Carotid Endarterectomy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Minimally Invasive Superficial Femoral Artery Endarterectomy: Early Experience with a Modified Technique
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Eur J Vasc Endovasc Surg 16, 254-258 (1998) ENDOVASCULAR AND SURGICAL TECHNIQUES Minimally Invasive Superficial Femoral Artery Endarterectomy: Early Experience with a Modified Technique M. S. Whiteley 1, T. R. Magee 1, E. P. H. Torrie 2 and R. B. Galland* Department of ~Surgery and 2Radiology, Royal Berkshire Hospital, London Road, Reading, U.K. Objectives: To describe our experience of a modified technique for carrying out remote endarterectomy for superficial femoral artery occlusive disease. Methods: A 4-French arterial dilator is inserted using a Smart needle into the popliteal artery below the occlusion. A remote endarterectomy is carried out through an arteriotomy in the proximal superficial femoral artery. The atheroma is cut distal to the lower extent of disease using a Moll ring cutter. The lower flap of atheroma is secured with an intraluminaI stent inserted from the arteriotomy in the superficial femoral artery. The arteriotomy is extended into the common femoral artery and closed with a vein patch. Results: The procedure was completed in 21 of 26 limbs. In 18 cases the superficial femoral artery remained patent at 30 days. Of the 21 cases all but four stayed in hospital for one night. A successful femoropopliteal bypass was carried out in the five patients in whom the procedure was not completed. Conclusion: Insertion of the dilator into the popliteal artery distal to the occlusion before carrying out the remote endarterectomy has two advantages. Firstly, the stent insertion is carried out in the correct plane and prevents dissection of the distal cut atheroma when attempting to pass the guidewire from above. -
Ascending Pharyngeal Artery Arising from a Hypoplastic Internal Carotid Artery
Published online: 2021-08-09 CASE REPORT Ascending pharyngeal artery arising from a hypoplastic internal carotid artery Charif A. Sidani, Rami Sulaiman1, Amr Rahal2, Danea J. Campbell Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, Fl 33136, USA, 1 Department of Radiology, Cairo University Faculty of Medicine, Cairo, Egypt, 2 School of Medicine, Saba University School of Medicine, Saba, Dutch Caribbean, Netherlands Access this article online ABSTRACT Website: www.avicennajmed.com DOI: 10.4103/2231-0770.160251 Normal vascular variants often have clinical/surgical significance and can be misinterpreted for Quick Response Code: pathology. We report a case ascending pharyngeal artery arising from a hypoplastic internal carotid artery. We provide clues to differentiate between dysgenesis and disease/thrombosis of the internal carotid artery. Key words: Carotid canal, dysgenesis of internal carotid artery, hypopharyngeal artery, vascular variants INTRODUCTION carotid artery (ECA) as well as the proximal 1 cm of the right ICA. After the normal first centimeter, the ICA became of Dysgenesis of the ICA is a rare developmental anomaly seen in narrow caliber, without evidence of thrombus or dissection, <0.01% of the population.[1,2] The term incorporates agenesis and remained of homogeneous small caliber all the way (no carotid canal or vascular remnant), aplasia (vascular into a hypoplastic carotid canal. Findings confirmed the remnant and hypoplastic carotid canal), or hypoplasia congenital nature of the small ICA [Figure 2]. (small caliber, patent lumen). These abnormalities often have clinical/surgical significance and can be misinterpreted for Arising from the medial aspect of the proximal ICA was pathology. -
Carotid Artery Disease Background
Carotid Artery Disease Diagnosis & Treatment Backgrounder Carotid Artery Disease Carotid artery disease is a form of atherosclerosis, or a build-up of plaque in one or both of the main arteries of the neck. The carotid arteries are vital as they feed oxygen-rich blood to the brain. When plaque builds up in the carotid arteries, they begin to narrow and slow down blood flow, potentially causing a stroke if blood flow stops or plaque fragments travel to the brain. Stroke Every year, 15 million people worldwide suffer a stroke, also known as a brain attack. Nearly 6 million die and another 5 million are left permanently disabled. Carotid artery disease is estimated to be the source of stroke in up to a third of cases, with 427,000 new diagnoses of the disease made every year in the United States alone. Diagnosis Carotid artery disease is typically silent and does not present with symptoms. Physicians can screen patients based on risk factors like high blood pressure, diabetes, obesity and smoking. Sometimes, patients are screened for carotid artery disease if the doctor knows the patient has vascular disease elsewhere in the body. Blockages can also be found when a physician hears a sound through a stethoscope placed on the neck. The sound is caused by blood flowing past the blockage. If someone is having stroke-like symptoms (weakness/numbness on one side, loss of eyesight/speech, garbled speech, dizziness or fainting), they should seek immediate medical attention and be evaluated for carotid artery disease. The following tests may be performed if carotid artery disease is suspected: • Carotid artery ultrasound: This test uses sound waves that produce an image of the carotid arteries on a TV screen, and can be helpful in identifying narrowing in the carotid arteries. -
Are You Ready for ICD-10-PCS? Expert Tips, Tools, and Guidance to Make the Transition Simple
Are You Ready for ICD-10-PCS? Expert Tips, Tools, and Guidance to Make the Transition Simple By Amy Crenshaw Pritchett February 19, 2014 1 Agenda In this webinar: Expand your understanding of ICD-10-PCS with can’t miss ICD-10-PCS coding conventions & guidelines. Understand the basic differences between ICD-9-CM Volume 3 and ICD-10-PCS. Learn code structure, organization, & characters: Step 1 to coding section “0” ICD-10-PCS? Pinpoint the body system. To build your ICD-10-PCS code, you must identify the root operation. Study 7 options when assigning your PCS code’s 5th character. Master how to determine the device value for your PCS code’s character. Raise your awareness of unique ICD-10-PCS challenges pertaining to documentation and specificity: Prepare physicians now for more detailed transfusion notes under ICD- 10-PCS. Discover why writing “Right Carotid Endarterectomy” won’t be enough. Know where to find ICD-10-PCS tools, techniques, and best practices. 2 Understanding ICD-10-PCS ICD-10-PCS is a major departure from ICD-9-CM procedure coding, requiring you to know which root word applies. Effective October 1, 2014, this procedure coding system will be used to collect data, determine payment, and support the electronic health record for all inpatient procedures performed in the US. 3 Gear Up for ICD-10-PCS This procedure coding system is starkly different from ICD-9-CM procedure coding: Every ICD-10-PCS code has seven characters, each character defining one aspect of the procedure performed. For instance, not correctly identifying your physician’s approach – the fifth character – and not being able to distinguish between similar root operations can throw off your claims accuracy! 4 Converting to ICD-10-PCS Have your inpatient coders and clinical documentation specialists begun preparing for ICD-10-PCS yet? That’s why we’re here today … to ease your transition from ICD-9-CM procedure coding to ICD-10-PCS. -
TCAR Procedure Offers Patients Less-Invasive Treatment Option
TO MEDIA: CONTACT: Tom Chakurda Chief Marketing and Communications Officer Excela Health [email protected] 412-508-6816 CELL Robin Jennings Marketing and Communications Excela Health [email protected] 724-516-4483 CELL FOR IMMEDIATE RELEASE ____________________________________________________________ EXCELA HEALTH OFFERING BREAKTHROUGH TECHNOLOGY FOR CAROTID ARTERY DISEASE TO HELP PREVENT STROKE TCAR Procedure Offers Patients Less-Invasive Treatment Option GREENSBURG, PA, MAY 2021 … Vascular surgeons at Excela Health are among the first in western Pennsylvania to treat carotid artery disease and prevent future strokes using a new procedure called TransCarotid Artery Revascularization (TCAR). TCAR (tee-kahr) is a clinically proven, minimally invasive and safe approach for high surgical risk patients who need carotid artery treatment. Carotid artery disease is a form of atherosclerosis, or a buildup of plaque, in the two main arteries in the neck that supply oxygen-rich blood to the brain. If left untreated, carotid artery disease can often lead to stroke; it is estimated to be the source of stroke in up to a third of cases, with 427,000 new diagnoses of the disease made every year in the United States alone. “TCAR is an important new option in the fight against stroke, and is particularly suited for the patients we see who are at higher risk of complications from carotid surgery due to age, anatomy or other medical conditions,” said Excela Health vascular surgeon Elizabeth Detschelt, MD. “Because of its low stroke risk and faster patient recovery, I believe TCAR represents the future of carotid repair.” Patients often learn they have carotid artery disease following an abnormal carotid duplex, an ultrasound test that shows how well blood is flowing through the carotid arteries. -
Anomalous Origin of the Middle Meningeal Artery
The Internet Journal of Radiology ISPUB.COM Volume 4 Number 2 Anomalous Origin of the Middle Meningeal Artery from the Petrous Segment of the Internal Carotid Artery Associated with Multiple Cerebrovascular Abnormalities I Omeis, M Crupain, M Tenner, R Murali Citation I Omeis, M Crupain, M Tenner, R Murali. Anomalous Origin of the Middle Meningeal Artery from the Petrous Segment of the Internal Carotid Artery Associated with Multiple Cerebrovascular Abnormalities. The Internet Journal of Radiology. 2005 Volume 4 Number 2. Abstract A 25-year-old male with a history of seizure disorder was found incidentally on cerebral angiography to have numerous congenital anomalies of the cerebral vascular system. Among these anomalies were the derivation of the left middle meningeal artery from the petrous portion of the internal carotid artery, the presence of a left cavernous angioma, cavernous origin of the left ophthalmic artery, and an accessory middle cerebral artery. Awareness of cerebral circulatory anatomical anomalies of this nature is of importance to all physicians who plan surgical and endovascular interventions. INTRODUCTION resonance imaging (MRI) with and without gadolinium The middle meningeal artery in most individuals arises from revealed a left temporal lobe cavernoma and associated the maxillary branch of the external carotid artery and enters developmental venous anomaly in the region of the collateral the skull through the foramen spinosum. It then divides into gyrus that were unchanged from of first diagnosis (Fig. 2). anterior and posterior branches to supply the dura and An electroencephalogram (EEG) showed some mild cerebral adjacent calvarium. A few instances have been reported of dysfunction over the left temporal region with no the aberrant origin of the middle meningeal artery from epileptiform abnormality. -
Clinical Importance of the Middle Meningeal Artery
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository FOLIA MEDICA CRACOVIENSIA 41 Vol. LIII, 1, 2013: 41–46 PL ISSN 0015-5616 Przemysław Chmielewski1, Janusz skrzat1, Jerzy waloCha1 CLINICAL IMPORTANCE OF THE MIDDLE MENINGEAL ARTERY Abstract: Middle meningeal artery (MMA)is an important branch which supplies among others cranial dura mater. It directly attaches to the cranial bones (is incorporated into periosteal layer of dura mater), favors common injuries in course of head trauma. This review describes available data on the MMA considering its varability, or treats specific diseases or injuries where the course of MMA may have clinical impact. Key words: Middle meningeal artery (MMA), aneurysm of the middle meningeal artery, epidural he- matoma, anatomical variation of MMA. TOPOGRAPHY OF THE MIDDLE MENINGEAL ARTERY AND ITS BRANCHES Middle meningeal artery (MMA) [1] is most commonly the strongest branch of maxillary artery (from external carotid artery) [2]. It supplies blood to cranial dura mater, and through the numerous perforating branches it nourishes also periosteum of the inner aspect of cranial bones. It enters the middle cranial fossa through the foramen spinosum, and courses between the dura mater and the inner aspect of the vault of the skull. Next it divides into two terminal branches — frontal (anterior) which supplies blood to bones forming anterior cranial fossa and the anterior part of the middle cranial fossa; parietal branch (posterior), which runs more horizontally toward the back and supplies posterior part of the middle cranial fossa and supratentorial part of the posterior cranial fossa. -
The Ascending Pharyngeal Artery: a Collateral Pathway in Complete
AJNR :8, January/February 1987 CORRESPONDENCE 177 cavernous sinuses acute inflammation, granulation tissue, and throm which it partiCipates. This report describes two cases in which bus surrounded the nerves and internal carotid arteries. The left common carotid angiography showed complete occlu sion of the carotid artery was intact, but focally inflammed. The right internal internal carotid artery at its origin. Subsequent vertebral angiography carotid artery was focally necrotic, acutely inflammed and ruptured, in both cases showed reconstitution of thi s vessel several millimeters with hemorrhage emanating from the defect. above the origin by the ascending ph aryngeal artery , which had an unusual origin from the internal carotid artery [2]. Endarterectomy as a technical option was feasible in both cases becau se the occluded Discussion segments were only millimeters in length . The first patient, a 59-year-old man , presented 5 days before We are not aware of any instances of air within the cavernous admission with a sudden pareS is of the right arm and leg. Angiograph y sinus in a normal patient or after trauma. Our case demonstrates revealed complete occlusion of the left internal carotid artery with a several of the reported findings in cavernous sinus thrombosis includ small , smooth stump (Fig. 1 A) . A left vertebral arteriogram demon ing bulging of the lateral walls , irregular low-attenuation filling defects strated reconstitution of the left internal carotid artery just above the within the cavernous sinus, and proptosis (Fig . 1). occlusion (Fig . 1 B). Collateral supply was from mu scular branches of It is unclear whether the air within the sinus originated from a gas the vertebral artery, which anastomosed with muscular branches of forming organism or via direct extension from one of the sinuses via the ascending pharyngeal artery. -
Arteriography After Carotid Endarterectomy
325 Arteriography after Carotid Endarterectomy John Holder 1 Of 55 patients undergoing carotid endarterectomy, 16 had abnormal postoperative Eugene F. Binet2 angiograms by accepted literature criteria. Five of the 16 were symptomatic. The other Stevenson Flanigan3 11 were neurologically stable or improved from their preoperative condition. None of the 16 patients underwent reoperation. Of those 11 who had abnormal postoperative Ernest J. Ferris 1 angiograms but a good clinical result, four had a second postoperative angiogram some months later that demonstrated marked improvement in the appearance of the endarterectomy site. Patients undergoing carotid endarterectomy should not be sub jected to routine postoperative angiography without clinical indications nor should they undergo reoperation on the basis of angiographic findings alone without consideration of their clinical status. Cerebral angiography remains th e most precise method to evaluate the path ologic changes that occur in extracrani al cerebrovascular disease involving th e internal carotid artery in th e neck. Several authors have strongly endorsed its use in the immediate postoperative period to evalu ate the patency of th e end arterectomy site. In some institutions reoperation is performed if the angiographic findings appear unsatisfactory without consideration of the patient's neurologic status. This report will examine the preoperative and postoperative angiograms of patients who were not subjected to reoperation despite having abnormal appearing postoperative carotid angiograms. Materials and Methods Postoperative arteriography has been routinely perform ed on all pati ents subiected to carotid endarterectomy by the Neurosurgery Service at the Little Rock Veterans Adminis tration Medical Center. The angiographic studies of 55 such patients operated on during a Received August 28, 1980; accepted after re 6 year period were evaluated. -
Anatomical Considerations of the Superior Thyroid Artery: Its Origins, Variations, and Position Relative to the Hyoid Bone and Thyroid Cartilage
Original Article http://dx.doi.org/10.5115/acb.2016.49.2.138 pISSN 2093-3665 eISSN 2093-3673 Anatomical considerations of the superior thyroid artery: its origins, variations, and position relative to the hyoid bone and thyroid cartilage Sung-Yoon Won Department of Occupational Therapy, Semyung University, Jecheon, Korea Abstract: The aim of this study was to provide accurate anatomical descriptions of the overall anatomy of the superior thyroid artery (STA), its relationship to other structures, and its driving patterns. Detailed dissection was performed on thirty specimens of adult’s cadaveric neck specimens and each dissected specimen was carefully measured the following patterns and distances using digital and ruler. The superior thyroid, lingual, and facial arteries arise independently from the external carotid artery (ECA), but can also arise together, as the thyrolingual or linguofacial trunk. We observed that 83.3% of STAs arose independently from the major artery, while 16.7% of the cases arose from thyrolingual or linguofacial trunk. We also measured the distance of STA from its major artery. The origin of the STA from the ECA was 0.9±0.4 mm below the hyoid bone. The STA was 4.4±0.5 mm distal to the midline at the level of the laryngeal prominence and 3.1±0.6 mm distal to the midline at the level of the inferior border of thyroid cartilage. The distance between STA and the midline was similar at the level of the hyoid bone and the thyroid cartilage. Also, when the STA is near the inferior border of the thyroid cartilage, it travels at a steep angle to the midline. -
(IQI #7) Carotid Endarterectomy Volume October 2015 Provider-Level Indicator Type of Score: Volume
AHRQ Quality Indicators™ (AHRQ QI™) ICD-9-CM and ICD-10-CM/PCS Specification Enhanced Version 5.0 Inpatient Quality Indicators #7 (IQI #7) Carotid Endarterectomy Volume October 2015 Provider-Level Indicator Type of Score: Volume Prepared by: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.qualityindicators.ahrq.gov AHRQ QI™ ICD‐9‐CM and ICD‐10‐CM/PCS Specification Enhanced Version 5.0 2 of 6 IQI #7 Carotid Endarterectomy Volume www.qualityindicators.ahrq.gov IQI #7 Carotid Endarterectomy Volume DESCRIPTION The number of hospital discharges with a procedure for carotid endarterectomy for patients 18 years and older or obstetric patients. October 2015 AHRQ QI™ ICD‐9‐CM and ICD‐10‐CM/PCS Specification Enhanced Version 5.0 3 of 6 IQI #7 Carotid Endarterectomy Volume www.qualityindicators.ahrq.gov IQI #7 Carotid Endarterectomy Volume NUMERATOR Discharges, for patients ages 18 years and older or MDC 14 (pregnancy, childbirth, and puerperium), with any-listed ICD-9-CM or ICD- 10-PCS procedure codes for carotid endarterectomy. Carotid endarterectomy procedure code: (PRCEATP) ICD-9-CM Description ICD-10-PCS Description 3812 HEAD & NECK ENDARTER NEC 03CH0ZZ Extirpation of Matter from Right Common Carotid Artery, Open Approach 03CJ0ZZ Extirpation of Matter from Left Common Carotid Artery, Open Approach 03CK0ZZ Extirpation of Matter from Right Internal Carotid Artery, Open Approach 03CL0ZZ Extirpation of Matter from Left Internal Carotid Artery, Open Approach October -
Curving and Looping of the Internal Carotid Artery in Relation to the Pharynx: Frequency, Embryology and Clinical Implications
J. Anat. (2000) 197, pp. 373–381, with 5 figures Printed in the United Kingdom 373 Curving and looping of the internal carotid artery in relation to the pharynx: frequency, embryology and clinical implications 1 1 1 FRIEDRICH PAULSEN , BERNHARD$ TILLMANN , CHRISTOS CHRISTOFIDES , WALBURGA RICHTER2 AND JURGEN KOEBKE2 " # Department of Anatomy, Christian Albrecht University of Kiel and Department of Anatomy II, Albertus Magnus University of Cologne, Germany (Accepted 29 February 2000) Variations of the course of the internal carotid artery in the parapharyngeal space and their frequency were studied in order to determine possible risks for acute haemorrhage during pharyngeal surgery and traumatic events, as well as their possible relevance to cerebrovascular disease. The course of the internal carotid artery showed no curvature in 191 cases, but in 74 cases it had a medial, lateral or ventrocaudal curve, and 17 preparations showed kinking (12) or coiling (5) out of a total of 265 dissected carotid sheaths and 17 corrosion vascular casts. In 6 cases of kinking and 2 of coiling, the internal carotid artery was located in direct contact with the tonsillar fossa. No significant sex differences were found.Variations of the internal carotid artery leading to direct contact with the pharyngeal wall are likely to be of great clinical relevance in view of the large number of routine procedures performed. Whereas coiling is ascribed to embryological causes, curving is related to ageing and kinking is thought to be exacerbated by arteriosclerosis or fibromuscular dysplasia with advancing age and may therefore be of significance in relation to the occurrence of cerebrovascular symptoms.