Clinical Epidemiology

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Epidemiology 99781449674328_FMxx.indd781449674328_FMxx.indd PagePage i 06/01/1406/01/14 8:058:05 PMPM f-w-148f-w-148 //202/JB00094/work/indd/FM202/JB00094/work/indd/FM Clinical Epidemiology Principles, Methods, and Applications for Clinical Research Diederick E. Grobbee, MD, PhD Professor of Clinical Epidemiology SECOND EDITION Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht, The Netherlands Arno W. Hoes, MD, PhD Professor of Clinical Epidemiology Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht, The Netherlands 99781449674328_FMxx.indd781449674328_FMxx.indd PagePage iiii 06/01/1406/01/14 8:058:05 PMPM f-w-148f-w-148 //202/JB00094/work/indd/FM202/JB00094/work/indd/FM World Headquarters Jones & Bartlett Learning 5 Wall Street Burlington, MA 01803 978-443-5000 [email protected] www.jblearning.com Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com. Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional associations, and other qualifi ed organizations. For details and specifi c discount information, contact the special sales department at Jones & Bartlett Learning via the above contact information or send an email to [email protected]. Copyright © 2015 by Jones & Bartlett Learning, LLC, an Ascend Learning Company All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner. The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones & Bartlett Learning, LLC. Reference herein to any specifi c commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement or recommendation by Jones & Bartlett Learning, LLC and such reference shall not be used for advertising or product endorsement purposes. All trademarks displayed are the trademarks of the parties noted herein. Clinical Epidemiology: Principles, Methods, and Applications for Clinical Research, Second Edition is an independent publication and has not been authorized, sponsored, or otherwise approved by the owners of the trademarks or service marks referenced in this product. There may be images in this book that feature models; these models do not necessarily endorse, represent, or participate in the activities represented in the images. Any screenshots in this product are for educational and instructive purposes only. Any individuals and scenarios featured in the case studies throughout this product may be real or fi ctitious, but are used for instructional purposes only. This publication is designed to provide accurate and authoritative information in regard to the Subject Matter covered. It is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional service. If legal advice or other expert assistance is required, the service of a competent professional person should be sought. Production Credits Executive Publisher: William Brottmiller Composition: Cenveo Publisher Services Publisher: Michael Brown Cover Design: Scott Moden Associate Editor: Chloe Falivene Photo Research and Permissions Associate: Editorial Assistant: Nicholas Alakel Ashley Dos Santos Associate Production Editor: Rebekah Linga Cover Image: © Volta_ontwerpers, Utrecht Senior Marketing Manager: Sophie Fleck Teague Printing and Binding: Edwards Brothers Malloy Manufacturing and Inventory Control Supervisor: Cover Printing: Edwards Brothers Malloy Amy Bacus Library of Congress Cataloging-in-Publication Data Grobbee, D. E., author. Clinical Epidemiology: Principles, Methods, and Applications for Clinical Research / Diederick E. Grobbee and Arno W. Hoes.—Second edition. p. ; cm. Includes bibliographical references and index. ISBN 978-1-4496-7432-8 (pbk.) ISBN 1-4496-7432-1 (pbk.) I. Hoes, Arno W., author. II. Title. [DNLM: 1. Epidemiologic Methods. 2. Epidemiologic Factors. 3. Prognosis. WA 950] RA652.2.C55 614.4—dc23 2013030779 6048 Printed in the United States of America 18 17 16 15 14 10 9 8 7 6 5 4 3 2 1 99781449674328_FMxx.indd781449674328_FMxx.indd PagePage iiiiii 06/01/1406/01/14 8:058:05 PMPM f-w-148f-w-148 //202/JB00094/work/indd/FM202/JB00094/work/indd/FM DEDICATION To Sjoukje and Carin 99781449674328_FMxx.indd781449674328_FMxx.indd PagePage iviv 06/01/1406/01/14 8:058:05 PMPM f-w-148f-w-148 //202/JB00094/work/indd/FM202/JB00094/work/indd/FM 99781449674328_FMxx.indd781449674328_FMxx.indd PagePage v 09/01/1409/01/14 12:3512:35 AMAM f-w-148f-w-148 ~~/Desktop/ramesh/Desktop/ramesh CONTENTS Preface . xi Foreword . xiii The Julius Center . xv About the Authors . xvii Contributors . xix Acknowledgments . xxi Quick Start . xxiii PART 1 OVERVIEW 1 Chapter 1: Introduction to Clinical Epidemiology 3 Introduction . 3 Clinical Epidemiology . 4 Research Relevant to Patient Care . 6 Epidemiologic Study Design . 9 Design of Data Collection . 13 Design of Data Analysis . 14 Diagnostic, Etiologic, Prognostic, and Intervention Research . 14 Moving from Research to Practice: Validity, Relevance, and Generalizability . 24 PART 2 PRINCIPLES OF CLINICAL RESEARCH 29 Chapter 2: Diagnostic Research 31 Introduction . 31 Diagnosis in Clinical Practice . 31 From Diagnosis in Clinical Practice to Diagnostic Research . 37 Diagnostic Research versus Test Research . 40 Diagnostic Research . 46 Application of Study Results in Practice . 71 Worked-Out Example . 72 v 99781449674328_FMxx.indd781449674328_FMxx.indd PagePage vivi 09/01/1409/01/14 12:3512:35 AMAM f-w-148f-w-148 ~~/Desktop/ramesh/Desktop/ramesh vi CLINICAL EPIDEMIOLOGY Chapter 3: Etiologic Research 77 Introduction . 77 Etiologic Research in Epidemiology . 78 Theoretical Design . 80 Confounding . 81 Causality . 94 Modifi cation and Interaction . 96 Modifi ers and Confounders . 105 Design of Data Collection . 107 Common Etiologic Questions in Clinical Epidemiology . 111 Worked-Out Example . 112 Chapter 4: Prognostic Research 117 Introduction . 117 Prognosis in Clinical Practice . 117 Approaches to Prognostication . 120 Prognostication Is a Multivariable Process . 122 Added Prognostic Value . 123 From Prognosis in Clinical Practice to Prognostic Research . 124 The Predictive Nature of Prognostic Research . 126 Appraisal of Prevailing Prognostic Research . 128 Prognostic Research . 131 Bias in Prognostic Research . 138 Design of Data Analysis . 138 Worked-Out Example . 143 Conclusion . 150 Chapter 5: Intervention Research: Intended Eff ects 151 Introduction . 151 Intervention Effects . 153 Treatment Effect . 163 Comparability of Natural History . 164 Randomization . 168 Comparability of Extraneous Effects . 170 Comparability of Observations . 172 99781449674328_FMxx.indd781449674328_FMxx.indd PagePage viivii 09/01/1409/01/14 12:3512:35 AMAM f-w-148f-w-148 ~~/Desktop/ramesh/Desktop/ramesh CONTENTS vii Trial Limitations . 173 The Randomized Trial as a Paradigm for Etiologic Research . 179 Chapter 6: Intervention Research: Unintended Eff ects 181 Introduction . 181 Research on Unintended Effects of Interventions . 182 Studies on Unintended Effects of Interventions: Causal Research . 185 Type A and Type B Unintended Effects . 188 Other Unintended Effects . 190 Theoretical Design . 192 Design of Data Collection . 192 Comparability in Observational Research on Unintended Effects . 201 Methods Used to Limit Confounding . 204 Healthcare Databases as a Framework for Research on Unintended Effects of Interventions . 215 PART 3 TOOLS FOR CLINICAL RESEARCH 217 Chapter 7: Design of Data Collection 219 Introduction . 219 Time . 220 Census or Sampling . 221 Experimental or Observational Studies . 224 Taxonomy of Epidemiological Data Collection . 226 Chapter 8: Cohort and Cross-Sectional Studies 229 Introduction . 229 Timing of the Association Relative to the Timing of Data Collection . 230 Causal and Descriptive Cohort Studies . 232 Experimental.
Recommended publications
  • The Magic of Randomization Versus the Myth of Real-World Evidence
    The new england journal of medicine Sounding Board The Magic of Randomization versus the Myth of Real-World Evidence Rory Collins, F.R.S., Louise Bowman, M.D., F.R.C.P., Martin Landray, Ph.D., F.R.C.P., and Richard Peto, F.R.S. Nonrandomized observational analyses of large safety and efficacy because the potential biases electronic patient databases are being promoted with respect to both can be appreciable. For ex- as an alternative to randomized clinical trials as ample, the treatment that is being assessed may a source of “real-world evidence” about the effi- well have been provided more or less often to cacy and safety of new and existing treatments.1-3 patients who had an increased or decreased risk For drugs or procedures that are already being of various health outcomes. Indeed, that is what used widely, such observational studies may in- would be expected in medical practice, since both volve exposure of large numbers of patients. the severity of the disease being treated and the Consequently, they have the potential to detect presence of other conditions may well affect the rare adverse effects that cannot plausibly be at- choice of treatment (often in ways that cannot be tributed to bias, generally because the relative reliably quantified). Even when associations of risk is large (e.g., Reye’s syndrome associated various health outcomes with a particular treat- with the use of aspirin, or rhabdomyolysis as- ment remain statistically significant after adjust- sociated with the use of statin therapy).4 Non- ment for all the known differences between pa- randomized clinical observation may also suf- tients who received it and those who did not fice to detect large beneficial effects when good receive it, these adjusted associations may still outcomes would not otherwise be expected (e.g., reflect residual confounding because of differ- control of diabetic ketoacidosis with insulin treat- ences in factors that were assessed only incom- ment, or the rapid shrinking of tumors with pletely or not at all (and therefore could not be chemotherapy).
    [Show full text]
  • (Meta-Analyses of Observational Studies in Epidemiology) Checklist
    MOOSE (Meta-analyses Of Observational Studies in Epidemiology) Checklist A reporting checklist for Authors, Editors, and Reviewers of Meta-analyses of Observational Studies. You must report the page number in your manuscript where you consider each of the items listed in this checklist. If you have not included this information, either revise your manuscript accordingly before submitting or note N/A. Reporting Criteria Reported (Yes/No) Reported on Page No. Reporting of Background Problem definition Hypothesis statement Description of Study Outcome(s) Type of exposure or intervention used Type of study design used Study population Reporting of Search Strategy Qualifications of searchers (eg, librarians and investigators) Search strategy, including time period included in the synthesis and keywords Effort to include all available studies, including contact with authors Databases and registries searched Search software used, name and version, including special features used (eg, explosion) Use of hand searching (eg, reference lists of obtained articles) List of citations located and those excluded, including justification Method for addressing articles published in languages other than English Method of handling abstracts and unpublished studies Description of any contact with authors Reporting of Methods Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested Rationale for the selection and coding of data (eg, sound clinical principles or convenience) Documentation of how data were classified
    [Show full text]
  • Quasi-Experimental Studies in the Fields of Infection Control and Antibiotic Resistance, Ten Years Later: a Systematic Review
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Infect Control Manuscript Author Hosp Epidemiol Manuscript Author . Author manuscript; available in PMC 2019 November 12. Published in final edited form as: Infect Control Hosp Epidemiol. 2018 February ; 39(2): 170–176. doi:10.1017/ice.2017.296. Quasi-experimental Studies in the Fields of Infection Control and Antibiotic Resistance, Ten Years Later: A Systematic Review Rotana Alsaggaf, MS, Lyndsay M. O’Hara, PhD, MPH, Kristen A. Stafford, PhD, MPH, Surbhi Leekha, MBBS, MPH, Anthony D. Harris, MD, MPH, CDC Prevention Epicenters Program Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland. Abstract OBJECTIVE.—A systematic review of quasi-experimental studies in the field of infectious diseases was published in 2005. The aim of this study was to assess improvements in the design and reporting of quasi-experiments 10 years after the initial review. We also aimed to report the statistical methods used to analyze quasi-experimental data. DESIGN.—Systematic review of articles published from January 1, 2013, to December 31, 2014, in 4 major infectious disease journals. METHODS.—Quasi-experimental studies focused on infection control and antibiotic resistance were identified and classified based on 4 criteria: (1) type of quasi-experimental design used, (2) justification of the use of the design, (3) use of correct nomenclature to describe the design, and (4) statistical methods used. RESULTS.—Of 2,600 articles, 173 (7%) featured a quasi-experimental design, compared to 73 of 2,320 articles (3%) in the previous review (P<.01). Moreover, 21 articles (12%) utilized a study design with a control group; 6 (3.5%) justified the use of a quasi-experimental design; and 68 (39%) identified their design using the correct nomenclature.
    [Show full text]
  • Epidemiology and Biostatistics (EPBI) 1
    Epidemiology and Biostatistics (EPBI) 1 Epidemiology and Biostatistics (EPBI) Courses EPBI 2219. Biostatistics and Public Health. 3 Credit Hours. This course is designed to provide students with a solid background in applied biostatistics in the field of public health. Specifically, the course includes an introduction to the application of biostatistics and a discussion of key statistical tests. Appropriate techniques to measure the extent of disease, the development of disease, and comparisons between groups in terms of the extent and development of disease are discussed. Techniques for summarizing data collected in samples are presented along with limited discussion of probability theory. Procedures for estimation and hypothesis testing are presented for means, for proportions, and for comparisons of means and proportions in two or more groups. Multivariable statistical methods are introduced but not covered extensively in this undergraduate course. Public Health majors, minors or students studying in the Public Health concentration must complete this course with a C or better. Level Registration Restrictions: May not be enrolled in one of the following Levels: Graduate. Repeatability: This course may not be repeated for additional credits. EPBI 2301. Public Health without Borders. 3 Credit Hours. Public Health without Borders is a course that will introduce you to the world of disease detectives to solve public health challenges in glocal (i.e., global and local) communities. You will learn about conducting disease investigations to support public health actions relevant to affected populations. You will discover what it takes to become a field epidemiologist through hands-on activities focused on promoting health and preventing disease in diverse populations across the globe.
    [Show full text]
  • Certification Accredited Schools List
    = Academic Clinical Research Programs Which Currently Meet Waiver Requirements for the Academy of Clinical Research Professional (Updated October 15, 2015) This list includes academic clinical research programs which, as of the above date, have been evaluated and found to meet the current waiver requirements established by the Academy of Clinical Research Professionals (Academy) Board of Trustees. Programs that meet the waiver requirements allow a candidate to waive 1,500 hours of hands-on experience performing the Essential Duties of the program to which the candidate has made application. This list is not to be considered exhaustive and is not designed to represent all the academic offerings available. Appearance on this list is not to be construed as an endorsement of its content or format by the Academy or a guarantee that a candidate will be eligible for certification. All individuals interested in enrolling in a program of study should evaluate any program on the basis of his or her personal needs. (* - programs marked with an asterisk MAY be accepted but acceptance will be dependent on the complete listing of courses completed) Individuals seeking additional information about each program should contact the institution directly. Academic Institution Program Name ( Click Title for Web Navigation) Academy of Applied Pharmaceutical Sciences Clinical Research Diploma Program American University of Health Sciences Master of Science in Clinical Research Anoka-Ramsey Community College Clinical Research Professional - Certificate Graduate
    [Show full text]
  • Placebo-Controlled Trials of New Drugs: Ethical Considerations
    Reviews/Commentaries/Position Statements COMMENTARY Placebo-Controlled Trials of New Drugs: Ethical Considerations DAVID ORENTLICHER, MD, JD als, placebo controls are not appropriate when patients’ health would be placed at significant risk (8–10). A placebo- controlled study for a new hair- uch controversy exists regarding sufficiently more effective than placebo to thickening agent could be justified; a the ethics of placebo-controlled justify its use. Finally, not all established placebo-controlled study for patients M trials in which an experimental therapies have been shown to be superior with moderate or severe hypertension therapy will compete with an already es- to placebo. If newer drugs are compared would not be acceptable (11). Similarly, if tablished treatment (or treatments). In with the unproven existing therapies, an illness causes problems when it goes such cases, argue critics, patients in the then patients may continue to receive untreated for a long period of time, a 52- control arm of the study should receive an drugs that are harmful without being week study with a placebo control is accepted therapy rather than a placebo. helpful. much more difficult to justify than a By using an active and effective drug, the Moreover, say proponents of placebo 6-week study (12). control patients would not be placed at controls, patients can be protected from When David S.H. Bell (13) explains risk for deterioration of their disease, and harm by “escape” criteria, which call for why placebo controls are unacceptable the study would generate more meaning- withdrawal from the trial if the patient for new drugs to treat type 2 diabetes, he ful results for physicians.
    [Show full text]
  • Generating Real-World Evidence by Strengthening Real-World Data Sources
    Generating Real-World Evidence by Strengthening Real-World Data Sources Using “real-world evidence” to bring new “Every day, health care professionals are updating patients’ treatments to patients as part of the 21st electronic health records with data on clinical outcomes Century Cures Act (the “Cures Act”) is a key resulting from medical interventions used in routine clinical priority for the Department of Health and practice. As our experience with new medical products Human Services (HHS). Specifically, the Cures expands, our knowledge about how to best maximize their Act places focus on the use of real-world data benefits and minimize potential risks sharpens with each data to support regulatory decision-making, including point we gather. Every clinical use of a product produces data the approval of new indications for existing that can help better inform us about its safety and efficacy.” drugs in order to make drug development faster jacqueline corrigan-curay, md, jd and more efficient. As such, the Cures Act director of the office of medical policy in fda’s center for drug evaluation and research has tasked the Food and Drug Administration (FDA) to develop a framework and guidance for evaluating real-world evidence in the context of drug regulation.1 Under the FDA’s framework, real-world evidence (RWE) is generated by different study designs or analyses, including but not limited to, randomized trials like large simple trials, pragmatic trials, and observational studies. RWE is the clinical evidence about the use, potential benefits, and potential risks of a medical product based on an analysis of real-world data (RWD).
    [Show full text]
  • Guidelines for Reporting Meta-Epidemiological Methodology Research
    EBM Primer Evid Based Med: first published as 10.1136/ebmed-2017-110713 on 12 July 2017. Downloaded from Guidelines for reporting meta-epidemiological methodology research Mohammad Hassan Murad, Zhen Wang 10.1136/ebmed-2017-110713 Abstract The goal is generally broad but often focuses on exam- Published research should be reported to evidence users ining the impact of certain characteristics of clinical studies on the observed effect, describing the distribu- Evidence-Based Practice with clarity and transparency that facilitate optimal tion of research evidence in a specific setting, exam- Center, Mayo Clinic, Rochester, appraisal and use of evidence and allow replication Minnesota, USA by other researchers. Guidelines for such reporting ining heterogeneity and exploring its causes, identifying are available for several types of studies but not for and describing plausible biases and providing empirical meta-epidemiological methodology studies. Meta- evidence for hypothesised associations. Unlike classic Correspondence to: epidemiological studies adopt a systematic review epidemiology, the unit of analysis for meta-epidemio- Dr Mohammad Hassan Murad, or meta-analysis approach to examine the impact logical studies is a study, not a patient. The outcomes Evidence-based Practice Center, of certain characteristics of clinical studies on the of meta-epidemiological studies are usually not clinical Mayo Clinic, 200 First Street 6–8 observed effect and provide empirical evidence for outcomes. SW, Rochester, MN 55905, USA; hypothesised associations. The unit of analysis in meta- In this guide, we adapt the items used in the PRISMA murad. mohammad@ mayo. edu 9 epidemiological studies is a study, not a patient. The statement for reporting systematic reviews and outcomes of meta-epidemiological studies are usually meta-analysis to fit the setting of meta- epidemiological not clinical outcomes.
    [Show full text]
  • Studies of Staphylococcal Infections. I. Virulence of Staphy- Lococci and Characteristics of Infections in Embryonated Eggs * WILLIAM R
    Journal of Clinical Investigation Vol. 43, No. 11, 1964 Studies of Staphylococcal Infections. I. Virulence of Staphy- lococci and Characteristics of Infections in Embryonated Eggs * WILLIAM R. MCCABE t (From the Research Laboratory, West Side Veterans Administration Hospital, and the Department of Medicine, Research and Educational Hospitals, University of Illinois College of Medicine, Chicago, Ill.) Many of the determinants of the pathogenesis niques still require relatively large numbers of and course of staphylococcal infections remain staphylococci to produce infection (19). Fatal imprecisely defined (1, 2) despite their increas- systemic infections have been equally difficult to ing importance (3-10). Experimental infections produce in animals and have necessitated the in- in suitable laboratory animals have been of con- jection of 107 to 109 bacteria (20-23). A few siderable assistance in clarifying the role of host strains of staphylococci have been found that are defense mechanisms and specific bacterial virulence capable of producing lethal systemic infections factors with a variety of other infectious agents. with inocula of from 102 to 103 bacteria (24) and A sensitive experimental model would be of value have excited considerable interest (25-27). The in defining the importance of these factors in virulence of these strains apparently results from staphylococcal infections, but both humans and an unusual antigenic variation (27, 28) which, the usual laboratory animals are relatively re- despite its interest, is of doubtful significance in sistant. Extremely large numbers of staphylo- human staphylococcal infection, since such strains cocci are required to produce either local or sys- have been isolated only rarely from clinical in- temic infections experimentally.
    [Show full text]
  • Simple Linear Regression: Straight Line Regression Between an Outcome Variable (Y ) and a Single Explanatory Or Predictor Variable (X)
    1 Introduction to Regression \Regression" is a generic term for statistical methods that attempt to fit a model to data, in order to quantify the relationship between the dependent (outcome) variable and the predictor (independent) variable(s). Assuming it fits the data reasonable well, the estimated model may then be used either to merely describe the relationship between the two groups of variables (explanatory), or to predict new values (prediction). There are many types of regression models, here are a few most common to epidemiology: Simple Linear Regression: Straight line regression between an outcome variable (Y ) and a single explanatory or predictor variable (X). E(Y ) = α + β × X Multiple Linear Regression: Same as Simple Linear Regression, but now with possibly multiple explanatory or predictor variables. E(Y ) = α + β1 × X1 + β2 × X2 + β3 × X3 + ::: A special case is polynomial regression. 2 3 E(Y ) = α + β1 × X + β2 × X + β3 × X + ::: Generalized Linear Model: Same as Multiple Linear Regression, but with a possibly transformed Y variable. This introduces considerable flexibil- ity, as non-linear and non-normal situations can be easily handled. G(E(Y )) = α + β1 × X1 + β2 × X2 + β3 × X3 + ::: In general, the transformation function G(Y ) can take any form, but a few forms are especially common: • Taking G(Y ) = logit(Y ) describes a logistic regression model: E(Y ) log( ) = α + β × X + β × X + β × X + ::: 1 − E(Y ) 1 1 2 2 3 3 2 • Taking G(Y ) = log(Y ) is also very common, leading to Poisson regression for count data, and other so called \log-linear" models.
    [Show full text]
  • Using Real-World Evidence to Accelerate Safe and Effective Cures Advancing Medical Innovation for a Healthier America June 2016 Leadership Senator William H
    Using Real-World Evidence to Accelerate Safe and Effective Cures Advancing Medical Innovation for a Healthier America June 2016 Leadership Senator William H. Frist, MD Former U.S. Senate Majority Leader Chair, FDA: Advancing Medical Innovation Bipartisan Policy Center Representative Bart Gordon Former Member, U.S. House of Representatives Chair, FDA: Advancing Medical Innovation Bipartisan Policy Center Advisory Committee Marc M. Boutin, JD Chief Executive Officer National Health Council Mark McClellan, MD, PhD Director, Robert J. Margolis Center for Health Policy Duke University Patrick Soon-Shiong, MD Chairman and Chief Executive Officer Institute for Advanced Health Andrew von Eschenbach, MD President Samaritan Health Initiatives 1 Sta G. William Hoagland Ann Gordon Senior Vice President Writer Bipartisan Policy Center Michael Ibara, PharmD Janet M. Marchibroda Independent Consultant Director, Health Innovation Initiative and Executive Director, CEO Council on Health and Innovation Bipartisan Policy Center Tim Swope Senior Policy Analyst Bipartisan Policy Center Sam Watters Administrative Assistant Bipartisan Policy Center 2 FDA: ADVANCING MEDICAL INNOVATION EFFORT The Bipartisan Policy Center’s initiative, FDA: Advancing Medical Innovation, is developing viable policy options to advance medical innovation and reduce the time and cost associated with the discovery, development, and delivery of safe and effective drugs and devices for patients in the United States. Key areas of focus include the following: Improving the medical product development process; Increasing regulatory clarity; Strengthening the Food and Drug Administration’s (FDA) ability to carry out its mission; Using information technology to improve health and health care; and Increasing investment in medical products to address unmet and public health needs.
    [Show full text]
  • Short List of Commonly Used Acronyms in Clinical Research
    Short List of Commonly Used Acronyms in Clinical Research ACRP Association of Clinical Research Professionals AE Adverse Event ADR Adverse Drug Reaction AMA American Medical Association BAA Business Associate Agreement BIND Biological IND CA Coverage Analysis CAP College of American Pathologists CBCTN Community Based Clinical Trials Network CCRA Certified Clinical Research Associate (ACRP) CCRC Certified Clinical Research Coordinator (ACRP) CCRT Center for Clinical Research & Technology CCRP Certified Clinical Research Professional (SoCRA) CDA Confidential Disclosure Agreement CDC Center for Disease Control CFR Code of Federal Regulations CIRBI Center for IRB Intelligence CITI Collaborative Institutional Training Initiative CLIA Clinical Laboratory Improvement Amendments CME Continuing Medical Education CMS Central Management System COI Conflict of Interest CRA Clinical Research Associate CRC Clinical Research Coordinator CREC Continuing Research Education Credit CRF Case Report Form CRO Clinical Research Organization CTA Clinical Trial Agreement CTSC Clinical & Translational Science Collaborative CV Curriculum Vitae DCF Data Correction Form / Data Clarification Form DEA Drug Enforcement Agency (law enforcement division of FDA) DHHS Department of Health and Human Services DOS Date of Service DSMB or Data and Safety Monitoring Board (Plan or Committee) DSMP/C EAB Ethical Advisory Board (similar to IRB, used by other nations) EDC Electronic Data Capture FDA Food and Drug Administration FDA-482 Notice of Inspection FDA-483 Notice of Adverse
    [Show full text]