Tongue Necrosis As an Unusual Presentation of Carotid Artery Stenosis

Total Page:16

File Type:pdf, Size:1020Kb

Tongue Necrosis As an Unusual Presentation of Carotid Artery Stenosis View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector CASE REPORTS From the Midwestern Vascular Surgical Society Tongue necrosis as an unusual presentation of carotid artery stenosis Paul M. Bjordahl, MD, and Alex D. Ammar, MD, Wichita, Kan A 57-year-old man with premature coronary artery disease presented to the emergency department with left facial pain, numbness, and tongue swelling. The patient was found to have significant tongue necrosis, and subsequent arteriography demonstrated carotid bifurcation stenosis with embolization to the left lingual artery. The patient was successfully treated with debridement of his tongue and left carotid endarterectomy. (J Vasc Surg 2011;54:837-9.) The principal vascular supply to the tongue is through examination, the patient was found to have a pale, ischemic appear- the lingual artery via the external carotid artery. The tongue ing area (2 cm ϫ 3 cm) of the left side of his tongue with evidence is thought to have limited collateral blood supply, largely of mucosal loss. He had no neurological deficits. due to the fibrous septum in its center. The ascending Computed tomographic scan of the head and neck with pharyngeal, facial, and maxillary arteries do not collateralize intravenous contrast identified significant carotid artery stenosis. the tongue. Contralateral flow via a submucosal plexus Subsequent carotid duplex scan revealed 70% stenosis of the left provides collateral supply with some addition from the internal carotid artery and severe stenosis of bilateral external ipsilateral internal carotid artery. Lingual infarction is a rare carotid arteries. The patient underwent bedside debridement of event, and has been reported less than 50 times in the the insensate portion of the necrotic area of the front of his tongue literature. Almost all cases have been attributed to cranial by an oral surgeon. The patient had full thickness necrosis of his arteritis, often with the addition of ergot alkaloids for tongue. Because of his unusual presentation, history of coronary migraine treatment.1 A more unusual cause, with four artery disease, and suspected atypical angina pectoris by the cardi- reported cases, is occlusive atherosclerotic disease of the ologist, arteriography was performed for cardiac assessment and external carotid artery.2-5 Herein, we report the case of a further workup of his carotid occlusive disease. It demonstrated previously asymptomatic male who presented with tongue 80% stenosis of the vein graft to the left anterior descending necrosis due to lingual artery embolic occlusion distal to coronary artery, which was successfully stented. In addition, arte- severe external carotid stenosis. riography confirmed Ͼ90% stenosis of both external carotid arter- ies with embolization to the left lingual artery (Figs 1 and 2). The CASE REPORT patient subsequently underwent left carotid endarterectomy. A 57-year-old man with hypertension, premature coronary The patient had an uneventful postoperative course with artery disease, and prior coronary artery bypass presented to the preservation of his lingual motor function and return of normal emergency department complaining of facial pain and numbness in appearing tongue mucosa. Recovery was lasting with over 2 years his tongue with the sensation that it had been bitten. The pain of follow-up. radiated into his left anterior neck. The patient denied history of amaurosis fugax, hemiparesis, aphasia, or prior facial pain. There DISCUSSION was no history of prior neck surgery or irradiation. On physical Tongue necrosis can be a rare presentation of carotid atherosclerotic disease. To our knowledge, this is the fifth From the Department of Surgery, University of Kansas School of Medicine- reported case of facial pain and tongue necrosis due to carotid Wichita. Competition of interest: none. occlusive disease, and the first to our knowledge, without Presented at the Thirty-fourth Annual Meeting of the Midwestern Vascular evidence of prior transient ischemic attack. Surgical Society, Midwestern Vascular 2010, Indianapolis, Ind, Septem- Because of its much higher frequency, vasculitis must ber 9-11, 2010. be considered as a differential diagnosis in any patient with Reprint requests: Alex D. Ammar, MD, Department of Surgery, Room 1 3082, University of Kansas School of Medicine-Wichita, 929 N. St. tongue ischemia and facial pain. An erythrocyte sedimen- Francis St., Wichita, KS 67214 (e-mail: [email protected]). tation rate would be helpful if vasculitis is suspected clini- The editors and reviewers of this article have no relevant financial relationships cally. Ischemia secondary to a vascular process will almost to disclose per the JVS policy that requires reviewers to decline review of any always be unilateral and confined to the tip or front half of manuscript for which they may have a competition of interest. the tongue. Other causes of tongue ischemia include hy- 0741-5214/$36.00 Copyright © 2011 by the Society for Vascular Surgery. perviscosity syndrome, radiation effects, carotid dissection, doi:10.1016/j.jvs.2011.01.057 and disseminated intravascular coagulation.6-9 837 JOURNAL OF VASCULAR SURGERY 838 Bjordahl and Ammar September 2011 Fig 1. Left carotid arteriogram demonstrating approximately 90% stenosis and in situ thrombus or embolus of the lingual artery with distal occlusion. The thin arrows outline lingual artery thrombus or embolus. The thicker arrow shows abrupt occlusion of the lingual artery presumably due to embolization. Fig 2. Early phase arteriogram demonstrating severe stenosis at the origin of the right external carotid artery. JOURNAL OF VASCULAR SURGERY Volume 54, Number 3 Bjordahl and Ammar 839 Although symptoms such as jaw pain with chewing may 2. Reed C, Inlis MJ. Acute massive gangrene of the tongue. Br Med J become manifest with ligation of one or both external 1965;2:575-6. carotid arteries, circulation to the face is well preserved 3. Bergan JJ. Ischemic necrosis of the tongue; a case report. Q Bull Northwest Univ Med Sch 1959;33:38-40. because of abundant collateral flow. In our case, however, 4. Amen F, Amen AA. Tongue ischaemia in a patient with external carotid severe stenosis in the contralateral external carotid artery artery stenosis. J Laryngol Otol 2002;116:1053-4. and embolization to the ipsilateral lingual artery abruptly 5. Orita Y, Ogawara T, Yorizane S, Nannba Y, Akagi H, Nishizaki K. compromised the limited collateral flow to the tongue, Necrosis of the tongue after transient ischemic attack. Oral Surg Oral resulting in tissue necrosis. Treatment of this condition Med Oral Pathol Oral Radiol Endod 2000;89:316-8. 6. Kamatani T, Yamashita K, Okabayashi T, Maeda H, Toi M, Yamamoto acutely may include antiplatelet therapy. Definitive treat- T. Bilateral ischemic necrosis of the tongue due to disseminated intravas- ment is endarterectomy. Debridement may be necessary for cular coagulation. Int J Oral Maxillofac Surg 2008;37:777-9. local tongue necrosis. 7. Zelch MG, Geisinger MA, Risius B. Tongue necrosis after intraarterial Carotid artery occlusive disease, particularly in the ab- vasopressin therapy. AJR 1985;144:1283-4. sence of transient ischemic attack, is a rare cause of tongue 8. Pfeiffer J, Ridder GJ. [Spontaneous tongue necrosis consecutive to necrosis. Nonetheless, it should be considered with vascu- rheumatoid hyperviscosity syndrome. A case report and literature re- view]. Laryngo Rhino Otologie 2008;87:43-8. Epub;2007, August 23. litis and other causes of tongue ischemia. 9. David JM, Paty E, Bachaud JM, Vignaud JR. [Lingual necrosis after radiotherapy. Radiation arteritis?] Rev Stomatol Chir Maxillofac 1989; REFERENCES 90:334-6. 1. Bondeson J, Ericsson UB, Falke P, Mattiasson I, Nyman U, Lindell E, et al. Tongue necrosis in temporal arteritis provoked by ergotamine. J In- tern Med 1992;232:541-4. Submitted Dec 3, 2010; accepted Jan 22, 2011..
Recommended publications
  • Ascending Pharyngeal Artery Arising from a Hypoplastic Internal Carotid Artery
    Published online: 2021-08-09 CASE REPORT Ascending pharyngeal artery arising from a hypoplastic internal carotid artery Charif A. Sidani, Rami Sulaiman1, Amr Rahal2, Danea J. Campbell Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, Fl 33136, USA, 1 Department of Radiology, Cairo University Faculty of Medicine, Cairo, Egypt, 2 School of Medicine, Saba University School of Medicine, Saba, Dutch Caribbean, Netherlands Access this article online ABSTRACT Website: www.avicennajmed.com DOI: 10.4103/2231-0770.160251 Normal vascular variants often have clinical/surgical significance and can be misinterpreted for Quick Response Code: pathology. We report a case ascending pharyngeal artery arising from a hypoplastic internal carotid artery. We provide clues to differentiate between dysgenesis and disease/thrombosis of the internal carotid artery. Key words: Carotid canal, dysgenesis of internal carotid artery, hypopharyngeal artery, vascular variants INTRODUCTION carotid artery (ECA) as well as the proximal 1 cm of the right ICA. After the normal first centimeter, the ICA became of Dysgenesis of the ICA is a rare developmental anomaly seen in narrow caliber, without evidence of thrombus or dissection, <0.01% of the population.[1,2] The term incorporates agenesis and remained of homogeneous small caliber all the way (no carotid canal or vascular remnant), aplasia (vascular into a hypoplastic carotid canal. Findings confirmed the remnant and hypoplastic carotid canal), or hypoplasia congenital nature of the small ICA [Figure 2]. (small caliber, patent lumen). These abnormalities often have clinical/surgical significance and can be misinterpreted for Arising from the medial aspect of the proximal ICA was pathology.
    [Show full text]
  • Anomalous Origin of the Middle Meningeal Artery
    The Internet Journal of Radiology ISPUB.COM Volume 4 Number 2 Anomalous Origin of the Middle Meningeal Artery from the Petrous Segment of the Internal Carotid Artery Associated with Multiple Cerebrovascular Abnormalities I Omeis, M Crupain, M Tenner, R Murali Citation I Omeis, M Crupain, M Tenner, R Murali. Anomalous Origin of the Middle Meningeal Artery from the Petrous Segment of the Internal Carotid Artery Associated with Multiple Cerebrovascular Abnormalities. The Internet Journal of Radiology. 2005 Volume 4 Number 2. Abstract A 25-year-old male with a history of seizure disorder was found incidentally on cerebral angiography to have numerous congenital anomalies of the cerebral vascular system. Among these anomalies were the derivation of the left middle meningeal artery from the petrous portion of the internal carotid artery, the presence of a left cavernous angioma, cavernous origin of the left ophthalmic artery, and an accessory middle cerebral artery. Awareness of cerebral circulatory anatomical anomalies of this nature is of importance to all physicians who plan surgical and endovascular interventions. INTRODUCTION resonance imaging (MRI) with and without gadolinium The middle meningeal artery in most individuals arises from revealed a left temporal lobe cavernoma and associated the maxillary branch of the external carotid artery and enters developmental venous anomaly in the region of the collateral the skull through the foramen spinosum. It then divides into gyrus that were unchanged from of first diagnosis (Fig. 2). anterior and posterior branches to supply the dura and An electroencephalogram (EEG) showed some mild cerebral adjacent calvarium. A few instances have been reported of dysfunction over the left temporal region with no the aberrant origin of the middle meningeal artery from epileptiform abnormality.
    [Show full text]
  • Clinical Importance of the Middle Meningeal Artery
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository FOLIA MEDICA CRACOVIENSIA 41 Vol. LIII, 1, 2013: 41–46 PL ISSN 0015-5616 Przemysław Chmielewski1, Janusz skrzat1, Jerzy waloCha1 CLINICAL IMPORTANCE OF THE MIDDLE MENINGEAL ARTERY Abstract: Middle meningeal artery (MMA)is an important branch which supplies among others cranial dura mater. It directly attaches to the cranial bones (is incorporated into periosteal layer of dura mater), favors common injuries in course of head trauma. This review describes available data on the MMA considering its varability, or treats specific diseases or injuries where the course of MMA may have clinical impact. Key words: Middle meningeal artery (MMA), aneurysm of the middle meningeal artery, epidural he- matoma, anatomical variation of MMA. TOPOGRAPHY OF THE MIDDLE MENINGEAL ARTERY AND ITS BRANCHES Middle meningeal artery (MMA) [1] is most commonly the strongest branch of maxillary artery (from external carotid artery) [2]. It supplies blood to cranial dura mater, and through the numerous perforating branches it nourishes also periosteum of the inner aspect of cranial bones. It enters the middle cranial fossa through the foramen spinosum, and courses between the dura mater and the inner aspect of the vault of the skull. Next it divides into two terminal branches — frontal (anterior) which supplies blood to bones forming anterior cranial fossa and the anterior part of the middle cranial fossa; parietal branch (posterior), which runs more horizontally toward the back and supplies posterior part of the middle cranial fossa and supratentorial part of the posterior cranial fossa.
    [Show full text]
  • The Ascending Pharyngeal Artery: a Collateral Pathway in Complete
    AJNR :8, January/February 1987 CORRESPONDENCE 177 cavernous sinuses acute inflammation, granulation tissue, and throm­ which it partiCipates. This report describes two cases in which bus surrounded the nerves and internal carotid arteries. The left common carotid angiography showed complete occlu sion of the carotid artery was intact, but focally inflammed. The right internal internal carotid artery at its origin. Subsequent vertebral angiography carotid artery was focally necrotic, acutely inflammed and ruptured, in both cases showed reconstitution of thi s vessel several millimeters with hemorrhage emanating from the defect. above the origin by the ascending ph aryngeal artery , which had an unusual origin from the internal carotid artery [2]. Endarterectomy as a technical option was feasible in both cases becau se the occluded Discussion segments were only millimeters in length . The first patient, a 59-year-old man , presented 5 days before We are not aware of any instances of air within the cavernous admission with a sudden pareS is of the right arm and leg. Angiograph y sinus in a normal patient or after trauma. Our case demonstrates revealed complete occlusion of the left internal carotid artery with a several of the reported findings in cavernous sinus thrombosis includ­ small , smooth stump (Fig. 1 A) . A left vertebral arteriogram demon­ ing bulging of the lateral walls , irregular low-attenuation filling defects strated reconstitution of the left internal carotid artery just above the within the cavernous sinus, and proptosis (Fig . 1). occlusion (Fig . 1 B). Collateral supply was from mu scular branches of It is unclear whether the air within the sinus originated from a gas­ the vertebral artery, which anastomosed with muscular branches of forming organism or via direct extension from one of the sinuses via the ascending pharyngeal artery.
    [Show full text]
  • Anatomical Considerations of the Superior Thyroid Artery: Its Origins, Variations, and Position Relative to the Hyoid Bone and Thyroid Cartilage
    Original Article http://dx.doi.org/10.5115/acb.2016.49.2.138 pISSN 2093-3665 eISSN 2093-3673 Anatomical considerations of the superior thyroid artery: its origins, variations, and position relative to the hyoid bone and thyroid cartilage Sung-Yoon Won Department of Occupational Therapy, Semyung University, Jecheon, Korea Abstract: The aim of this study was to provide accurate anatomical descriptions of the overall anatomy of the superior thyroid artery (STA), its relationship to other structures, and its driving patterns. Detailed dissection was performed on thirty specimens of adult’s cadaveric neck specimens and each dissected specimen was carefully measured the following patterns and distances using digital and ruler. The superior thyroid, lingual, and facial arteries arise independently from the external carotid artery (ECA), but can also arise together, as the thyrolingual or linguofacial trunk. We observed that 83.3% of STAs arose independently from the major artery, while 16.7% of the cases arose from thyrolingual or linguofacial trunk. We also measured the distance of STA from its major artery. The origin of the STA from the ECA was 0.9±0.4 mm below the hyoid bone. The STA was 4.4±0.5 mm distal to the midline at the level of the laryngeal prominence and 3.1±0.6 mm distal to the midline at the level of the inferior border of thyroid cartilage. The distance between STA and the midline was similar at the level of the hyoid bone and the thyroid cartilage. Also, when the STA is near the inferior border of the thyroid cartilage, it travels at a steep angle to the midline.
    [Show full text]
  • Lingual Perimandibular Vessels Associated with Life-Threatening Bleeding: an Anatomic Study
    Mardinger.qxd 1/25/07 2:55 PM Page 127 Lingual Perimandibular Vessels Associated with Life-Threatening Bleeding: An Anatomic Study Ofer Mardinger, DMD1/Yifat Manor, DMD2/Eitan Mijiritsky, DMD3/Abraham Hirshberg, MD, DMD4 Purpose: To describe the anatomy of the lingual perimandibular vessels and emphasize the distance to the bone. Materials and Methods: The hemifacial lower third was dissected in 12 human cadavers. The blood vessels in the floor of the mouth were exposed using sagittal incisions at the canine, mental foramen, and second molar areas. Results: The diameter of the dissected vessels ranged from 0.5 to 3 mm (mean, 1.5 mm). Most vessels were found superior to the mylohyoid muscle in the canine area and beneath the muscle in the mental and second molar areas. The smallest median vertical distance from blood vessel to bone was in the canine area (14.5 mm), followed by the mental foramen area (15.5 mm) and the second premolar area (19 mm). The median horizontal distance of the vessels from the lingual plate was 2 mm at the canine and second molar areas and 4 mm at the mental area. Discussion: Lingual plate perforation, especially anterior to the canine area, can easily injure blood vessels in the floor of the mouth and cause life-threatening hemorrhage following implant placement. Bleeding can occur when the mandibular lingual plate is perforated. Care should be taken to recognize situations where this complication may occur. Conclusions: Based on the study of human cadavers, it appears that vessels in the floor of the mouth are sometimes in close proximity to the site of implant placement.
    [Show full text]
  • Branches of the External Carotid Artery of the Dromedary, Camelus Dromedarius Artery Origin Course Distribution
    Table 3.4: Branches of the External Carotid Artery of the Dromedary, Camelus dromedarius Artery Origin Course Distribution Originates at the bifurcatio of the occipital artery from the common carotid artery. Superficial Occipital region, lateral face, pharynx, Common Carotid External Carotid course is throughout occipital and posteroinferior tongue, hyoid musculature, and Artery facial regions; deeper course is throughout sublingual glands. pharyngeal, lingual, and hyoid regions. The proper occipital artery is the first dorsal branch of the ECA. It arises near the caudal border of the wing of the atlas, traverses the atlantal fossa, and then splits into: 1. Multitude External Carotid of muscular branches; 2. Anastomosis with Collateral circulation with vertebral Occipital Artery vertebral artery (through alar foramen); 3. arteries; neck and occipital muscles Superior termination continues to course toward the external occipital protuberance, supplying the parenchyma of the occipital region inferior to and surrounding the foramen magnum. Variable origin: from the ECA or the "ascending pharyngeal." Condylar and ascending pharyngeal External Carotid may share a short common trunk. An anterior Artery (var: branch of the condylar artery follows the Inferior meninges and inferolateral Condylar Ascending hypoglossal nerve into the hypoglossal canal to occipital region. Pharyngeal) supply the inferior meninges. A posterior branch of the condylar provides collateral circulation to the occipital region. External Carotid Small, tortuous division from medial wall of Cranial Thyroid Thyroid Artery ECA From posteromedial surface of ECA Descending External Carotid immediately posterior to the jugular process. Extensive distribution throughout the Pharyngeal Artery Convoluted and highly dendritic throughout the pharynx lateral and posterior wall of the pharynx.
    [Show full text]
  • Curving and Looping of the Internal Carotid Artery in Relation to the Pharynx: Frequency, Embryology and Clinical Implications
    J. Anat. (2000) 197, pp. 373–381, with 5 figures Printed in the United Kingdom 373 Curving and looping of the internal carotid artery in relation to the pharynx: frequency, embryology and clinical implications 1 1 1 FRIEDRICH PAULSEN , BERNHARD$ TILLMANN , CHRISTOS CHRISTOFIDES , WALBURGA RICHTER2 AND JURGEN KOEBKE2 " # Department of Anatomy, Christian Albrecht University of Kiel and Department of Anatomy II, Albertus Magnus University of Cologne, Germany (Accepted 29 February 2000) Variations of the course of the internal carotid artery in the parapharyngeal space and their frequency were studied in order to determine possible risks for acute haemorrhage during pharyngeal surgery and traumatic events, as well as their possible relevance to cerebrovascular disease. The course of the internal carotid artery showed no curvature in 191 cases, but in 74 cases it had a medial, lateral or ventrocaudal curve, and 17 preparations showed kinking (12) or coiling (5) out of a total of 265 dissected carotid sheaths and 17 corrosion vascular casts. In 6 cases of kinking and 2 of coiling, the internal carotid artery was located in direct contact with the tonsillar fossa. No significant sex differences were found.Variations of the internal carotid artery leading to direct contact with the pharyngeal wall are likely to be of great clinical relevance in view of the large number of routine procedures performed. Whereas coiling is ascribed to embryological causes, curving is related to ageing and kinking is thought to be exacerbated by arteriosclerosis or fibromuscular dysplasia with advancing age and may therefore be of significance in relation to the occurrence of cerebrovascular symptoms.
    [Show full text]
  • Arterial Distribution in the Region of the Floor of the Mouth of the Rat by Plastic Injection Method
    Okajimas Folia Anat. Jpn., 56(1) : 45-66, May 1979 Arterial Distribution in the Region of the Floor of the Mouth of the Rat by Plastic Injection Method By HARUYOSHI OTSUKA The 2nd Department of Oral Anatomy, Josai Dental University, Sakado, Saitama 350-02, Japan (Director : Professor H. Hanai) (With one table, two textfigures and 16 figures in 4 plates) -Received for Publication, November 1, 1978- Key Words : Floor of mouth, Artery, Corrosion cast, Comparative anatomy Summary. The arterial distributions in the region of the floor of the mouth in the rat were studied by means of the acryl plastic injection method. 1. The region and its related tissues were supplied mainly by branches of the sub- lingual artery of the facial, and partly by branches of the tonsillar of the facial and branches of the ascending palatine of the lingual. 2. Branches of the sublingual artery were the submandibular lymph node branch, the muscular branches, the submental branch, the mandibular transversal branches, the mucous branch, the genioglossal branches, the preincisive branch, the retroincisive branch and the alveolar branch. 3. Branches of the tonsillar artery were the mucous branch and the mylohyoid branches. 4. A forward branch and small twigs of the ascending palatine were distributed to the posterior small part of the region. 5. Between the above-mentioned branches and the lingual artery, any marked anastomoses were not observed. Preface structed, and that, therefore, the sufficient observation has been difficult by using It is very important to survey the the common dissection method. arterial distribution in the oral region in This paper was undertaken to reveal the rat since this animal is the most the detailed arterial distribution and commonly used in many kinds of ramification of the distributing arteries medico-dental research.
    [Show full text]
  • Lingual Arterial Trunk from External Carotid Artery: a Case Report
    Article ID: WMC003533 ISSN 2046-1690 Bilateral Facio- Lingual Arterial Trunk From External Carotid Artery: A Case Report Corresponding Author: Dr. Sandeep Shah, Doctor, Department of Anatomy, BP Koirala Institute of Health Sciences - Nepal Submitting Author: Dr. Sarun Koirala, Assistant Professor, Department of Human Anatomy, BP Koirala Institute of Health Sciences, 56700 - Nepal Article ID: WMC003533 Article Type: Case Report Submitted on:06-Jul-2012, 03:29:41 AM GMT Published on: 06-Jul-2012, 09:42:32 PM GMT Article URL: http://www.webmedcentral.com/article_view/3533 Subject Categories:ANATOMY Keywords:Facial Artery, External Carotid Artery, Head and Neck Surgery How to cite the article:Shah S, Koirala S. Bilateral Facio- Lingual Arterial Trunk From External Carotid Artery: A Case Report. WebmedCentral ANATOMY 2012;3(7):WMC003533 Copyright: This is an open-access article distributed under the terms of the Creative Commons Attribution License(CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Source(s) of Funding: None Competing Interests: None Additional Files: BILATERAL FACIO - LINGUAL ARTERIAL TRUNK FROM EXTE BILATERAL FACIO - LINGUAL ARTERIAL TRUNK FROM EXTE WebmedCentral > Case Report Page 1 of 5 WMC003533 Downloaded from http://www.webmedcentral.com on 16-Feb-2016, 01:35:05 PM Bilateral Facio- Lingual Arterial Trunk From External Carotid Artery: A Case Report Author(s): Shah S, Koirala S Abstract to ensure accurate arterial ligation during Oral and Maxillo-Facial Surgery and Radical Neck Dissection.This knowledge can also help radiologists to understand and interpret Carotid System The common carotid arteries provide the major source Imagings[8].
    [Show full text]
  • SAY: Welcome to Module 1: Anatomy & Physiology of the Brain. This
    12/19/2018 11:00 AM FOUNDATIONAL LEARNING SYSTEM 092892-181219 © Johnson & Johnson Servicesv Inc. 2018 All rights reserved. 1 SAY: Welcome to Module 1: Anatomy & Physiology of the Brain. This module will strengthen your understanding of basic neuroanatomy, neurovasculature, and functional roles of specific brain regions. 1 12/19/2018 11:00 AM Lesson 1: Introduction to the Brain The brain is a dense organ with various functional units. Understanding the anatomy of the brain can be aided by looking at it from different organizational layers. In this lesson, we’ll discuss the principle brain regions, layers of the brain, and lobes of the brain, as well as common terms used to orient neuroanatomical discussions. 2 SAY: The brain is a dense organ with various functional units. Understanding the anatomy of the brain can be aided by looking at it from different organizational layers. (Purves 2012/p717/para1) In this lesson, we’ll explore these organizational layers by discussing the principle brain regions, layers of the brain, and lobes of the brain. We’ll also discuss the terms used by scientists and healthcare providers to orient neuroanatomical discussions. 2 12/19/2018 11:00 AM Lesson 1: Learning Objectives • Define terms used to specify neuroanatomical locations • Recall the 4 principle regions of the brain • Identify the 3 layers of the brain and their relative location • Match each of the 4 lobes of the brain with their respective functions 3 SAY: Please take a moment to review the learning objectives for this lesson. 3 12/19/2018 11:00 AM Directional Terms Used in Anatomy 4 SAY: Specific directional terms are used when specifying the location of a structure or area of the brain.
    [Show full text]
  • The International Journal of Periodontics & Restorative Dentistry
    The International Journal of Periodontics & Restorative Dentistry © 2017 BY QUINTESSENCE PUBLISHING CO, INC. PRINTING OF THIS DOCUMENT IS RESTRICTED TO PERSONAL USE ONLY. NO PART MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM WITHOUT WRITTEN PERMISSION FROM THE PUBLISHER. 347 Mandibular Regional Anatomical Landmarks and Clinical Implications for Ridge Augmentation Istvan A. Urban, DMD, MD, PhD1 Vertical and horizontal ridge aug- Alberto Monje, DDS2,3 mentation of the severely atrophic Hom-Lay Wang, DDS, MSD, PhD3/Jaime Lozada, DDS1 posterior and anterior mandible is Gabor Gerber, DMD, PhD4/Gabor Baksa, MD5 considered the most challenging scenario for implant-supported oral rehabilitation in implant dentistry. Mandibular ridge augmentation via guided bone regeneration in the atrophic Due to the presence of the inferior mandible is considered one of the most challenging scenarios for implant- alveolar neurovascular bundle and supported oral rehabilitation. Uneventful wound healing has clearly demonstrated the submandibular fossa, this region its impact on the final regenerative outcome. Soft tissue management must be is remarkable for its high risk dur- precise and adequate to attain flap-free wound closure. Accordingly, it demands 1–3 exhaustive insight and expertise to avoid damaging the neighboring structures. ing implant placement. Compli- The cadaver study described herein discusses the mandibular morphologic cations in this zone include but are landmarks (ie, musculature, vascularization, innervation, and salivary glands) not limited to sensory disturbances necessary to safely perform regenerative procedures in the atrophic mandibular or trauma of the sublingual and sub- ridge, such as vertical ridge augmentation and dental implant surgery. The mental arteries with consequential potential intraoperative complications are presented, as well as clinical implications hematoma in the submandibular of which the clinician must be aware to prevent adverse surgical events during 4 regenerative surgery and implant placement in this anatomical region.
    [Show full text]