Anatomical Variations in the Branches of External Carotid Artery in Cadavers of Nepalese Origin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Variations of the Subclavian Artery and Its Branches Ahmet H
Okajimas Folia Anat. Jpn., 76(5): 255-262, December, 1999 The Variations of the Subclavian Artery and Its Branches By Ahmet H. YUCEL, Emine KIZILKANAT and CengizO. OZDEMIR Department of Anatomy, Faculty of Medicine, Cukurova University, 01330 Balcali, Adana Turkey -Received for Publication, June 19,1999- Key Words: Subclavian artery, Vertebral artery, Arterial variation Summary: This study reports important variations in branches of the subclavian artery in a singular cadaver. The origin of the left vertebral artery was from the aortic arch. On the right side, no thyrocervical trunk was found. The two branches which normally originate from the thyrocervical trunk had a different origin. The transverse cervical artery arose directly from the subclavian artery and suprascapular artery originated from the internal thoracic artery. This variation provides a short route for posterior scapular anastomoses. An awareness of this rare variation is important because this area is used for diagnostic and surgical procedures. The subclavian artery, the main artery of the The variations of the subclavian artery and its upper extremity, also gives off the branches which branches have a great importance both in blood supply the neck region. The right subclavian arises vessels surgery and in angiographic investigations. from the brachiocephalic trunk, the left from the aortic arch. Because of this, the first part of the right and left subclavian arteries differs both in the Subjects origin and length. The branches of the subclavian artery are vertebral artery, internal thoracic artery, This work is based on a dissection carried out in thyrocervical trunk, costocervical trunk and dorsal the Department of Anatomy in the Faculty of scapular artery. -
The Ascending Pharyngeal Artery: a Collateral Pathway in Complete
AJNR :8, January/February 1987 CORRESPONDENCE 177 cavernous sinuses acute inflammation, granulation tissue, and throm which it partiCipates. This report describes two cases in which bus surrounded the nerves and internal carotid arteries. The left common carotid angiography showed complete occlu sion of the carotid artery was intact, but focally inflammed. The right internal internal carotid artery at its origin. Subsequent vertebral angiography carotid artery was focally necrotic, acutely inflammed and ruptured, in both cases showed reconstitution of thi s vessel several millimeters with hemorrhage emanating from the defect. above the origin by the ascending ph aryngeal artery , which had an unusual origin from the internal carotid artery [2]. Endarterectomy as a technical option was feasible in both cases becau se the occluded Discussion segments were only millimeters in length . The first patient, a 59-year-old man , presented 5 days before We are not aware of any instances of air within the cavernous admission with a sudden pareS is of the right arm and leg. Angiograph y sinus in a normal patient or after trauma. Our case demonstrates revealed complete occlusion of the left internal carotid artery with a several of the reported findings in cavernous sinus thrombosis includ small , smooth stump (Fig. 1 A) . A left vertebral arteriogram demon ing bulging of the lateral walls , irregular low-attenuation filling defects strated reconstitution of the left internal carotid artery just above the within the cavernous sinus, and proptosis (Fig . 1). occlusion (Fig . 1 B). Collateral supply was from mu scular branches of It is unclear whether the air within the sinus originated from a gas the vertebral artery, which anastomosed with muscular branches of forming organism or via direct extension from one of the sinuses via the ascending pharyngeal artery. -
Lingual Perimandibular Vessels Associated with Life-Threatening Bleeding: an Anatomic Study
Mardinger.qxd 1/25/07 2:55 PM Page 127 Lingual Perimandibular Vessels Associated with Life-Threatening Bleeding: An Anatomic Study Ofer Mardinger, DMD1/Yifat Manor, DMD2/Eitan Mijiritsky, DMD3/Abraham Hirshberg, MD, DMD4 Purpose: To describe the anatomy of the lingual perimandibular vessels and emphasize the distance to the bone. Materials and Methods: The hemifacial lower third was dissected in 12 human cadavers. The blood vessels in the floor of the mouth were exposed using sagittal incisions at the canine, mental foramen, and second molar areas. Results: The diameter of the dissected vessels ranged from 0.5 to 3 mm (mean, 1.5 mm). Most vessels were found superior to the mylohyoid muscle in the canine area and beneath the muscle in the mental and second molar areas. The smallest median vertical distance from blood vessel to bone was in the canine area (14.5 mm), followed by the mental foramen area (15.5 mm) and the second premolar area (19 mm). The median horizontal distance of the vessels from the lingual plate was 2 mm at the canine and second molar areas and 4 mm at the mental area. Discussion: Lingual plate perforation, especially anterior to the canine area, can easily injure blood vessels in the floor of the mouth and cause life-threatening hemorrhage following implant placement. Bleeding can occur when the mandibular lingual plate is perforated. Care should be taken to recognize situations where this complication may occur. Conclusions: Based on the study of human cadavers, it appears that vessels in the floor of the mouth are sometimes in close proximity to the site of implant placement. -
Branches of the External Carotid Artery of the Dromedary, Camelus Dromedarius Artery Origin Course Distribution
Table 3.4: Branches of the External Carotid Artery of the Dromedary, Camelus dromedarius Artery Origin Course Distribution Originates at the bifurcatio of the occipital artery from the common carotid artery. Superficial Occipital region, lateral face, pharynx, Common Carotid External Carotid course is throughout occipital and posteroinferior tongue, hyoid musculature, and Artery facial regions; deeper course is throughout sublingual glands. pharyngeal, lingual, and hyoid regions. The proper occipital artery is the first dorsal branch of the ECA. It arises near the caudal border of the wing of the atlas, traverses the atlantal fossa, and then splits into: 1. Multitude External Carotid of muscular branches; 2. Anastomosis with Collateral circulation with vertebral Occipital Artery vertebral artery (through alar foramen); 3. arteries; neck and occipital muscles Superior termination continues to course toward the external occipital protuberance, supplying the parenchyma of the occipital region inferior to and surrounding the foramen magnum. Variable origin: from the ECA or the "ascending pharyngeal." Condylar and ascending pharyngeal External Carotid may share a short common trunk. An anterior Artery (var: branch of the condylar artery follows the Inferior meninges and inferolateral Condylar Ascending hypoglossal nerve into the hypoglossal canal to occipital region. Pharyngeal) supply the inferior meninges. A posterior branch of the condylar provides collateral circulation to the occipital region. External Carotid Small, tortuous division from medial wall of Cranial Thyroid Thyroid Artery ECA From posteromedial surface of ECA Descending External Carotid immediately posterior to the jugular process. Extensive distribution throughout the Pharyngeal Artery Convoluted and highly dendritic throughout the pharynx lateral and posterior wall of the pharynx. -
Arterial Distribution in the Region of the Floor of the Mouth of the Rat by Plastic Injection Method
Okajimas Folia Anat. Jpn., 56(1) : 45-66, May 1979 Arterial Distribution in the Region of the Floor of the Mouth of the Rat by Plastic Injection Method By HARUYOSHI OTSUKA The 2nd Department of Oral Anatomy, Josai Dental University, Sakado, Saitama 350-02, Japan (Director : Professor H. Hanai) (With one table, two textfigures and 16 figures in 4 plates) -Received for Publication, November 1, 1978- Key Words : Floor of mouth, Artery, Corrosion cast, Comparative anatomy Summary. The arterial distributions in the region of the floor of the mouth in the rat were studied by means of the acryl plastic injection method. 1. The region and its related tissues were supplied mainly by branches of the sub- lingual artery of the facial, and partly by branches of the tonsillar of the facial and branches of the ascending palatine of the lingual. 2. Branches of the sublingual artery were the submandibular lymph node branch, the muscular branches, the submental branch, the mandibular transversal branches, the mucous branch, the genioglossal branches, the preincisive branch, the retroincisive branch and the alveolar branch. 3. Branches of the tonsillar artery were the mucous branch and the mylohyoid branches. 4. A forward branch and small twigs of the ascending palatine were distributed to the posterior small part of the region. 5. Between the above-mentioned branches and the lingual artery, any marked anastomoses were not observed. Preface structed, and that, therefore, the sufficient observation has been difficult by using It is very important to survey the the common dissection method. arterial distribution in the oral region in This paper was undertaken to reveal the rat since this animal is the most the detailed arterial distribution and commonly used in many kinds of ramification of the distributing arteries medico-dental research. -
Lingual Arterial Trunk from External Carotid Artery: a Case Report
Article ID: WMC003533 ISSN 2046-1690 Bilateral Facio- Lingual Arterial Trunk From External Carotid Artery: A Case Report Corresponding Author: Dr. Sandeep Shah, Doctor, Department of Anatomy, BP Koirala Institute of Health Sciences - Nepal Submitting Author: Dr. Sarun Koirala, Assistant Professor, Department of Human Anatomy, BP Koirala Institute of Health Sciences, 56700 - Nepal Article ID: WMC003533 Article Type: Case Report Submitted on:06-Jul-2012, 03:29:41 AM GMT Published on: 06-Jul-2012, 09:42:32 PM GMT Article URL: http://www.webmedcentral.com/article_view/3533 Subject Categories:ANATOMY Keywords:Facial Artery, External Carotid Artery, Head and Neck Surgery How to cite the article:Shah S, Koirala S. Bilateral Facio- Lingual Arterial Trunk From External Carotid Artery: A Case Report. WebmedCentral ANATOMY 2012;3(7):WMC003533 Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License(CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source(s) of Funding: None Competing Interests: None Additional Files: BILATERAL FACIO - LINGUAL ARTERIAL TRUNK FROM EXTE BILATERAL FACIO - LINGUAL ARTERIAL TRUNK FROM EXTE WebmedCentral > Case Report Page 1 of 5 WMC003533 Downloaded from http://www.webmedcentral.com on 16-Feb-2016, 01:35:05 PM Bilateral Facio- Lingual Arterial Trunk From External Carotid Artery: A Case Report Author(s): Shah S, Koirala S Abstract to ensure accurate arterial ligation during Oral and Maxillo-Facial Surgery and Radical Neck Dissection.This knowledge can also help radiologists to understand and interpret Carotid System The common carotid arteries provide the major source Imagings[8]. -
SAY: Welcome to Module 1: Anatomy & Physiology of the Brain. This
12/19/2018 11:00 AM FOUNDATIONAL LEARNING SYSTEM 092892-181219 © Johnson & Johnson Servicesv Inc. 2018 All rights reserved. 1 SAY: Welcome to Module 1: Anatomy & Physiology of the Brain. This module will strengthen your understanding of basic neuroanatomy, neurovasculature, and functional roles of specific brain regions. 1 12/19/2018 11:00 AM Lesson 1: Introduction to the Brain The brain is a dense organ with various functional units. Understanding the anatomy of the brain can be aided by looking at it from different organizational layers. In this lesson, we’ll discuss the principle brain regions, layers of the brain, and lobes of the brain, as well as common terms used to orient neuroanatomical discussions. 2 SAY: The brain is a dense organ with various functional units. Understanding the anatomy of the brain can be aided by looking at it from different organizational layers. (Purves 2012/p717/para1) In this lesson, we’ll explore these organizational layers by discussing the principle brain regions, layers of the brain, and lobes of the brain. We’ll also discuss the terms used by scientists and healthcare providers to orient neuroanatomical discussions. 2 12/19/2018 11:00 AM Lesson 1: Learning Objectives • Define terms used to specify neuroanatomical locations • Recall the 4 principle regions of the brain • Identify the 3 layers of the brain and their relative location • Match each of the 4 lobes of the brain with their respective functions 3 SAY: Please take a moment to review the learning objectives for this lesson. 3 12/19/2018 11:00 AM Directional Terms Used in Anatomy 4 SAY: Specific directional terms are used when specifying the location of a structure or area of the brain. -
The International Journal of Periodontics & Restorative Dentistry
The International Journal of Periodontics & Restorative Dentistry © 2017 BY QUINTESSENCE PUBLISHING CO, INC. PRINTING OF THIS DOCUMENT IS RESTRICTED TO PERSONAL USE ONLY. NO PART MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM WITHOUT WRITTEN PERMISSION FROM THE PUBLISHER. 347 Mandibular Regional Anatomical Landmarks and Clinical Implications for Ridge Augmentation Istvan A. Urban, DMD, MD, PhD1 Vertical and horizontal ridge aug- Alberto Monje, DDS2,3 mentation of the severely atrophic Hom-Lay Wang, DDS, MSD, PhD3/Jaime Lozada, DDS1 posterior and anterior mandible is Gabor Gerber, DMD, PhD4/Gabor Baksa, MD5 considered the most challenging scenario for implant-supported oral rehabilitation in implant dentistry. Mandibular ridge augmentation via guided bone regeneration in the atrophic Due to the presence of the inferior mandible is considered one of the most challenging scenarios for implant- alveolar neurovascular bundle and supported oral rehabilitation. Uneventful wound healing has clearly demonstrated the submandibular fossa, this region its impact on the final regenerative outcome. Soft tissue management must be is remarkable for its high risk dur- precise and adequate to attain flap-free wound closure. Accordingly, it demands 1–3 exhaustive insight and expertise to avoid damaging the neighboring structures. ing implant placement. Compli- The cadaver study described herein discusses the mandibular morphologic cations in this zone include but are landmarks (ie, musculature, vascularization, innervation, and salivary glands) not limited to sensory disturbances necessary to safely perform regenerative procedures in the atrophic mandibular or trauma of the sublingual and sub- ridge, such as vertical ridge augmentation and dental implant surgery. The mental arteries with consequential potential intraoperative complications are presented, as well as clinical implications hematoma in the submandibular of which the clinician must be aware to prevent adverse surgical events during 4 regenerative surgery and implant placement in this anatomical region. -
Palate, Tonsil, Pharyngeal Wall & Mouth and Tongue
Mouth and Tongue 口腔 與 舌頭 解剖學科 馮琮涵 副教授 分機 3250 E-mail: [email protected] Outline: • Skeletal framework of oral cavity • The floor (muscles) of oral cavity • The structure and muscles of tongue • The blood vessels and nerves of tongue • Position, openings and nerve innervation of salivary glands • The structure of soft and hard palates Skeletal framework of oral cavity • Maxilla • Palatine bone • Sphenoid bone • Temporal bone • Mandible • Hyoid bone Oral Region Oral cavity – oral vestibule and oral cavity proper The lips – covered by skin, orbicularis muscle & mucous membrane four parts: cutaneous zone, vermilion border, transitional zone and mucosal zone blood supply: sup. & inf. labial arteries – branches of facial artery sensory nerves: infraorbital nerve (CN V2) and mental nerve (CN V3) lymph: submandibular and submental lymph nodes The cheeks – the same structure as the lips buccal fatpad, buccinator muscle, buccal glands parotid duct – opening opposite the crown of the 2nd maxillary molar tooth The gingivae (gums) – fibrous tissue covered with mucous membrane alveolar mucosa (loose gingiva) & gingiva proper (attached gingiva) The floor of oral cavity • Mylohyoid muscle Nerve: nerve to mylohyoid (branch of inferior alveolar nerve) from mandibular nerve (CN V3) • Geniohyoid muscle Nerve: hypoglossal nerve (nerve fiber from cervical nerve; C1) The Tongue (highly mobile muscular organ) Gross features of the tongue Sulcus terminalis – foramen cecum Oral part (anterior 2/3) Pharyngeal part (posterior 1/3) Lingual frenulum, Sublingual caruncle -
Anatomical Model for Dissection in Corpses of the Palate Vascularization
Original Article Anatomical Model for Dissection in Corpses of the Palate Vascularization Modelo Anatômico para Dissecção em Cadáveres da Vascularização do Palato Carlos Diógenes Pinheiro Neto*, Henrique Faria Ramos**, Felipe Sartor Guimarães Fortes*, Luiz Ubirajara Sennes***, Nivaldo Alonso****, Rubens Vuono de Brito Neto***. * Specialist in Otorhinolaryngology ABORL-CCF. Graduate PhD in Otorhinolaryngology by FMUSP. ** Specialist in Otorhinolaryngology ABORL-CCF. Otolaryngologist the Office of Medical Assistance to the State Civil Servants - SP (IAMSPE). *** Lecturer, Discipline of Otorhinolaryngology, FMUSP. Associate Professor of Otorhinolaryngology at FMUSP. **** Associate Professor, FMUSP. Chief of Surgery Craniomaxillofacial, HC-FMUSP. Instituition: Faculdade de Medicina da USP. São Paulo / SP - Brazil. Mail Address: Prof. Dr. Luiz Ubirajara Sennes - 483, Teodoro Sampaio, St. - Pinheiros - São Paulo / SP - Brazil - ZIP CODE: 05405-000 - Telephone: (+55 11) 3068-9855 - E-mail: [email protected] Article received on March 9, 2010. Article approved on March 10, 2010. SUMMARY Introduction: The main artery that supplies the mucoperiosteum of the hard palate is the greater palatine artery. The knowledge detailed of the vascular anatomy of the palate and, in special, of the region of the greater palatine foramen is important for prevention of lesions vascular during procedures in this region. Among these procedures, it included the making of shreds for correction of failures in the hard palate, soft palate and cranial base. Objective: To develop an anatomical model that can illustrate the endoscopic anatomy of the greater palatine foramen and analyze the technical of injection intra vascular of colored silicone is sufficient for fill the lower arterial branches than irrigate the hard palate. Method: The form of study was experimental through the endoscopic dissection of 10 greater palatine arteries in five heads of corpses prepared with injection intra vascular of colored silicone. -
Rhesus Monkey with Emphasis on the External Carotid System '
The Arterial System of the Head and Neck of the Rhesus Monkey with Emphasis on the External Carotid System ' WALTER A. CASTELLI AND DONALD F. HUELKE Department of Anatomy, The University of Michigan, Ann Arbor, Michigan ABSTRACT The arterial plan of the head and neck of 64 immature rhesus mon- keys (Macacn mulatta) was studied using four techniques - dissection, corrosion preparations, cleared specimens, and angiographs. In general, the arterial plan of this area in the monkey is similar to that of man. However, certain outstanding differ- ences were noted. The origin, course, and distribution of all arteries is described as well as the vascular relations to pertinent structures. As has been mentioned previously 10% formalin except 17 which were un- (Dyrud, '44; Schwartz and Huelke, '63) embalmed. Four different techniques were the rhesus monkey is useful for many used for the study of the arterial distribu- types of medical and dental investigations, tion : ( 1 ) dissections - 27 specimens; (2) yet its detailed gross morphology is virtu- corrosion preparations - 6; (3) cleared ally unknown. Although certain areas of specimens - 15; (4) angiographs - 16 the monkey have been studied in detail - heads ( 11 unembalmed and 5 embalmed). brachial plexus, facial and masticatory The arterial system of the specimens used musculature, subclavian, axillary and cor- for dissection was injected with vinyl ace- onary arteries, orbital vasculature, and tate, red latex, or with a red-colored gela- other structures (Schwartz and Huelke, tion mass. For the dissection of smaller ar- '63; Chase and DeGaris, '40; DeGaris and teries, the smallest of 150 ~1 in diameter, Glidden, '38; Chase, '38; Huber, '25; Wein- the binocular dissection microscope was stein and Hedges, '62; Samuel and War- used. -
Anatomical Study of the Carotid Bifurcation and Origin Variations of the Ascending Pharyngeal and Superior Thyroid Arteries
Folia Morphol. Vol. 70, No. 1, pp. 47–55 Copyright © 2011 Via Medica O R I G I N A L A R T I C L E ISSN 0015–5659 www.fm.viamedica.pl Anatomical study of the carotid bifurcation and origin variations of the ascending pharyngeal and superior thyroid arteries A. Al-Rafiah, A.A. EL-Haggagy, I.H.A. Aal, A.I. Zaki Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, KSA, Saudi Arabia [Received 12 October 2010; Accepted 13 January 2011] Background: Human anatomy texts in current use have very little precise infor- mation as to the frequency of variations in the bifurcation of the common carotid artery, and a clear description of the relation between external and internal carotid arteries as well as the variation of the origin of the ascending pharyngeal and superior thyroid arteries is limited. Material and methods: Sixty common carotid arteries in the sagittal section of the head and neck of 30 human adult cadavers were obtained from the Ana- tomy Department of King Abdulaziz University. The data collected were analy- sed using the Chi square-test. Results: The carotid bifurcation was at the level of the superior border of the thyroid cartilage in 48.3% of cases, 25% were opposite the hyoid bone, and 18.3% were at the level between the thyroid cartilage and the hyoid bone. The bifurcation appeared at a lower level than the superior border of the thyroid cartilage in 5% of cases, while in 3.3% of cases the bifurcation level was seen higher than the hyoid bone.