Greenhouse Gas Mitigation and Accounting. In: Agroforestry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Greenhouse Gas Inventory a Community-Wide and Municipal Operations Greenhouse Gas Inventory for 2015
Greenhouse Gas Inventory A community-wide and municipal operations greenhouse gas inventory for 2015 City of Lancaster Department of Public Works – Douglas Smith October 2017 Acknowledgement Thank you to all of the City Staff who helped compile data for both the greenhouse gas inventories included herein, including Charlotte Katzenmoyer (City Director of Public Works), Donna Jessup (City operations), Dave Schaffhauser (City Facilities Manager), Bryan Harner (City Wastewater), John Holden (City Water), Tim Erb (City Fire), and Maria Luciano (City Operations). Thank you to the Stormwater Bureau’s 2016-2017 F&M intern, JT Paganelli, who completed the vehicle emissions inventory, and the 2017 F&M intern, Grant Salley, for assisting with editing and research. Thank you to Barbara Baker from the Lancaster County Solid Waste Management Authority for providing data on solid waste. Additional thanks to customer service representatives at PPL and UGI, Scott Koch and Lori Pepper, respectively, for assisting with data. Recognition also goes to Warwick Township and Tony Robalik AICP who conducted the first municipal carbon audit in Lancaster County, which provided a model and helpful background information for this document. 2 Contents INTRODUCTION .........................................................................................................................................................5 1.1 Global Context ............................................................................................................................................................. -
Soil Organic Carbon Scoping Paper
DISCUSSION PAPER Standardized GHG Accounting for Soil Organic Carbon Accrual on Non-Forest Lands: Challenges and Opportunities September 23, 2019 Discussion Paper for Soil Organic Carbon Accrual September 23, 2019 About this document This paper is meant to take stock of the current “state of play” with respect to the creation of tradable offsets to incentivize building soil carbon in non-forested soils. The document discusses the potential for developing a carbon offset protocol for soil organic carbon (SOC) accrual. The document first discusses challenges, including quantification, permanence and additionality. Then, new technologies and approaches are presented as options to overcome the challenges, and there is a short overview of how some offset programs are addressing SOC. We conclude the document with a general description of the approaches that could be used in a Reserve SOC protocol. Executive summary Soil organic carbon (SOC) sequestration practices have a high potential for GHG emission reductions, but these practices remain underutilized by carbon offset programs due to several challenges, including costs, uncertainty, permanence, and additionality. This document evaluates the potential for developing a Reserve SOC accrual protocol that is applicable to the United States, Mexico, and Canada. Potential practices would increase carbon stocks mainly in cropland and grassland, and would include conservation tillage, efficient irrigation, sustainable grazing, nutrient management, and cover-cropping. There are several technologies in use and in development to achieve certain and cost-effective quantification at varying degrees. Traditional lab-based dry combustion methods combined with bulk density tests are the gold standard for SOC quantification, but direct sampling and laboratory analysis are costly and time intensive. -
Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh
land Article Model Based Regional Estimates of Soil Organic Carbon Sequestration and Greenhouse Gas Mitigation Potentials from Rice Croplands in Bangladesh Khadiza Begum 1,*, Matthias Kuhnert 1, Jagadeesh Yeluripati 2, Stephen Ogle 3, William Parton 3, Md Abdul Kader 4,5 ID and Pete Smith 1 ID 1 Institute of Biological & Environmental Science, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, UK; [email protected] (M.K.); [email protected] (P.S.) 2 The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK; [email protected] 3 Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523, USA; [email protected] (S.O.); [email protected] (W.P.) 4 Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; [email protected] 5 School of Agriculture and Food Technology, University of South Pacific, Suva, Fiji * Correspondence: [email protected] or [email protected] Received: 25 June 2018; Accepted: 2 July 2018; Published: 5 July 2018 Abstract: Rice (Oryza sativa L.) is cultivated as a major crop in most Asian countries and its production is expected to increase to meet the demands of a growing population. This is expected to increase greenhouse gas (GHG) emissions from paddy rice ecosystems, unless mitigation measures are in place. It is therefore important to assess GHG mitigation potential whilst maintaining yield. Using the process-based ecosystem model DayCent, a spatial analysis was carried out in a rice harvested area in Bangladesh for the period 1996 to 2015, considering the impacts on soil organic carbon (SOC) sequestration, GHG emissions and yield under various mitigation options. -
Agricultural Soil Carbon Credits: Making Sense of Protocols for Carbon Sequestration and Net Greenhouse Gas Removals
Agricultural Soil Carbon Credits: Making sense of protocols for carbon sequestration and net greenhouse gas removals NATURAL CLIMATE SOLUTIONS About this report This synthesis is for federal and state We contacted each carbon registry and policymakers looking to shape public marketplace to ensure that details investments in climate mitigation presented in this report and through agricultural soil carbon credits, accompanying appendix are accurate. protocol developers, project developers This report does not address carbon and aggregators, buyers of credits and accounting outside of published others interested in learning about the protocols meant to generate verified landscape of soil carbon and net carbon credits. greenhouse gas measurement, reporting While not a focus of the report, we and verification protocols. We use the remain concerned that any end-use of term MRV broadly to encompass the carbon credits as an offset, without range of quantification activities, robust local pollution regulations, will structural considerations and perpetuate the historic and ongoing requirements intended to ensure the negative impacts of carbon trading on integrity of quantified credits. disadvantaged communities and Black, This report is based on careful review Indigenous and other communities of and synthesis of publicly available soil color. Carbon markets have enormous organic carbon MRV protocols published potential to incentivize and reward by nonprofit carbon registries and by climate progress, but markets must be private carbon crediting marketplaces. paired with a strong regulatory backing. Acknowledgements This report was supported through a gift Conservation Cropping Protocol; Miguel to Environmental Defense Fund from the Taboada who provided feedback on the High Meadows Foundation for post- FAO GSOC protocol; Radhika Moolgavkar doctoral fellowships and through the at Nori; Robin Rather, Jim Blackburn, Bezos Earth Fund. -
Greenhouse Gas Emissions Inventory 2004-2005 Update
University of New Hampshire University of New Hampshire Scholars' Repository The Sustainability Institute Research Institutes, Centers and Programs 2006 Greenhouse Gas Emissions Inventory 2004-2005 Update UNH Sustainability Institute Follow this and additional works at: https://scholars.unh.edu/sustainability Recommended Citation UNH Sustainability Institute, "Greenhouse Gas Emissions Inventory 2004-2005 Update" (2006). The Sustainability Institute. 61. https://scholars.unh.edu/sustainability/61 This Report is brought to you for free and open access by the Research Institutes, Centers and Programs at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in The Sustainability Institute by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Produced through the collaborative efforts of the UNH Office of Sustainability, the UNH Climate Education Initiative, and Clean Air - Cool Planet, this 2004 - 2005 update to UNH’s 1990 - 2003 Greenhouse Gas Emissions Inventory serves as a tool for measuring the University’s impact on regional and global climate change. The 2004-2005 Greenhouse Gas Emissions 2 004-2005 UPDATE Inventory Update summarizes UNH’s greenhouse gas emissions from all major sources, including the production of energy, transportation, and agriculture, among others. GREENHOUSE GAS EMISSIONS INVENTORY A COLL ABORATIVE PROJECT BY: Since 1991, UNH’s greenhouse gas emissions (GHGE) have continued to increase with increases in the University’s population UNH OFFICE OF SUSTAINABILITY and improvements in infrastructure. Despite a reduction in emissions between 2003 and 2005, there has been a net increase UNH CLIMATE EDUCATION INITIATIVE of 25% in GHGE from 1990 to 2005. -
NEW JERSEY GREENHOUSE GAS INVENTORY MID-CYCLE UPDATE REPORT February 2021
NEW JERSEY GREENHOUSE GAS INVENTORY MID-CYCLE UPDATE REPORT February 2021 Introduction New Jersey’s Global Warming Response Act (GWRA) (P.L. 2007, c.112, as amended 2019) calls for an annual compilation of statewide greenhouse gas (GHG) emissions data. This data is used to monitor and track progress towards New Jersey’s goal of reducing GHG emissions 80% from their 2006 levels by 2050 (known as the 80x50 goal).1 Since 2008, the New Jersey Department of Environmental New Jersey’s Greenhouse Gas Protection (DEP) has released a comprehensive statewide Reporting Framework GHG inventory report approximately every two years. Following the 2019 amendments to the GWRA, the DEP is also Emissions Inventory Report committed to releasing updated data annually to help inform • Full report released every two years the state’s climate mitigation planning and implementation • Includes the latest emissions estimates and projections efforts. • Includes a detailed discussion on: The DEP will therefore continue to release a full Emissions o Statewide Greenhouse Gas trends Federal and International trends Inventory Report every other year and will also provide a o and policy “Mid-Cycle Update” during the intervening years. The o Changes in methodologies Emissions Inventory Reports2 contain detailed analysis, o Adjustment of Baselines including updated emissions calculations, review of GHG trends, adjustments to baselines (when necessary), and Mid-Cycle Update • Brief summary released between discussion of any changes in emission calculation Emissions Inventory Reports methodologies. In contrast, the Mid-Cycle Update is a brief • Includes the latest emissions summary of the latest emissions data, with concise estimates and projections complementary analysis. -
References SILVOPASTURE
SILVOPASTURE Drawdown Technical Assessment References Abberton, Michael, Richard Conant, Caterina Batello, and others. “Grassland Carbon Sequestration: Management, Policy and Economics.” Integrated Crop Management 11 (2010). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.3291&rep=rep1&type=pdf. Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, ecosystems & environment, 99(1), 15-27. Andrade, Hernán J., Robert Brook, and Muhammad Ibrahim. “Growth, Production and Carbon Sequestration of Silvopastoral Systems with Native Timber Species in the Dry Lowlands of Costa Rica.” Plant and Soil 308, no. 1–2 (May 28, 2008): 11–22. doi:10.1007/s11104-008-9600-x. Benavides, Raquel, Grant B. Douglas, and Koldo Osoro. “Silvopastoralism in New Zealand: Review of Effects of Evergreen and Deciduous Trees on Pasture Dynamics.” Agroforestry Systems 76, no. 2 (October 26, 2008): 327–50. doi:10.1007/s10457-008-9186-6. Calle, Alisia, Florencia Montagnini, Andrés Felipe Zuluaga, and others. “Farmers’ Perceptions of Silvopastoral System Promotion in Quindío, Colombia.” Bois et Forets Des Tropiques 300, no. 2 (2009): 79–94. Clason, Terry R., and Steven H. Sharrow. “Silvopastoral Practices.” North American Agroforestry: An Integrated Science and Practice. ASA, CSSA, and SSSA, Madison, WI, 2000, 119–147. Covey, Kristofer R., Stephen A. Wood, Robert J. Warren, Xuhui Lee, and Mark A. Bradford. “Elevated Methane Concentrations in Trees of an Upland Forest.” Geophysical Research Letters 39, no. 15 (August 16, 2012): L15705. doi:10.1029/2012GL052361. Cubbage, Frederick, Gustavo Balmelli, Adriana Bussoni, Elke Noellemeyer, Anibal Pachas, Hugo Fassola, Luis Colcombet, et al. “Comparing Silvopastoral Systems and Prospects in Eight Regions of the World.” Agroforestry Systems 86, no. -
Why Dairy Farming and Silvopastoral Agroforestry Could Be The
IFB0219 ISSUE 1.qxp_Layout 1 07/03/2019 13:30 Page 1 TEAT CLIMATE FINANCE DISINFECTANT CHANGE CHANGING HOW TO SELECT SOLUTIONS FARM FROM 100 COW TOILET: STRUCTURES PRODUCTS FACT OR FANTASY? >> SEE PAGE 22 >> SEE PAGE 46 >> SEE PAGE 38 I R I S H VVolumeolume 67 IIssuessue 12 SAutumnpring 2 0/ 1Winter9 Editi o2020n Edition FPPricerice €4.953a.95 / ££4.502.95 ( (Stg)Strg) m BusiDnA eI R YsI NsG PARLOUR PROTOCOLS HELP THE COW & THE MILKING PERSONNEL FARM DESIGN TIMEDEVELOP A MACHINESLONG-TERM PLAN FORYOUR FARM Saving You Time And Money PG 30 HOW GOOD IS YOUR WHICH PHONE IS BEST HOUSEKEEPING FOR SILAGE? FOR FARMERS DAIRY FARMERS PG 24 PG 14 PG 10 IFB0219 ISSUE 1.qxp_Layout 1 07/03/2019 13:30 Page 1 TEAT CLIMATE FINANCE DISINFECTANT CHANGE CHANGING HOW TO SELECT SOLUTIONS FARM FROM 100 COW TOILET: STRUCTURES PRODUCTS FACT OR FANTASY? Foreword/Contents/Credits >> SEE PAGE 22 >> SEE PAGE 46 >> SEE PAGE 38 I R I S H VVolumeolume 67 IIssuessue 12 SAutumnpring 2 0/ 1Winter9 Editi o2020n Edition FPPricerice €4.953a.95 £4.50 £2.95 (Stg) (Strg ) m BusiDnA eI R YsI NsG Features 10 Housekeeping For Dairy Farmers Aidan Kelly of ADPS outlines a list of items that need checking before housing cattle full-time and in particular before the onslaught of the calving period. Planning will make life easier and more safe. PARLOUR PROTOCOLS HELP THE COW & THE MILKING PERSONNEL 14 Which Phone is best for Dairy Farmers? With the increasing reliance on Apps in farming what should you look for in a phone so that it will suit your particular needs? By Dr Diarmuid McSweeney an expert in agri- 10 26 technology. -
Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production Within the United States
Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States ICF International February 2013 Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States Prepared by: ICF International 1725 I St NW, Suite 1000 Washington, DC 20006 For: U.S. Department of Agriculture Climate Change Program Office Washington, DC February 2013 Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States Preparation of this report was done under USDA Contract No. AG-3142-P-10-0214 in support of the project: Greenhouse Gas Mitigation Options and Costs for Agricultural Land and Animal Production within the United States. This draft report was provided to USDA under contract by ICF International and is presented in the form in which it was received from the contractor. Any views presented are those of the authors and are not necessarily the views of or endorsed by USDA. For more information, contact the USDA Climate Change Program Office by email at [email protected], fax (202) 401-1176, or phone (202) 720-6699. Cover Photo Credit: (Middle Photo) California Bioenergy LLC, Dairy Biogas Project, Bakersfield, CA. How to Obtain Copies: You may electronically download this document from the U.S. Department of Agriculture’s Web site at: http://www.usda.gov/oce/climate_change/mitigation_technologies/GHGMitigationProduction_Cost.htm For Further Information Contact: Jan Lewandrowski, USDA Project Manager ([email protected]) -
Modeling the Economic Potential of Silvopasture in Eastern North
AN ABSTRACT OF THE THESIS OF Sonia Rose Bruck for the degree of Master of Science in Forest Ecosystems and Society presented June 13, 2016. Title: Modeling the Economic Potential of Silvopasture in Eastern North Carolina and Northeastern Oregon and Exploring Eligibility of Silvopasture to Enroll in Carbon Markets in the United States Abstract Approved: ___________________________________________________________________________________ Badege Bishaw ABSTRACT Silvopasture is the planned and managed agroforestry system in which forage, livestock, and trees or shrubs are integrated in order to enhance individual components. Silvopasture has been identified as the most promising agroforestry system for the Pacific Northwest and Southeast United States. However, there have been few studies describing the economic viability of silvopasture in these regions. There are two objectives explored in this study: first, to determine the potential for silvopasture as an economically viable income source to farmers in eastern North Carolina and northeastern Oregon by calculating the Land Expectation Value (LEV), Net Present Value (NPV), Internal Rate of Return (IRR), and Annual Expectation Value (AEV), of realistic silvopastoral management regimes, compared to traditionally managed timber or livestock farms; second, to explore whether silvopasture can store as much or more carbon than a traditionally stocked timber plantation, and whether profits from sequestered carbon are possible at this time in the United States. The most profitable silvopasture regimes for eastern North Carolina were cool season grasses combined with loblolly pine at a four percent real discount rate (LEV = $1,025 per acre) and cool season grasses combined with longleaf pine at a four percent real discount rate (LEV = $285 per acre). -
Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016
Federal Greenhouse Gas Accounting and Reporting Guidance Council on Environmental Quality January 17, 2016 i Contents 1.0 Introduction ......................................................................................................................... 1 1.1. Purpose of This Guidance ............................................................................................... 2 1.2. Greenhouse Gas Accounting and Reporting Under Executive Order 13693 ................. 2 1.2.1. Carbon Dioxide Equivalent Applied to Greenhouse Gases .......................................... 3 1.2.2. Federal Reporting Requirements .................................................................................. 4 1.2.3. Distinguishing Between GHG Reporting and Reduction ............................................. 5 1.2.4. Opportunities, Limitations, and Exemptions under Executive Order 13693 ................ 5 1.2.5. Federal Greenhouse Gas Accounting and Reporting Workgroup ................................ 6 1.2.6. Electronic Greenhouse Gas Accounting and Reporting Capability (Annual Greenhouse Gas Data Report Workbook) .................................................................................................. 6 1.2.7. Relationship of the Guidance to Other Greenhouse Gas Reporting Requirements and Protocols ................................................................................................................................. 7 1.2.8. The Public Sector Greenhouse Gas Accounting and Reporting Protocol ..................... 8 2.0 Setting -
Shadows and Ghosts: Lost Woods in the Landscape
Wild Thing?? Managing Landscape Change and Future Ecologies 9th to 11th September 2015 Conference Abstracts With the Ancient Tree Forum and the European Society for Environmental History ************************************************************************************ Visit our website: www.ukeconet.org The South Yorkshire ECONET (Biodiversity Research Group) ch/0915 1 ch/0915 2 Issues of perceptions, history & science in severance & wilding Professor Ian Rotherham, Dept. of Natural & Built Environment - Sheffield Hallam University, [email protected] Summary Following seminal texts by Adams1 (Future Nature: a vision for conservation), Peter Taylor2 (Beyond Conservation), and Vera3 (2000), there has been renewed interest in addressing conservation problems through radical new approaches. Indeed, there is a growing feeling that conservation has failed to deliver and in the age of politically enforced austerity, the situation will worsen. In this context, ‘wilding’ and ‘wilder’ landscapes, applied effectively and sensitively, offer huge, exciting benefits for biodiversity, heritage, and amenity. However, there are significant pitfalls if implementation lacks careful planning and design. The ‘eco-cultural nature’5 of landscape, resulting from long-term, intimate interactions between people and ecologies is important, and across Europe particularly, twenty-first century depopulation means rural landscapes abandoned’ not ‘wilded’. Ecology, communities, and economies are potentially devastated4. Alongside urbanisation of rural landscapes, these socio-economic and demographic changes cause ‘cultural severance’6,7, with long-term, often rapid, declines in biodiversity and landscape quality. Furthermore, from urban to remote, rural areas, attitudes to, and perceptions of, ‘alien’ invasive species challenge to attempts to ‘wild’ the landscape. Feral species, exotic plants and animals, and invasive natives forming recombinant biodiversity5,8, but ‘re-wilding’ discussions rarely mention feral and exotic.