Hymenoptera: Braconidae) in a Guild of Parasitoids Attacking Anastrepha Fraterculus (Diptera: Tephritidae) in Northwestern Argentina

Total Page:16

File Type:pdf, Size:1020Kb

Hymenoptera: Braconidae) in a Guild of Parasitoids Attacking Anastrepha Fraterculus (Diptera: Tephritidae) in Northwestern Argentina View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital 410 Florida Entomologist 90(2) June 2007 PRESENCE OF DIACHASMIMORPHA LONGICAUDATA (HYMENOPTERA: BRACONIDAE) IN A GUILD OF PARASITOIDS ATTACKING ANASTREPHA FRATERCULUS (DIPTERA: TEPHRITIDAE) IN NORTHWESTERN ARGENTINA LUIS E. OROÑO AND SERGIO M. OVRUSKI PROIMI-Biotecnología, División Control Biológico de Plagas, Av. Belgrano y Pje. Caseros T4001MVB San Miguel de Tucumán, Tucumán, Argentina The braconid Diachasmimorpha longicaudata rainforest (locally known as “Las Yungas forest”) (Ashmead) is a fruit fly parasitoid native to the (Cabrera 1976). Climate is defined as temperate- Indo-Pacific region, which has been widely dis- hot humid with a summer rainy season (Dec seminated into America via Hawaii (Ovruski et through Mar), winter dry season, and annual al. 2000). It was used in augmentative release rainfall varies from 259 to 1,947 mm. The temper- programs against Anastrepha suspensa (Loew) in ature of the warmest month is >22°C with a mean the United States of America (Florida state) (Siv- annual temperature of 18°C. inski et al. 1996), against Anastrepha ludens The fruit samples consisted of fallen ripe fruit (Loew) and Anastrepha obliqua (Macquart) in (80%) and ripe fruit still on the tree (20%). In the Mexico (Montoya et al. 2000), and against Anas- laboratory, all fruits in the sample were weighed trepha fraterculus (Wiedemann) and Ceratitis and rinsed with a 20% solution of sodium ben- capitata (Wiedemann) in Brazil (Carvalho 2005). zoate, and each fruit was placed in a plastic glass In Mexico, this exotic parasitoid is currently a (250 cm3) with damp sand in the bottom as a pu- common parasitoid species of Anastrepha larvae, pation substrate for fly larvae. Pupae were re- particularly in exotic commercial fruit in the moved weekly and the A. fraterculus and C. capi- state of Veracruz (Sivinski et al. 2000; Sivinski et tata pupae were separated by external pupal al. 2001), and it is also being mass-reared on characters (White & Elson-Harris 1992). Then, A. ludens larvae in the state of Chiapas (Cancino pupae were placed in plastic vials containing ster- et al. 2002; Montoya & Cancino 2004). During ilized humid sand until either a fruit fly or a par- 1961, D. longicaudata and the eulophid Acerato- asitoid emerged. Fruit fly species were identified neuromyia indica (Silvestri) were introduced into by L. Oroño based upon Zucchi’s (2000) taxonomic Argentina from Mexico and released in limited key. Parasitoid specimens were identified to spe- numbers in citrus-growing areas of the north- cies by S. Ovruski with the keys from Wharton & western provinces of Jujuy, Salta, and Tucumán, Marsh (1978), Wharton & Gilstrap (1983), and and of the northeastern provinces of Misiones and Ovruski (2003) for Opiinae (Braconidae), and the Entre Rios (Ovruski et al. 1999). Although D. lon- taxonomic description by Wharton et al. (1998) gicaudata was recovered immediately after re- for Eucoilinae (Figitidae). Voucher specimens lease in Jujuy and Tucumán (Turica 1968), up to were placed in the entomological collection of the this time, there was no evidence of permanent es- Fundación Miguel Lillo (FML) (San Miguel de Tu- tablishment of this parasitoid species in any re- cumán, Argentina). lease sites of the northwestern Argentinean re- In total, 316 C. capitata and 25 A. fraterculus gion. However, that D. longicaudata is perma- pupae were recovered from all infested peach nently established on A. fraterculus has been doc- fruits. From C. capitata pupae, 151 adult flies umented in the northeastern province of Misiones (47.8% emergence rate) and 25 Aganaspis peller- (Schliserman et al. 2003). Similarly, the exotic anoi (Brethes) (Hymenoptera: Figitidae) adult A. indica was recently recorded on A. fraterculus parasitoids (19 females and 6 males) were recov- in both Misiones and Jujuy provinces (Ovruski et ered. From A. fraterculus pupae, 8 adult flies al. 2006). Recent fruit fly parasitoid surveys made (32.0% emergence rate) and 7 adult parasitoids (3 in Salta province (El Oculto locality) included D. longicaudata females, 2 Doryctobracon brasil- specimens of D. longicaudata. Thus, D. longicau- iensis (Szépligeti) (Hymenoptera: Braconidae) data was recovered 40 years after its first release males, and 2 A. pelleranoi females) were obtained. in the northwestern Argentinean region. Pupal viabilities (number of emerging adult flies Between Nov and Dec 2001, 103 (= 4.3 kg, in- and wasps) were 60.0% and 55.1% in A. fratercu- dividual weight 37.5 ± 5.3 g) peaches (Prunus per- lus and C. capitata, respectively. Parasitism rates sica (L.) Batsch, Rosaceae) were collected in were 28.0% and 7.3% in A. fraterculus and C. cap- patches of disturbed wild vegetation with high di- itata, respectively. versity of exotic fruits in the locality of “El Oculto” All wasp species identified are solitary, koino- (23°06’S, 64°24’W, 530 m above sea level). The col- biont larval-pupal endoparasitoids belonging to lecting area is located in the northern-most exten- the fruit fly parasitoid guild number “2” defined sion of the Argentinean subtropical mountain by Ovruski et al. (2000). Aganaspis pelleranoi and Scientific Notes 411 the braconid Doryctobracon brasiliensis are na- MONTOYA, P., P. LIEDO, B. BENREY, J. CANCINO, J. F. tive species from the Neotropical region. Aganas- BARRERA, J. SIVINSKI, AND M. ALUJA. 2000. Biologi- pis pelleranoi accounted for more than 80% of all cal control of Anastrepha spp. (Diptera: Tephritidae), parasitoids recovered from P. persica we sampled. in mango orchards through augmentative releases of This eucoiline species and the braconid Dorycto- Diachasmimorpha longicaudata (Ashmead) (Hy- menoptera: Braconidae). Biol. Control 18: 216-224. bracon areolatus (Szépligeti) (Hymenoptera: Bra- MONTOYA, P., AND J. CANCINO. 2004. Control biológico conidae) are the most abundant A. fraterculus por aumento en moscas de la fruta (Diptera: Te- parasitoid species in wild guava habitats from the phritidae). Folia Entomol. Mex. 43: 257-270. northernmost to the southernmost portion of the OVRUSKI, S. M. 2003. Nuevos aportes a la taxonomía de Yungas forest in Argentina (Ovruski et al. 2004; las especies de Opiinae (Hymenoptera: Braconidae) Ovruski et al. 2005). Furthermore, A. pelleranoi parasitoides de Anastrepha fraterculus (Wiede- would be better adapted to C. capitata larvae mann) (Diptera: Tephritidae) en la provincia de Tu- than any of the native braconid parasitoid com- cumán. Acta Zool. Lilloana 47: 39-68. mon in Latin America (Ovruski et al. 2004). Do- OVRUSKI, S. M., J. L. CANCINO, P. FIDALGO, AND P. LIEDO. 1999. Nuevas perspectivas para la aplicación ryctobracon brasiliensis was previously recorded del control biológico contra moscas de la fruta from Las Yungas forest of the northwestern Ar- (Diptera: Tephritidae) en Argentina. Rev. Manejo In- gentina in association with A. fraterculus in sev- tegrado de Plagas 54: 1-12. eral native and exotic host fruit species (Ovruski OVRUSKI, S. M., M. ALUJA, J. SIVINSKI, AND R. A. WHAR- et al. 2004). TON. 2000. Hymenopteran parasitoids on fruit-in- Even though D. longicaudata was recovered in festing Tephritidae (Diptera) in Latin America and smaller numbers, the data presented here and the southern United States: diversity, distribution, also those published by Schliserman et al. (2003) taxonomic status and their use in fruit fly biological show the successful establishment of this exotic control. Int. Pest Management Rev. 5: 81-107. OVRUSKI, S. M., P. SCHLISERMAN, AND M. ALUJA. 2004. parasitoid in 2 different Argentinian biogeo- Indigenous parasitoids (Hymenoptera) attacking graphical areas: Las Yungas forest in the north- Anastrepha fraterculus and Ceratitis capitata western region and Paranaense forest in the (Diptera: Tephritidae) in native and exotic host plants northeastern region. in Northwestern Argentina. Biol. Control 29: 43-57. We acknowledge financial support from Con- OVRUSKI, S. M., R. A. WHARTON, P. SCHLISERMAN, AND sejo Nacional de Investigaciones Científicas y M. ALUJA. 2005. Abundance of Anastrepha fratercu- Técnicas de la República Argentina (CONICET) lus (Diptera: Tephritidae) and its associated native (grants PIP No. 0702/98 and No. 5129/05) and parasitoids (Hymenoptera) in “feral” guavas growing Fundación PROYUNGAS (Argentina). in the endangered northernmost Yungas forest of Ar- gentina with an update on the taxonomic status of opiine parasitoids previously reported in this coun- SUMMARY try. Environ. Entomol. 34: 807-818. OVRUSKI, S. M., P. SCHLISERMAN, O. R. DECOLL, C. Specimens of Diachasmimorpha longicaudata PEÑALOZA, L. OROÑO, AND C. COLIN. 2006. The es- (Ashmead), native to Indo-Pacific region, Aganas- tablishment of Aceratoneuromyia indica (Hy- pis pelleranoi (Brethes) and Doryctobracon bra- menoptera: Eulophidae) in three biogeographical regions of Argentina. Florida Entomol. 89: 270-273. siliensis (Szépligeti), both native to Neotropical SCHLISERMAN, P., S. M. OVRUSKI, AND O. R. DECOLL. region, were recovered from Anastrepha fratercu- 2003. The recovery and permanent establishment of lus (Wiedemann) pupae collected from Prunus Diachasmimorpha longicaudata (Hymenoptera: persica (L.) Batsch in the province of Salta. Thus, Braconidae) in Misiones, northeastern Argentina. the braconid D. longicaudata was recovered 40 Florida Entomol. 86: 491-492. years after its first release in the northwestern SIVINSKI, J., C. O. CALKINS, R. BARANOWSKI, D. HARRIS, Argentinean region. J. BRAMBILA, J. DIAZ, R.
Recommended publications
  • Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands.
    [Show full text]
  • Subfamily Gnamptodontinae
    SUBFAMILY GNAMPTODONTINAE M. J. SHARKEY1, R. A. WHARTON2 1. Hymenoptera Institute, 116 Franklin Ave., Redlands, California, USA, [email protected]. 2. Retired, formerly at Texas A&M University. INTRODUCTION. The subfamily Gnamptodontinae was established by van Achterberg (1983a) to accommodate a small group of species variously placed with the Opiinae, the Rogadinae (in the broad sense), or the Exothecinae (Marsh, 1979).There are three New World genera including Exodontiella Wharton, 1978 which was included in the Opiinae chapter in the last version of the Manual of New World Genera (Wharton et al., 1997). Two exclusively Old World genera, Gnaptogaster Tobias, 1976 and Neognamptodon Belokobylskij, 1999 are also included in the subfamily. The use of the names Gnamptodon Haliday and Gnamptodontinae (rather than the widely used Gnaptodon and Gnaptodontinae) is based on Opinion 1424 (1987) of the Commission on Zoological Nomenclature. Van Achterberg (1983a), following Fischer (1972, 1977, 1981) provisionally included Liparophleps Enderlein (= Plesademon Fischer) in the Gnamptodontinae. However, Wharton (1997) confirmed the sexually dimorphic nature of the wing vein pattern, and concurred with Marsh (1976) that Liparophleps is a synonym of Semirhytus Szépligeti and belongs in Doryctinae. PHYLOGENY. The presence of Hagen's glands suggested a relationship to opiines (Buckingham and Sharkey, 1988), but gnamptodontines parasitize leaf-mining lepidopterans rather than cyclorrhaphous Diptera. Zaldívar-Riverón et al. (2006) recovered Gnamptodontinae in a clade consisting of Telengaiinae, Exothecinae, Alysiinae, Opiinae, and Braconinae in most analyses, with Gnamptodontinae and Telengaiinae resolved as sister taxa. Wharton et al. (2006) found Gnamptodontinae sister to either Braconinae or a clade consisting of Alysiinae, Opiinae, and Exothecinae.
    [Show full text]
  • Taxonomic Studies on the Opiinae (Hymenoptera, Braconidae) Fauna of the Turkish Central Part of Eastern Anatolia Region (Bingöl, Bitlis, Muş and Van)
    Original research Taxonomic studies on the Opiinae (Hymenoptera, Braconidae) fauna of the Turkish central part of Eastern Anatolia Region (Bingöl, Bitlis, Muş and Van) Ahmet BEYARSLAN Department of Biology, Faculty of Arts and Science, Bitlis Eren University, Turkey e-mail: [email protected] Abstract: In order to determine Opiinae fauna of Turkey, adult specimens of Opiinae (Hymenoptera, Braconidae) are collected from different habitats of Bingöl, Bitlis, Muş and Van using Malaise and light traps and sweeping nets between 2016 and 2017. The collected materials are prepared and labeled. In addition, relevant literature and comparison materials available in our collection are used for taxonomical examiation of the obtained material. The altitudes and coordinates of localities and collection dates are presented. A total of 24 species in 4 genera and 12 subgenera are determined. From these species Opius (Merotrachys) podomelas Fischer, 1972 is firstly record in the fauna of Turkey. Keywords: Agromyzidae, Podomelas, Parasitoid, malasie, Braconidae, Yu, Tobias Citing: Beyarslan, A. 2020. Taxonomic studies on the Opiinae (Hymenoptera, Braconidae) fauna of the Turkish central part of Eastern Anatolia Region (Bingöl, Bitlis, Muş and Van). Acta Biologica Turcica, 33(1): 1-7. Introductıon forewing and usually lacking the recurrent vein on the The taxonomy of the parasitic Hymenoptera is perhaps the hind wing. The pterostigma is often thin and long (cuneate least known member of a large group of insects; until or linear), the radial cell usually reaches the wing apex, recently, Braconidae have received less attention than and the second radiomedial cell is usually long. In many many other groups of Parasitica.
    [Show full text]
  • Fauna Europaea: Hymenoptera – Symphyta & Ichneumonoidea Van Achterberg, K.; Taeger, A.; Blank, S.M.; Zwakhals, K.; Viitasaari, M.; Yu, D.S.K.; De Jong, Y
    UvA-DARE (Digital Academic Repository) Fauna Europaea: Hymenoptera – Symphyta & Ichneumonoidea van Achterberg, K.; Taeger, A.; Blank, S.M.; Zwakhals, K.; Viitasaari, M.; Yu, D.S.K.; de Jong, Y. DOI 10.3897/BDJ.5.e14650 Publication date 2017 Document Version Final published version Published in Biodiversity Data Journal License CC BY Link to publication Citation for published version (APA): van Achterberg, K., Taeger, A., Blank, S. M., Zwakhals, K., Viitasaari, M., Yu, D. S. K., & de Jong, Y. (2017). Fauna Europaea: Hymenoptera – Symphyta & Ichneumonoidea. Biodiversity Data Journal, 5, [e14650]. https://doi.org/10.3897/BDJ.5.e14650 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Biodiversity Data Journal 5: e14650 doi: 10.3897/BDJ.5.e14650 Data Paper Fauna Europaea: Hymenoptera – Symphyta & Ichneumonoidea Kees van Achterberg‡, Andreas Taeger§, Stephan M.
    [Show full text]
  • Hymenoptera, Braconidae) of Finland, Part 2
    @EntomoldgicaFennica. 15 October 1999 o A survey of Opiinae (Hymenoptera, Braconidae) of Finland, part 2 Maximilian Fischer & Martti Koponen Fischer, M. & Koponen, M. 1999: A survey of Opiinae (Hymenoptera, Braconidae) of Finland, part 2. - Entomol. Fennica 10: 129-160. Faunistic records of 150 species of Opiinae are given mainly for Finland. 78 species are reported as new to Finland. The gross distributions and known hosts are mentioned. Psyttalia cariiiata (Thomson), Biosteres (Chilotrichia) bicolor (Wesmael) and B. (C.) sylvaticiis (Haliday) are deleted from the fauna of Fin- land. Paraphytomyza similis (Brischke) is a new host for Opiiis (Odontopoea) connivens Thomson, and Eziphranta connexa (Fabricius) (Diptera, Tphritidae) for Psyttalia concolor (Szépligeti). Maximilian Fischel; Natural History MLrseum Vienna, 2. Zoological Department, Biirgring 7, A-1014 .Eenna, Airstria Martti Koponen, Department ofApplied Zoology, ?? O. Box 27, FIN-O0014 Uni- versiíy of Helsinki . Received 1 Febrcrary 1998, accepted 2 Jdy 1999 Subgenus Odontopoea Fischer Host. in Finland reared from Diptera, Agro- myzidae: Paraphytomyza similis (Briscke) by E. Odontopoea Fischer, 1986: 610. Type species Thuneberg (new host). Opizrs epcilatirs Papp. Marerial examinen. 1d and 2 P from Finland (DAZH, MZH), N: Vantaa, 22.9.1979 (M. Koponen); Sa: Joutseno (E. Thuneberg); Obb: Ranua, 19.7.1980 (M. Koponen leg.), and Opius (Odontopoea) connivens Thomson 1 0 from Estonia, Laanemaa: Puhtu, 29.5.1990 (M. Kopo- nen leg.). Opiirs (Nosopaeus) connivens Thomson, 1895: 2190,?. Opius (Odontopoea) eprilatiis Pupp Opiirs coiznivens; Fischer 1959g: 70; 197 1a: 56. Opiiis (Nosopoea) connivetis; Fischer 1972: 292 Opiirs eprilatcrs Papp, 19SOa: 50, 53. 55; 1981b: (key), 306 (redescription); Papp 1979: 75. 261, C.
    [Show full text]
  • Diptera): a Life History, Molecular, Morphological
    The evolutionary biotogy of Conopidae (Diptera): A life history, molecular, morphological, systematic, and taxonomic approach Joel Francis Gibson B.ScHon., University of Guelph, 1999 M.Sc, Iowa State University, 2002 B.Ed., Ontario Institute for Studies in Education/University of Toronto, 2003 A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Carleton University Ottawa, Ontario © 2011 Joel Francis Gibson Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de Pedition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your Tile Votre r&ference ISBN: 978-0-494-83217-2 Our file Notre reference ISBN: 978-0-494-83217-2 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these.
    [Show full text]
  • De Novo Transcriptome Identifies Olfactory Genes in Diachasmimorpha Longicaudata
    G C A T T A C G G C A T genes Article De Novo Transcriptome Identifies Olfactory Genes in Diachasmimorpha longicaudata (Ashmead) 1, 2, 2 2 3,4, 5, Liangde Tang y, Jimin Liu y, Lihui Liu , Yonghao Yu , Haiyan Zhao * and Wen Lu * 1 Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; [email protected] 2 Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; [email protected] (J.L.); [email protected] (L.L.); [email protected] (Y.Y.) 3 Department of Entomology, College of Tobacco Science, Guizhou University, Guiyang 550025, China 4 Guangxi Academy of Agricultural Sciences, Nanning 530007, China 5 College of Agriculture, Guangxi University, Nanning 530007, China * Correspondence: [email protected] (H.Z.); [email protected] (W.L.) Authors contribute equally. y Received: 3 January 2020; Accepted: 22 January 2020; Published: 29 January 2020 Abstract: Diachasmimoorpha longicaudata (Ashmead, D. longicaudata) (Hymenoptera: Braconidae) is a solitary species of parasitoid wasp and widely used in integrated pest management (IPM) programs as a biological control agent in order to suppress tephritid fruit flies of economic importance. Although many studies have investigated the behaviors in the detection of their hosts, little is known of the molecular information of their chemosensory system. We assembled the first transcriptome of D. longgicaudata using transcriptome sequencing and identified 162,621 unigenes for the Ashmead insects in response to fruit flies fed with different fruits (guava, mango, and carambola).
    [Show full text]
  • Natural Enemies of True Fruit Flies 02/2004-01 PPQ Jeffrey N
    United States Department of Agriculture Natural Enemies of Marketing and Regulatory True Fruit Flies Programs Animal and Plant Health (Tephritidae) Inspection Service Plant Protection Jeffrey N. L. Stibick and Quarantine Psyttalia fletcheri (shown) is the only fruit fly parasitoid introduced into Hawaii capable of parasitizing the melon fly (Bactrocera cucurbitae) United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 4700 River Road Riverdale, MD 20737 February, 2004 Telephone: (301) 734-4406 FAX: (301) 734-8192 e-mail: [email protected] Jeffrey N. L. Stibick Introduction Introduction Fruit flies in the family Tephritidae are high profile insects among commercial fruit and vegetable growers, marketing exporters, government regulatory agencies, and the scientific community. Locally, producers face huge losses without some management scheme to control fruit fly populations. At the national and international level, plant protection agencies strictly regulate the movement of potentially infested products. Consumers throughout the world demand high quality, blemish-free produce. Partly to satisfy these demands, the costs to local, state and national governments are quite high and increasing as world trade, and thus risk, increases. Thus, fruit flies impose a considerable resource tax on participants at every level, from producer to shipper to the importing state and, ultimately, to the consumer. (McPheron & Steck, 1996) Indeed, in the United States alone, the running costs per year to APHIS, Plant Protection and Quarantine (PPQ), (the federal Agency responsible) for maintenance of trapping systems, laboratories, and identification are in excess of US$27 million per year and increasing. This figure only accounts for a fraction of total costs throughout the country, as State, County and local governments put in their share as well as the local industry affected.
    [Show full text]
  • Caribbean Fruit Fly, Anastrepha Suspensa (Diptera: Tephritidae): Life History and Laboratory Rearing Methods Nancy D
    Caribbean Fruit Fly, Anastrepha suspensa (Diptera: Tephritidae): Life History and Laboratory Rearing Methods Nancy D. Epsky, Jorge S. Sanchez, Wayne S. Montgomery, and Paul E. Kendra USDA-ARS, Subtropical Horticulture Research Station, Miami, FL Introduction Laboratory Colony The Caribbean fruit fly, Anastrepha suspensa (Loew), poses an economic threat to The Caribbean fruit fly colony at the USDA-ARS-SHRS in Miami, FL was citrus, guava, and other subtropical fruits in south Florida. Adult females have well- established in 1968. Larvae are reared on a nutrient-rich, semi-solid agar developed ovipositors, inserting their eggs beneath the skin of host fruits. Crop medium; adult flies are given water (liberated from agar blocks) and fed a 4:1 damage results from larval feeding and development within the pulp (Fig. 1). mixture of refined cane sugar and protein hydrolysate. The colony is maintained Consequently, larval infestation is difficult to detect. Fig. 1 at 25 ± 1°C, 80% RH, and a photoperiod of 12:12 hr (L:D). Under these A. suspensa has been the subject of much research aimed conditions, it takes 37 days to cycle from initial egg collection to the first harvest at lessening its impact on Florida agriculture, and at of eggs from the next generation (Table 1). Currently, the colony produces preventing introduction of other Anastrepha species which approximately 120,000 flies per week. currently threaten the state. Research at the USDA-ARS- Table 1 SHRS is facilitated by mass rearing of A. suspensa on an artificial diet. This poster outlines those rearing procedures 1d 2d 4d 12d 12-13d 24d 27-29d 34-36d and illustrates the developmental stages of this pest.
    [Show full text]
  • Impact of Metarhizium Robertsii on Adults of the Parasitoid Diachasmimorpha Longicaudata and Parasitized Anastrepha Ludens Larvae
    insects Article Impact of Metarhizium robertsii on Adults of the Parasitoid Diachasmimorpha longicaudata and Parasitized Anastrepha ludens Larvae Ehdibaldo Presa-Parra 1,* , Francisco Hernández-Rosas 2, Julio S. Bernal 3, Jorge E. Valenzuela-González 4, Jovita Martínez-Tlapa 1 and Andrea Birke 1 1 Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología, A.C., Xalapa, Veracruz 91073, Mexico; [email protected] (J.M.-T.); [email protected] (A.B.) 2 Biotecnología Microbiana Aplicada, Colegio de Postgraduados, Campus Córdoba, Amatlán de los Reyes, Veracruz 94953, Mexico; [email protected] 3 Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA; [email protected] 4 Red de Ecología Funcional, Instituto de Ecología, A.C., Xalapa, Veracruz 91073, Mexico; [email protected] * Correspondence: [email protected] Simple Summary: The Mexican fruit fly Anastrepha ludens is a polyphagous pest that infests at least 32 tropical and subtropical plant species of different families. A. ludens is native of Mexico, and is distributed from Northern Mexico to Central America. Integrated Pest Management (IPM) programs build upon the Sterile Insect Technique (SIT) and biological control agents (parasitoids and microbial pathogens), two eco-friendly sustainable control strategies, which are highly relevant in organic Citation: Presa-Parra, E.; farming. In our laboratory study we evaluated the efficacy of fungal pathogens and intraguild Hernández-Rosas, F.; Bernal, J.S.; predation (IGP) risk of one strain of Metarhizium robertsii and another of Metarhizium anisopliae, Valenzuela-González, J.E.; Martínez-Tlapa, J.; Birke, A. Impact of when used in conjunction with the braconid parasitoid Diachasmimorpha longicaudata.
    [Show full text]
  • The Role of Mating Systems in Sexual Selection in Parasitoid Wasps
    Biol. Rev. (2014), pp. 000–000. 1 doi: 10.1111/brv.12126 Beyond sex allocation: the role of mating systems in sexual selection in parasitoid wasps Rebecca A. Boulton∗, Laura A. Collins and David M. Shuker Centre for Biological Diversity, School of Biology, University of St Andrews, Dyers Brae, Greenside place, Fife KY16 9TH, U.K. ABSTRACT Despite the diverse array of mating systems and life histories which characterise the parasitic Hymenoptera, sexual selection and sexual conflict in this taxon have been somewhat overlooked. For instance, parasitoid mating systems have typically been studied in terms of how mating structure affects sex allocation. In the past decade, however, some studies have sought to address sexual selection in the parasitoid wasps more explicitly and found that, despite the lack of obvious secondary sexual traits, sexual selection has the potential to shape a range of aspects of parasitoid reproductive behaviour and ecology. Moreover, various characteristics fundamental to the parasitoid way of life may provide innovative new ways to investigate different processes of sexual selection. The overall aim of this review therefore is to re-examine parasitoid biology with sexual selection in mind, for both parasitoid biologists and also researchers interested in sexual selection and the evolution of mating systems more generally. We will consider aspects of particular relevance that have already been well studied including local mating structure, sex allocation and sperm depletion. We go on to review what we already know about sexual selection in the parasitoid wasps and highlight areas which may prove fruitful for further investigation. In particular, sperm depletion and the costs of inbreeding under chromosomal sex determination provide novel opportunities for testing the role of direct and indirect benefits for the evolution of mate choice.
    [Show full text]
  • Research Note
    Research Note SEASONAL ABUNDANCE OF ANASTREPHA SUSPENSA (DIPTERA. 7EPHRITIDAE) FROM CITRUS IN PUERTO RICO12 Alberto Pantoja, Evelio Hernández 4 and Raid Macchiavellt5 J. Agric. Univ. P.R. 91(3-4):219-221 (2007) Fruit flies are the main dipterous pests on citrus, but are not considered a key pest in any of the tropical regions where citrus is commercially produced (Smith and Pena, 2002). Although fruit flies can cause significant damage to citrus, their importance is mainly due to concerns from quarantine aspects (Vijaysegaran, 1993; Smith and Peña, 2002). The biology, distribution, management, ecology and pest status of the most impor- tant citrus fruit flies have been summarized by Smith and Pena (2002), six genera of fruit flies affect citrus worldwide: Anastrepha, Bactrocera, Ceratitis, Dirioxa, Monacrostichus and Rhagoletis. Little information is available on the economic importance and life history of fruit flies in Puerto Rico. The Caribbean fruit fly, Anastrepha suspensa (Loew) (Diptera: Te- phritidae), has been reported on citrus in Puerto Rico since the early 1930s (Martorell, 1976), whereas another species, A. obliqua, has been reported affecting citrus and man- goes (McAlister et al., 1941; Segarra et al., 1990). The economic importance of fruit flies on mangoes in Puerto Rico was established by Segarra etal. (1990) and Segarra (1988), but no data are available on A. suspensa incidence in citrus on the island. Anastrepha suspensa [also known as Trypeta suspensa (Loew), (Trypeta) Acrotoxa suspensa .(Loew), Anastrepha unipuncta Séin, and Anastrepha longimacula Greene] was originally4escribed from specimens collected in Cuba, but current distribution includes Jamaica, Dominican Republic, Haiti, Puerto Rico, and southern Florida (Martorell, 1976; White and Elson, 1994; Smith and Pena, 2002).
    [Show full text]