex(subtilis CHENOPODIACEAE Atriplex subtilis Blennosperma(bakeri ASTERACEAE Blennosperma