Studies of Staphylococcal Infections. I. Virulence of Staphy- Lococci and Characteristics of Infections in Embryonated Eggs * WILLIAM R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reproducibility, Replicability, and Generalization in the Social, Behavioral, and Economic Sciences
REPRODUCIBILITY, REPLICABILITY, AND GENERALIZATION IN THE SOCIAL, BEHAVIORAL, AND ECONOMIC SCIENCES Report of the Subcommittee on Replicability in Science of the SBE Advisory Committee to the National Science Foundation 13 May 2015 Presentation at SBE AC Spring Meeting by K. Bollen. Report of the Subcommittee on Replicability in Science Advisory Committee to the NSF SBE Directorate Subcommittee Members: Kenneth Bollen (University of North Carolina at Chapel Hill, Cochair) John T. Cacioppo (University of Chicago, Cochair) Robert M. Kaplan (Agency for Healthcare Research and Quality) Jon A. Krosnick (Stanford University) James L. Olds (George Mason University) Staff Assistance Heather Dean (National Science Foundation) TOPICS I. Background II. Subcommittee Report III. Definitions IV. Recommendations V. Final Comments Background • Spring, 2013 o NSF SBE Advisory Committee establishes subcommittee on how SBE can promote robust research practices • Summer & Fall 2013 o Subcommittee proposal for workshop on “Robust Research in the Social, Behavioral, and Economic Sciences.” • February 20-21, 2014 o Workshop convened o Participants drawn from variety of universities, funding agencies, scientific associations, and journals o Cover broad range of issues from extent and cause of problems to possible solutions o Details are in the appendix of the circulated report • Post-workshop period o Document & digest workshop content o Discuss and propose recommendations o Complete report Subcommittee Report • DEFINITIONS o No consensus in science on the meanings -
The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections
toxins Review The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections Patience Shumba 1, Srikanth Mairpady Shambat 2 and Nikolai Siemens 1,* 1 Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, University of Greifswald, D-17489 Greifswald, Germany; [email protected] 2 Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +49-3834-420-5711 Received: 20 May 2019; Accepted: 10 June 2019; Published: 11 June 2019 Abstract: Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies. Keywords: Streptococcus pyogenes; group A streptococcus; Staphylococcus aureus; skin infections; necrotizing soft tissue infections; pore-forming toxins; superantigens; immunomodulatory proteases; immune responses Key Contribution: Group A streptococcal and Staphylococcus aureus toxins manipulate host physiological and immunological responses to promote disease severity and progression. 1. Introduction Necrotizing soft tissue infections (NSTIs) are rare and represent a more severe rapidly progressing form of soft tissue infections that account for significant morbidity and mortality [1]. -
Severe Orbital Cellulitis Complicating Facial Malignant Staphylococcal Infection
Open Access Austin Journal of Clinical Case Reports Case Report Severe Orbital Cellulitis Complicating Facial Malignant Staphylococcal Infection Chabbar Imane*, Serghini Louai, Ouazzani Bahia and Berraho Amina Abstract Ophthalmology B, Ibn-Sina University Hospital, Morocco Orbital cellulitis represents a major ophthalmological emergency. Malignant *Corresponding author: Imane Chabbar, staphylococcal infection of the face is a rare cause of orbital cellulitis. It is the Ophthalmology B, Ibn-Sina University Hospital, Morocco consequence of the infectious process extension to the orbital tissues with serious loco-regional and general complications. We report a case of a young diabetic Received: October 27, 2020; Accepted: November 12, child, presenting an inflammatory exophthalmos of the left eye with purulent 2020; Published: November 19, 2020 secretions with a history of manipulation of a facial boil followed by swelling of the left side of face, occurring in a febrile context. The ophthalmological examination showed preseptal and orbital cellulitis complicating malignant staphylococcal infection of the face. Orbito-cerebral CT scan showed a left orbital abscess with exophthalmos and left facial cellulitis. An urgent hospitalization and parenteral antibiotherapy was immediately started. Clinical improvement under treatment was noted without functional recovery. We emphasize the importance of early diagnosis and urgent treatment of orbital cellulitis before the stage of irreversible complications. Keywords: Orbital cellulitis, Malignant staphylococcal infection of the face, Management, Blindness Introduction cellulitis complicated by an orbital abscess with exophthalmos (Figure 2a, b), and left facial cellulitis with frontal purulent collection Malignant staphylococcal infection of the face is a serious skin (Figure 3a, b). disease. It can occur following a manipulation of a facial boil. -
Staphylococcal Infection Information for Daycare Facilities
Staphylococcal Infection Information for Daycare Facilities These guidelines are to help in developing a program to address managing children with methicillin-resistant Staphylococcus aureus (MRSA) infections and MRSA outbreaks specifically in the daycare setting. However, this information can be adapted to address the same problems in other settings and with almost all infectious diseases. Basic Information about MRSA The emergence of antibiotic resistant bacteria has become a significant public health concern. Due to the extensive use of antibiotics, the sharing of antibiotics, and/or the failure to complete a course of antibiotics, our current arsenal of antibiotics is becoming ineffective against common bacterial infections. Staphylococcus aureus (commonly referred to as “staph”) is a bacteria that can live on human skin of even the cleanest individuals. It can cause boils, wound infections, abscesses, cellulitis, impetigo, pneumonia, and even bloodstream infections. The Centers for Disease Control and Prevention estimate that 25-35% of children and adults in the United States have staph colonization— staph living on them, but not harming them. Staph like to live in the nose, groin, around the anus, armpits, finger tips, tracheostomy sites, wounds, and in the secretions of intubated patients. Staph spreads by direct skin-to-skin contact with an infected individual or a colonized individual or more rarely from objects contaminated by these individuals such as sheets soiled with infected wound drainage. Staph is not found in dirt or mud or carried through the air. The emergence of MRSA In the past, staph infections were easily treated with a short course of penicillin with very few complications. -
Certification Accredited Schools List
= Academic Clinical Research Programs Which Currently Meet Waiver Requirements for the Academy of Clinical Research Professional (Updated October 15, 2015) This list includes academic clinical research programs which, as of the above date, have been evaluated and found to meet the current waiver requirements established by the Academy of Clinical Research Professionals (Academy) Board of Trustees. Programs that meet the waiver requirements allow a candidate to waive 1,500 hours of hands-on experience performing the Essential Duties of the program to which the candidate has made application. This list is not to be considered exhaustive and is not designed to represent all the academic offerings available. Appearance on this list is not to be construed as an endorsement of its content or format by the Academy or a guarantee that a candidate will be eligible for certification. All individuals interested in enrolling in a program of study should evaluate any program on the basis of his or her personal needs. (* - programs marked with an asterisk MAY be accepted but acceptance will be dependent on the complete listing of courses completed) Individuals seeking additional information about each program should contact the institution directly. Academic Institution Program Name ( Click Title for Web Navigation) Academy of Applied Pharmaceutical Sciences Clinical Research Diploma Program American University of Health Sciences Master of Science in Clinical Research Anoka-Ramsey Community College Clinical Research Professional - Certificate Graduate -
Placebo-Controlled Trials of New Drugs: Ethical Considerations
Reviews/Commentaries/Position Statements COMMENTARY Placebo-Controlled Trials of New Drugs: Ethical Considerations DAVID ORENTLICHER, MD, JD als, placebo controls are not appropriate when patients’ health would be placed at significant risk (8–10). A placebo- controlled study for a new hair- uch controversy exists regarding sufficiently more effective than placebo to thickening agent could be justified; a the ethics of placebo-controlled justify its use. Finally, not all established placebo-controlled study for patients M trials in which an experimental therapies have been shown to be superior with moderate or severe hypertension therapy will compete with an already es- to placebo. If newer drugs are compared would not be acceptable (11). Similarly, if tablished treatment (or treatments). In with the unproven existing therapies, an illness causes problems when it goes such cases, argue critics, patients in the then patients may continue to receive untreated for a long period of time, a 52- control arm of the study should receive an drugs that are harmful without being week study with a placebo control is accepted therapy rather than a placebo. helpful. much more difficult to justify than a By using an active and effective drug, the Moreover, say proponents of placebo 6-week study (12). control patients would not be placed at controls, patients can be protected from When David S.H. Bell (13) explains risk for deterioration of their disease, and harm by “escape” criteria, which call for why placebo controls are unacceptable the study would generate more meaning- withdrawal from the trial if the patient for new drugs to treat type 2 diabetes, he ful results for physicians. -
Generating Real-World Evidence by Strengthening Real-World Data Sources
Generating Real-World Evidence by Strengthening Real-World Data Sources Using “real-world evidence” to bring new “Every day, health care professionals are updating patients’ treatments to patients as part of the 21st electronic health records with data on clinical outcomes Century Cures Act (the “Cures Act”) is a key resulting from medical interventions used in routine clinical priority for the Department of Health and practice. As our experience with new medical products Human Services (HHS). Specifically, the Cures expands, our knowledge about how to best maximize their Act places focus on the use of real-world data benefits and minimize potential risks sharpens with each data to support regulatory decision-making, including point we gather. Every clinical use of a product produces data the approval of new indications for existing that can help better inform us about its safety and efficacy.” drugs in order to make drug development faster jacqueline corrigan-curay, md, jd and more efficient. As such, the Cures Act director of the office of medical policy in fda’s center for drug evaluation and research has tasked the Food and Drug Administration (FDA) to develop a framework and guidance for evaluating real-world evidence in the context of drug regulation.1 Under the FDA’s framework, real-world evidence (RWE) is generated by different study designs or analyses, including but not limited to, randomized trials like large simple trials, pragmatic trials, and observational studies. RWE is the clinical evidence about the use, potential benefits, and potential risks of a medical product based on an analysis of real-world data (RWD). -
Evaluating Alternative Hypotheses to Explain the Downward Trend in the Indices of the COVID-19 Pandemic Death Rate
Evaluating alternative hypotheses to explain the downward trend in the indices of the COVID-19 pandemic death rate Sonali Shinde1, Pratima Ranade1 and Milind Watve2 1 Department of Biodiversity, Abasaheb Garware College, Pune, Pune, Maharashtra, India 2 Independent Researcher, Pune, Maharashtra, India ABSTRACT Background: In the ongoing Covid-19 pandemic, in the global data on the case fatality ratio (CFR) and other indices reflecting death rate, there is a consistent downward trend from mid-April to mid-November. The downward trend can be an illusion caused by biases and limitations of data or it could faithfully reflect a declining death rate. A variety of explanations for this trend are possible, but a systematic analysis of the testable predictions of the alternative hypotheses has not yet been attempted. Methodology: We state six testable alternative hypotheses, analyze their testable predictions using public domain data and evaluate their relative contributions to the downward trend. Results: We show that a decline in the death rate is real; changing age structure of the infected population and evolution of the virus towards reduced virulence are the most supported hypotheses and together contribute to major part of the trend. The testable predictions from other explanations including altered testing efficiency, time lag, improved treatment protocols and herd immunity are not consistently supported, or do not appear to make a major contribution to this trend although they may influence some other patterns of the epidemic. Conclusion: The fatality of the infection showed a robust declining time trend between mid April to mid November. Changing age class of the infected and Submitted 7 December 2020 Accepted 3 March 2021 decreasing virulence of the pathogen were found to be the strongest contributors to Published 20 April 2021 the trend. -
Metabolic Sensor Governing Bacterial Virulence in Staphylococcus Aureus
Metabolic sensor governing bacterial virulence in PNAS PLUS Staphylococcus aureus Yue Dinga, Xing Liub, Feifei Chena, Hongxia Dia, Bin Xua, Lu Zhouc, Xin Dengd,e, Min Wuf, Cai-Guang Yangb,1, and Lefu Lana,1 aDepartment of Molecular Pharmacology and bChinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; cDepartment of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China; dDepartment of Chemistry and eInstitute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637; and fDepartment of Basic Sciences University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203 Edited by Richard P. Novick, New York University School of Medicine, New York, NY, and approved October 14, 2014 (received for review June 13, 2014) An effective metabolism is essential to all living organisms, in- To survive and replicate efficiently in the host, S. aureus has cluding the important human pathogen Staphylococcus aureus.To developed exquisite mechanisms for scavenging nutrients and establish successful infection, S. aureus must scavenge nutrients adjusting its metabolism to maintain growth while also coping with and coordinate its metabolism for proliferation. Meanwhile, it also stress (6, 11). On the other hand, S. aureus produces a wide array must produce an array of virulence factors to interfere with host of virulence factors to evade host immune defenses and to derive defenses. However, the ways in which S. aureus ties its metabolic nutrition either parasitically or destructively from the host during state to its virulence regulation remain largely unknown. Here we infections (6). -
Principles of Validation of Diagnostic Assays for Infectious Diseases1
PRINCIPLES OF VALIDATION OF DIAGNOSTIC ASSAYS FOR INFECTIOUS DISEASES1 R. H. JACOBSON, New York State College of Veterinary Medicine, Cornell University, Ithaca, New York, USA Abstract PRINCIPLES OF VALIDATION OF DIAGNOSTIC ASSAYS FOR INFECTIOUS DISEASES. Assay validation requires a series of inter-related processes. Assay validation is an experimental process: reagents and protocols are optimized by experimentation to detect the analyte with accuracy and precision. Assay validation is a relative process: its diagnostic sensitivity and diagnostic specificity are calculated relative to test results obtained from reference animal populations of known infection/exposure status. Assay validation is a conditional process: classification of animals in the target population as infected or uninfected is conditional upon how well the reference animal population used to validate the assay represents the target population; accurate predictions of the infection status of animals from test results (PV+ and PV−) are conditional upon the estimated prevalence of disease/infection in the target population. Assay validation is an incremental process: confidence in the validity of an assay increases over time when use confirms that it is robust as demonstrated by accurate and precise results; the assay may also achieve increasing levels of validity as it is upgraded and extended by adding reference populations of known infection status. Assay validation is a continuous process: the assay remains valid only insofar as it continues to provide accurate and precise results as proven through statistical verification. Therefore, the work required for validation of diagnostic assays for infectious diseases does not end with a time-limited series of experiments based on a few reference samples rather, to assure valid test results from an assay requires constant vigilance and maintenance of the assay, along with reassessment of its performance characteristics for each unique population of animals to which it is applied. -
New NIH Guidelines to Improve Experimental Rigor and Reproducibility
New NIH guidelines to improve Experimental Rigor and Reproducibility Oswald Steward Professor, Department of Anatomy & Neurobiology Senior Associate Dean for Research University of California School of Medicine What I’ll tell you 1) Background: Increasing reports of failures to replicate 2) Previous actions by NIH to enhance rigor 3) New requirements for grants submitted after January 2016 4) What NIH will be looking for in new required sections 5) Some suggested best practices to meet new standards for scientific rigor • The Problem: Numerous recent reports of findings that can’t be replicated. Failure to replicate key results from preclinical cancer studies: 1) Prinz et al. (2011) Believe it or not: How much can we rely on published data on potential drug targets? Nature Reviews Drug Discovery. Inconsistencies were found in 2/3 studies 2) Begley and Ellis (2012) Raise standards for preclinical cancer research. Nature. Only 6/53 “landmark” papers replicated 3) Begley (2013) Six red flags for suspect work. Nature. -Were experiments performed blinded? -Were basic experiments repeated? -Were all the results presented? -Were there positive and negative controls? -Were reagents validated? -Were statistical tests appropriate? • In ALS field, Scott et al., (2008) re-assessed 70 drugs that had been reported to increase lifespan in an animal model of ALS (SOD1-G93A knockout mice). • 221 separate studies were carried out over a five year period that involved over 18,000 mice. • Some drugs were already in clinical trials. • Outcome: There was no statistically significant positive effect for any of the 70 compounds tested. • Conclusion: Previously published effects were measurements of noise in the distribution of survival means as opposed to an actual drug effect. -
Virulence During Newcastle Disease Viruses Cross Species Adaptation
viruses Review Virulence during Newcastle Disease Viruses Cross Species Adaptation Claudio L. Afonso Base2bio, LLC, Oshkosh, WI 54905, USA; [email protected]; Tel.: +1-800-817-7160 Abstract: The hypothesis that host adaptation in virulent Newcastle disease viruses (NDV) has been accompanied by virulence modulation is reviewed here. Historical records, experimental data, and phylogenetic analyses from available GenBank sequences suggest that currently circulating NDVs emerged in the 1920–19400s from low virulence viruses by mutation at the fusion protein cleavage site. These viruses later gave rise to multiple virulent genotypes by modulating virulence in opposite directions. Phylogenetic and pathotyping studies demonstrate that older virulent NDVs further evolved into chicken-adapted genotypes by increasing virulence (velogenic-viscerotropic pathotypes with intracerebral pathogenicity indexes [ICPIs] of 1.6 to 2), or into cormorant-adapted NDVs by moderating virulence (velogenic–neurotropic pathotypes with ICPIs of 1.4 to 1.6), or into pigeon-adapted viruses by further attenuating virulence (mesogenic pathotypes with ICPIs of 0.9 to 1.4). Pathogenesis and transmission experiments on adult chickens demonstrate that chicken-adapted velogenic-viscerotropic viruses are more capable of causing disease than older velogenic-neurotropic viruses. Currently circulating velogenic–viscerotropic viruses are also more capable of replicating and of being transmitted in naïve chickens than viruses from cormorants and pigeons. These evolutionary virulence changes are consistent with theories that predict that virulence may evolve in many directions in order to achieve maximum fitness, as determined by genetic and ecologic constraints. Keywords: NDV; evolution; virulence; host adaptation Citation: Afonso, C.L. Virulence during Newcastle Disease Viruses Cross Species Adaptation.