UI Extension Forestry Information Series II Forest Management No

Total Page:16

File Type:pdf, Size:1020Kb

UI Extension Forestry Information Series II Forest Management No UI Extension Forestry Information Series II Forest Management No. 52 Silvopasture - Growing Trees in Your Pasture or Vive-Versa Randy Brooks Forestry and livestock posed silvopasture is no guarantee of successful production are main- tree establishment and growth. Local University stays of the natural of Idaho Extension and Natural Resource Conser- resource based econo- vation Service offi ces are good sources of infor- mies of North Central mation about soil suitability for specifi c pasture Idaho. There is also a and tree species. strong tradition of live- stock grazing in other Most folks would prefer planting trees into an forests across the West. Silvopasture, the combi- existing or recently seeded pasture due to ease of nation of forest management and improved for- operation. However, vegetation control is criti- age species, is a more intensive, controlled appli- cal, especially when planting trees into an estab- cation of this traditional use of livestock grazing lished pasture where grass roots form a fi brous and growing trees. Silvopasture is the deliberate mat throughout the upper soil layer. This can introduction of timber into a forage production allow grasses to out-compete tree seedlings for system, or vice-versa. With silvopasture, timber moisture. In dry summer climates, conifer seed- and pasture are managed as a single integrated lings grow best when competing vegetation is system. It is not utilized as much in the West as removed for the fi rst three years. This can be ac- it is in the Southeast, but is most often imple- complished through various means of site prepa- mented to increase profi tability, reduce risk, and ration. Apply an herbicide or plow a two to four augment environmental benefi ts from land man- foot wide strip for each row of trees to be plant- agement. Silvopasture systems are designed to ed. In some areas, a prescribed burn or pesticide produce high-value timber while providing short application may be needed to control rodents term cash fl ow from livestock. prior to and after tree planting. Follow-up with a selective herbicide may be needed for the next The ability of recently forested land to grow trees two to three years until trees are well established. can be predicted by the performance of the pre- vious stand. However, the ability of pasture or The desired pasture mix will vary with site char- rangeland to support commercial timber pro- acteristics and the desires of the land manager. duction is harder to predict. Many forage plants Orchardgrass, tall fescue, and perennial ryegrass are more shallowly rooted than trees are, and a along with a clover species are commonly used productive forage pasture may have soils that are silvopasture forages. Nitrogen fi xing clovers are too shallow to support commercial tree produc- often seeded to provide high quality feed for tion. Since soils can change signifi cantly over a livestock and to serve as a biological source of ni- short distance, the presence of trees near a pro- trogen for trees and associated grasses. Legumes Station Bulletin No. 96, Idaho Forestry Wildlife and Range Experiment Station, Moscow, ID often have more exacting nutrient requirements Multiple damage events may kill trees, but single than do grasses, making a soil test and possible events generally only slow growth. Conifers are subsequent fertilization an important part of the especially sensitive to the removal of the topmost management plan. The forage composition will leader (terminal bud). This is the most palatable, change over time as trees grow and modify the nutrient packed portion of the seedling. Leader environment. Trees generally have little impact loss results in dramatic loss of height and diame- on forage production until shading becomes ter growth and stimulates production of multiple dense enough to limit sunlight to the understory. leaders or forked tops. Most tree damage is likely Forage production of warm season species can to occur in the fi rst two to three years when they be reduced somewhat. Orchardgrass seems to are small and do not have their resinous chemical tolerate the environment under trees better than defense well established. The best way to reduce perennial ryegrass or Kentucky bluegrass. Al- the risk of damage during this period is by hay- though tall fescue does well under trees, it has ing rather than grazing. This approach does not the lowest forage value and highest degree of resolve the problem of damage by native wildlife competition of the forages. herbivores like deer and elk. Young trees may be protected with chemical repellants, mesh tubes, Douglas-fi r and ponderosa pine are the two or some type of appropriate fencing. Sheep, predominant timber species that grow best in our goats, and deer are more likely to eat needles area. Larch, as well as western white pine can than are cattle or elk. Established conifers are also be grown, but western white pine is subject not as attractive to large herbivores when other to white pine blister rust. Regardless of what forage is present. If heavy browsing is observed species is used, it is generally recommended that there may be a defi ciency in the livestock diet. seedlings are purchased locally or from a locally adapted seed source. Such seedlings are both Trees that provide shade or wind protection can quicker to establish, grow faster, and can be more have a climate stabilizing effect by reducing heat tolerant of browse and other damage. stress and wind chill of the livestock. Protec- tion from trees can reduce the direct cold effect Silvopastures are generally planted at about 200- by 50% or more and reduce wind velocity by as 300 trees per acre, and can be planted in grids or much as 70%. Livestock require less feed energy, in single rows, multiple rows, or even clusters. so their performance is improved and mortality This planting style provides for wide open alleys is reduced. In contrast to concentrated livestock for forage production and easy access for live- operations, silvopastoral systems are less likely stock grazing, hay harvesting, fertilizer spread- to raise environmental concerns related to water ing, spraying, and other agricultural practices. quality, odors, dust, noise, disease problems, and Alley width should be determined by width of animal treatment. farm equipment. For example, a 20 foot alley pro- vides easy access for cutting hay with a 16 foot For more information on silvopasture, contact swather. This same spacing allows for mecha- your local University of Idaho Extension Offi ce or nized harvesting later when trees mature. There Natural Resources Conservation Services Offi ces. is plenty of room for creativity when it comes to planting trees in combinations, however, rows of three or more are generally not recommended as This article fi rst appeared in Woodland NOTES, Vol. the inner rows of trees may be out-competed by 17, No. 1, Fall/Winter 2005-2006. the outer rows. About the Author: Randy Brooks is a Professor and Trees may be damaged by livestock or wild Area Extension Educator - Forestry at the University animals which can eat, rub, or step on them. of Idaho. The University of Idaho is an equal opportunity/affi rmative action employer and educational institution. We offer pro- grams to persons regardless of race, color, national origin, gender, religion, age, sexual orientation, or disability..
Recommended publications
  • References SILVOPASTURE
    SILVOPASTURE Drawdown Technical Assessment References Abberton, Michael, Richard Conant, Caterina Batello, and others. “Grassland Carbon Sequestration: Management, Policy and Economics.” Integrated Crop Management 11 (2010). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.454.3291&rep=rep1&type=pdf. Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems. Agriculture, ecosystems & environment, 99(1), 15-27. Andrade, Hernán J., Robert Brook, and Muhammad Ibrahim. “Growth, Production and Carbon Sequestration of Silvopastoral Systems with Native Timber Species in the Dry Lowlands of Costa Rica.” Plant and Soil 308, no. 1–2 (May 28, 2008): 11–22. doi:10.1007/s11104-008-9600-x. Benavides, Raquel, Grant B. Douglas, and Koldo Osoro. “Silvopastoralism in New Zealand: Review of Effects of Evergreen and Deciduous Trees on Pasture Dynamics.” Agroforestry Systems 76, no. 2 (October 26, 2008): 327–50. doi:10.1007/s10457-008-9186-6. Calle, Alisia, Florencia Montagnini, Andrés Felipe Zuluaga, and others. “Farmers’ Perceptions of Silvopastoral System Promotion in Quindío, Colombia.” Bois et Forets Des Tropiques 300, no. 2 (2009): 79–94. Clason, Terry R., and Steven H. Sharrow. “Silvopastoral Practices.” North American Agroforestry: An Integrated Science and Practice. ASA, CSSA, and SSSA, Madison, WI, 2000, 119–147. Covey, Kristofer R., Stephen A. Wood, Robert J. Warren, Xuhui Lee, and Mark A. Bradford. “Elevated Methane Concentrations in Trees of an Upland Forest.” Geophysical Research Letters 39, no. 15 (August 16, 2012): L15705. doi:10.1029/2012GL052361. Cubbage, Frederick, Gustavo Balmelli, Adriana Bussoni, Elke Noellemeyer, Anibal Pachas, Hugo Fassola, Luis Colcombet, et al. “Comparing Silvopastoral Systems and Prospects in Eight Regions of the World.” Agroforestry Systems 86, no.
    [Show full text]
  • Why Dairy Farming and Silvopastoral Agroforestry Could Be The
    IFB0219 ISSUE 1.qxp_Layout 1 07/03/2019 13:30 Page 1 TEAT CLIMATE FINANCE DISINFECTANT CHANGE CHANGING HOW TO SELECT SOLUTIONS FARM FROM 100 COW TOILET: STRUCTURES PRODUCTS FACT OR FANTASY? >> SEE PAGE 22 >> SEE PAGE 46 >> SEE PAGE 38 I R I S H VVolumeolume 67 IIssuessue 12 SAutumnpring 2 0/ 1Winter9 Editi o2020n Edition FPPricerice €4.953a.95 / ££4.502.95 ( (Stg)Strg) m BusiDnA eI R YsI NsG PARLOUR PROTOCOLS HELP THE COW & THE MILKING PERSONNEL FARM DESIGN TIMEDEVELOP A MACHINESLONG-TERM PLAN FORYOUR FARM Saving You Time And Money PG 30 HOW GOOD IS YOUR WHICH PHONE IS BEST HOUSEKEEPING FOR SILAGE? FOR FARMERS DAIRY FARMERS PG 24 PG 14 PG 10 IFB0219 ISSUE 1.qxp_Layout 1 07/03/2019 13:30 Page 1 TEAT CLIMATE FINANCE DISINFECTANT CHANGE CHANGING HOW TO SELECT SOLUTIONS FARM FROM 100 COW TOILET: STRUCTURES PRODUCTS FACT OR FANTASY? Foreword/Contents/Credits >> SEE PAGE 22 >> SEE PAGE 46 >> SEE PAGE 38 I R I S H VVolumeolume 67 IIssuessue 12 SAutumnpring 2 0/ 1Winter9 Editi o2020n Edition FPPricerice €4.953a.95 £4.50 £2.95 (Stg) (Strg ) m BusiDnA eI R YsI NsG Features 10 Housekeeping For Dairy Farmers Aidan Kelly of ADPS outlines a list of items that need checking before housing cattle full-time and in particular before the onslaught of the calving period. Planning will make life easier and more safe. PARLOUR PROTOCOLS HELP THE COW & THE MILKING PERSONNEL 14 Which Phone is best for Dairy Farmers? With the increasing reliance on Apps in farming what should you look for in a phone so that it will suit your particular needs? By Dr Diarmuid McSweeney an expert in agri- 10 26 technology.
    [Show full text]
  • Modeling the Economic Potential of Silvopasture in Eastern North
    AN ABSTRACT OF THE THESIS OF Sonia Rose Bruck for the degree of Master of Science in Forest Ecosystems and Society presented June 13, 2016. Title: Modeling the Economic Potential of Silvopasture in Eastern North Carolina and Northeastern Oregon and Exploring Eligibility of Silvopasture to Enroll in Carbon Markets in the United States Abstract Approved: ___________________________________________________________________________________ Badege Bishaw ABSTRACT Silvopasture is the planned and managed agroforestry system in which forage, livestock, and trees or shrubs are integrated in order to enhance individual components. Silvopasture has been identified as the most promising agroforestry system for the Pacific Northwest and Southeast United States. However, there have been few studies describing the economic viability of silvopasture in these regions. There are two objectives explored in this study: first, to determine the potential for silvopasture as an economically viable income source to farmers in eastern North Carolina and northeastern Oregon by calculating the Land Expectation Value (LEV), Net Present Value (NPV), Internal Rate of Return (IRR), and Annual Expectation Value (AEV), of realistic silvopastoral management regimes, compared to traditionally managed timber or livestock farms; second, to explore whether silvopasture can store as much or more carbon than a traditionally stocked timber plantation, and whether profits from sequestered carbon are possible at this time in the United States. The most profitable silvopasture regimes for eastern North Carolina were cool season grasses combined with loblolly pine at a four percent real discount rate (LEV = $1,025 per acre) and cool season grasses combined with longleaf pine at a four percent real discount rate (LEV = $285 per acre).
    [Show full text]
  • Shadows and Ghosts: Lost Woods in the Landscape
    Wild Thing?? Managing Landscape Change and Future Ecologies 9th to 11th September 2015 Conference Abstracts With the Ancient Tree Forum and the European Society for Environmental History ************************************************************************************ Visit our website: www.ukeconet.org The South Yorkshire ECONET (Biodiversity Research Group) ch/0915 1 ch/0915 2 Issues of perceptions, history & science in severance & wilding Professor Ian Rotherham, Dept. of Natural & Built Environment - Sheffield Hallam University, [email protected] Summary Following seminal texts by Adams1 (Future Nature: a vision for conservation), Peter Taylor2 (Beyond Conservation), and Vera3 (2000), there has been renewed interest in addressing conservation problems through radical new approaches. Indeed, there is a growing feeling that conservation has failed to deliver and in the age of politically enforced austerity, the situation will worsen. In this context, ‘wilding’ and ‘wilder’ landscapes, applied effectively and sensitively, offer huge, exciting benefits for biodiversity, heritage, and amenity. However, there are significant pitfalls if implementation lacks careful planning and design. The ‘eco-cultural nature’5 of landscape, resulting from long-term, intimate interactions between people and ecologies is important, and across Europe particularly, twenty-first century depopulation means rural landscapes abandoned’ not ‘wilded’. Ecology, communities, and economies are potentially devastated4. Alongside urbanisation of rural landscapes, these socio-economic and demographic changes cause ‘cultural severance’6,7, with long-term, often rapid, declines in biodiversity and landscape quality. Furthermore, from urban to remote, rural areas, attitudes to, and perceptions of, ‘alien’ invasive species challenge to attempts to ‘wild’ the landscape. Feral species, exotic plants and animals, and invasive natives forming recombinant biodiversity5,8, but ‘re-wilding’ discussions rarely mention feral and exotic.
    [Show full text]
  • Silvopasture
    Regenerative Agriculture Practices Fact Sheet Silvopasture Silvopasture is an agroforestry practice that intentionally integrates trees, and pasture and forage crops into a single system for raising livestock. Research shows that pastures with trees sequester five to ten times as much carbon in biomass and in the soil as same-size operations that have no trees. They also provide multiple benefits to farmers in terms of providing shade for the animals and diverse food sourc- es, added income through the production of nuts, fruit, timber, and forest products like mushrooms, improved soil fertility and biodiversity. The animals and land seem to be healthier with higher meat and dairy yields, and the farms are more resilient due to the diversity of income possibilities. There are challenges in this approach, however, that require relearning how farming is done. In particular, it is important to incorporate managed grazing techniques where the animals rotate through different sec- tions of the land for true success. Benefits Potential Considerations • Increases biodiversity • May need to learn a new approach to • Improves ecosystem function and farming that embraces diverse practices resiliency • Expense to add trees and paddocks if not • Trees provides a windbreak, preventing there already erosion • Research and time to learn what will • Provides shelter and food for livestock work on your particular property • Can provide an additional cash crop • Increased ongoing management needs— • Increases carbon sequestration rotational grazing should be considered • Lowers risk through diversification a requirement Regenerative Agriculture Practices Fact Sheet Resources Six key principles for a Silvopasture—National Agro- Silvopasture: An Agroforestry successful silvopasture forestry Center, USDA Practice Tips by Steve Gabriel of the Multiple silvopasture resources Guide to Silvopasture practice Cornell small farms program.
    [Show full text]
  • Establishment of Silvopasture in Existing Pastures1 Jarek Nowak, Alan Long, and Ann Blount2
    FOR107 Establishment of Silvopasture in Existing Pastures1 Jarek Nowak, Alan Long, and Ann Blount2 Private forest landowners and cattle ranchers who combine Converting Pastures to timber, forage, and livestock into one production system increase the benefits they might receive from their land Silvopastures compared to management for just one of these commodi- Silvopastures are usually established by planting trees ties. This intentionally integrated and intensively managed in existing pastures. This eliminates costs of forage system, known as silvopasture, can diversify revenue, establishment, shrub and brush control, or removal of enhance environmental benefits, and boost aesthetics of timber harvest residues. Well established and managed agricultural or forestry operations. Diversified cash flow is bahiagrass, bermudagrass, or other similar pastures are becoming especially important as landowners face unfavor- most suitable. Planting density varies from 100 to 450 trees able product prices when they rely on just a single com- per acre depending on tree species, product objectives, and modity. Silvopasture is different from rangeland or woodlot anticipated level of management intensity. If fewer trees grazing in that it employs improved forage. Rangeland are planted, thinning of pulpwood size trees may not be grazing relies on native forages, whereas there may be no necessary. However, when grown at wider spacings, most real forage except for opportunistic browse in woodlot species will require pruning for quality timber production. grazing. Silvopasture has been practiced in the Southeast as Standard tree planting methods and equipment can be “tree-pasture” or “pine-pasture” since the early 1950s. used, as described below. Silvopasture establishment requires a number of different Site Preparation management steps depending on previous land use.
    [Show full text]
  • Tree Selection Guide for Mid-Atlantic Silvopastures
    TREE SELECTION GUIDE FOR MID-ATLANTIC SILVOPASTURES Dana Kirley Beegle Project submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Forestry in Forest Resources and Environmental Conservation John F. Munsell, Committee Chair John H. Fike James L. Chamberlain September 25, 2018 Blacksburg, Virginia Keywords: Agroforestry, Grazing, Livestock, Silvopasture, Tree Selection TREE SELECTION GUIDE FOR MID-ATLANTIC SILVOPASTURES Dana Kirley Beegle GENERAL AUDIENCE ABSTRACT Silvopasture is a farming practice that intentionally combines trees, forages, and livestock grazing for the purpose of increasing overall productivity. Although silvopasture in the United States has historically been concentrated in the southeast, it holds great promise in the Mid-Atlantic region as well. However, lack of research and information specific to silvopasture in this region, has kept adoption rates low. An important management decision for silvopasture establishment is tree selection. However, no comprehensive list or selection guide has been developed for silvopastures in the Mid-Atlantic region specifically. This project seeks to fill that void. To create our guide, we used a variety of horticulture- and forestry-based information sources to research trees native to the Mid-Atlantic region. For each tree, we collected information relevant to silvopasture establishment, and used this information to select a diverse group of 20 trees that are highly suitable and productive for silvopastures in the Mid- Atlantic based on crown characteristics, rooting patterns, and growth rate. This information is presented in a quick-reference chart entitled a Tree Selection Guide for Mid-Atlantic Silvopastures. It includes a brief description of how to use the chart as well as guidance on source and availability of plant material.
    [Show full text]
  • Silvopasture Works with Landscape, Climate to Meet Farming Goals
    How to decide Research results MOSES Conference Cooperative which market for no-till in registration opens model for CSA is best fit organic system Nov. 30 marketing Page 5 Page 9 Page 10 Page 13 Volume 23 | Number 6 Midwest Organic & Sustainable Education Service November | December 2015 Silvopasture works with landscape, climate to meet farming goals By Keefe Keeley Although a subject of contem- ■ Interactive relationships porary agricultural science, silvo- among tree, livestock, and pasture has timeless roots. The forage components; word comes from the Latin silva ■ Integrated function in a single for forest, or the Roman deity management unit, including Silvanus, known for protecting both farm and forest produc- woodlands, fields, and flocks of tion as well as amenity values livestock. Aptly enough, silvopas- such as wildlife habitat, water ture integrates these very ele- quality, and soil conservation. ments of the farm. Although still relatively In more recent history, USDA uncommon in the Midwest, scientist J. Russell Smith silvopasture is big business in researched the value of trees in other parts of the world. Dehesa agricultural systems. The first silvopasture in Spain and Portu- half of his classic volume Tree gal covers about 5 million acres Crops is devoted to the use of (one-seventh the area of Wiscon- trees in livestock production. sin). This cultural landscape Silvopasture—the integration Icelandic sheep graze under hickory trees at Badgersett Farm in Canton, Minn. features oak for cork, acorns for of livestock, pasture, and tree Photo by Tobias Carter, Savanna Institute high-value Iberian ham, and crops—offers a modern method fodder for other livestock to to achieve Smith’s vision of trees providing for Not to be confused with the tree-like Ents graze among the trees.
    [Show full text]
  • Silvopasture Handbook
    Silvopasture: Establishment & management principles for pine forests in the Southeastern United States February 2008 Editor: Jim Hamilton, Ph.D. Production coordinator: Kimberly Stuhr Layout & design: Ryan Dee USDA National Agroforestry Center 1945 N. 38th Street Lincoln, NE 68583–0822 www.unl.edu/nac www.workingtrees.org A partnership of Dedicated to retired U.S. Forest Service researchers Cliff Lewis, Henry Pearson, and Nathan Byrd. Your vision and dedication to improving forest and range management are the strong roots that support the advancement of silvopasture management today. Background This guidebook was created with the hope of improv- ing the value of silvopasture training in two ways: it will be available for use during training sessions and will serve as a concise field companion when planning future silvopastures. The information and principles contained in this initial printing have been reviewed by researchers and natural resource experts. It is anticipated that future versions of the guidebook will incorporate recommendations that result from actual field use and from training sessions. About the editor Jim Hamilton, Ph.D. is a forestry instructor at Haywood Community College in Clyde, NC. He has worked on a number of agroforestry projects in Paraguay, and with silvopasture systems and landowner education as an Extension Agent with Cooperative Extension in North Carolina and Alabama A&M University. Acknowledgments Sid Brantly, NRCS Kentucky Dr. Terry Clason, NRCS Louisiana Dr. Mary Goodman, Auburn University Dr. Joshua Idassi, Tennessee State University George Owens, Florida silvopasturist Dr. Ann Peischel, Tennessee State University James L. Robinson, NRCS Texas Dr. Greg Ruark, U.S. Forest Service Homer Sanchez, NRCS Texas Dr.
    [Show full text]
  • Silvopasture in Wisconsin: Research Observations
    Silvopasture in Wisconsin: Research observations Diane Mayerfeld Forest to silvopasture Advantages: • Speed • Money?? • Tree form Disadvantages: • Less control of species & loca8on • Risk of logging damage • Stumps Sometimes converting woods to silvopasture is not appropriate • If the woods are in MFL or have another legal restric8on on grazing • If the soils are too wet or the slopes are too steep • If the woods have spring ephemerals or other sensi8ve flora you want to keep • If the woods have young trees that you want to keep (<4”dbh) • If the woods have high-quality 8mber, weigh the poten8al cost of damage • If management capacity is limited 3 Step 1: consult a forester What is the site’s forestry and wildlife poten8al? hOps://dnr.wi.gov/topic/forestlandowners/locator/ Step 2: what are your goals? • Shade? • Firewood? • Control shrubs? • Wildlife habitat? • Savanna habitat? • Timber? • Emergency fodder? 4 • Other? Silvopasture: Pasture into trees Plan • Canopy management • Forage establishment Tree/Shade Management • Rota8onal grazing Livestock Husbandry Forage Management Design options Silvopasture throughout Silvopasture with open pasture 6 Crop tree selection 7 Crop Tree Thinning 8 Patch tree thinning 9 10 Other tips • Aim for around 30-50% canopy coverage • risk of windthrow -- but -- tree canopies will fill out • Mark trees before you thin • If oaks are present avoid logging April 1 – July 15 • Conduct thinning when ground is frozen or dry 11 Have a plan for slash 12 After thinning: • Grass seed can be broadcast by hand or from
    [Show full text]
  • Greenhouse Gas Mitigation and Accounting. In: Agroforestry
    Chapter 3 Greenhouse Gas Mitigation and Accounting Michele Schoeneberger and Grant Domke Michele Schoeneberger is research program lead and soil scientist (retired), U.S. Department of Agri­ culture (USDA), Forest Service, USDA National Agroforestry Center; Grant Domke is team leader and research forester, USDA Forest Service, Forest Inventory and Analysis. Contributors: P.K.R. Nair, Marlen Eve, Alan Franzluebbers, Christopher Woodall, Toral Patel­ Weynand, James Brandle, and William Ballesteros Possu P.K.Ramachandran Nair is the distinguished professor of agroforestry at the School of Forest Resources and Conservation, University of Florida; Marlen Eve is the national program leader for Natural Resources and Sustainable Agricultural Systems, USDA Agricultural Research Service; Alan Franzluebbers is a research plant physiologist, USDA Agricultural Research Service; Christopher Woodall is project leader and research forester, USDA Forest Service, Northern Research Station, Center for Research on Ecosystem Change; Toral Patel-Weynand is the director of Sustainable Forest Management Research, USDA Forest Service, Research and Development; James Brandle is emeritus shelterbelt professor, School of Natural Resources, University of Nebraska; William Ballesteros Possu is associate professor, agrarian sciences faculty, University of Nariño. It is well documented that forests provide significant carbon ability to offset these emissions through the use of management (C) sequestration (McKinley et al. 2011). In the 2013 U.S. practices, of which TOF-based practices and, specifically, the Department of Agriculture (USDA) Greenhouse Gas Inventory, TOF practice of agroforestry, are now included (CAST 2011, forests, urban trees, and harvested wood accounted for the Denef et al. 2011, Eagle and Olander 2012, Eve et al. 2014). majority of agricultural and forest sinks of carbon dioxide Agroforestry is the intentional integration of woody plants (CO2) (USDA-OCE 2016).
    [Show full text]
  • Working Trees for Silvopasture
    Working Trees Combining Working Trees with forage and livestock produces Silvopasture marketable products and maintains long- An agroforestry practice term productivity. We chose a ilvopasture integrates trees, increases the comfort level for Other benefits include natural silvopasture S livestock, and forage into a livestock which reduces stress. insect control, opportunities for system so we could single system on one site. recreational activities like hunting The structure and plant diversity and birdwatching, and enhanced maximize our return These components diversify of silvopastures is attractive to aesthetics and property values. “ income sources. Annual income many wildlife species including from the land—from the cattle as well as from grazing and long-term wild turkey, quail, deer, and Silvopasture is becoming an the timber—over the profits from trees respond to many songbirds. important land-management different market pressures and strategy on many farms and next 20 to 25 years.” reduce risk when combined in Silvopastures are inherently ranches in the southeastern —George Owens, the same operation. sustainable systems. They United States. It is becoming Chipley, FL increase biological diversity, more important on farms and Shade from the trees lengthens protect water quality, reduce soil ranches where coniferous trees the forage growing season and erosion, and improve the water exist in other parts of the improves forage quality. It also holding capacity of the soil. country as well. Components of silvopasture Management of trees, cattle, and forage is more complex than management for single products, but can yield profitable returns for many years.” “ —Nathan Byrd & Cliff Lewis, USFS Southern Forest Experiment Station Trees Livestock Forage & browse Soil Locally marketable tree species Currently, silvopasture systems A variety of plant types, Adequate soil fertililty, proper can provide significant long- primarily involve cattle, goats, including shrubs, grass, pH, and well-developed term income.
    [Show full text]