Geosci. Model Dev., 13, 4413–4434, 2020 https://doi.org/10.5194/gmd-13-4413-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0) Emily Kyker-Snowman1, William R. Wieder2,3, Serita D. Frey1, and A. Stuart Grandy1 1Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA 2Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80305, USA 3Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80309, USA Correspondence: Emily Kyker-Snowman (
[email protected]) Received: 13 November 2019 – Discussion started: 19 December 2019 Revised: 1 June 2020 – Accepted: 24 July 2020 – Published: 22 September 2020 Abstract. Explicit consideration of microbial physiology in chiometric characteristics of soil microbes, especially under soil biogeochemical models that represent coupled carbon– environmental change scenarios. nitrogen dynamics presents opportunities to deepen under- standing of ecosystem responses to environmental change. The MIcrobial-MIneral Carbon Stabilization (MIMICS) model explicitly represents microbial physiology and physic- 1 Introduction ochemical stabilization of soil carbon (C) on regional and global scales. Here we present a new version of MIMICS Soils contain the largest actively cycling terrestrial carbon with coupled C and nitrogen (N) cycling through litter, mi- (C) stocks on earth and also serve as the dominant source of crobial, and soil organic matter (SOM) pools. The model nutrients, like nitrogen (N), that are critical for maintaining was parameterized and validated against C and N data from ecosystem productivity (Gruber and Galloway, 2008; Job- the Long-Term Inter-site Decomposition Experiment Team bágy and Jackson, 2000).