Maruha Nichiro Group Strengths

Total Page:16

File Type:pdf, Size:1020Kb

Maruha Nichiro Group Strengths President’s Message Profile Strategies and Results in Platform for Sustainable Growth Value Creation Maruha Nichiro Group Strengths – A coherent global value chain that supports the health of people around the world – The Maruha Nichiro Group makes maximal use of the knowledge and assets it has cultivated over more than a cen- tury, and works in harmony with society and the environment, to develop its business not just in Japan but globally. It thereby provides people around the globe with the vital energy they need to live their lives. Procurement and distribution Production and processing Storage and logistics Retail Dining out Fishing Purchases Production Storage To dining tables and processing Marine products To dining tables Aquaculture wholesaling Logistics Fine chemicals, seasonings Fishing access rights Aquaculture Import quantity Frozen food Canned foods and dried foods Alaska pollock catch Tuna production Shrimp For lunch box Canned mackerel output (Bento) Approx. Approx. Domestic share Total US share Approx. Domestic share Domestic share Domestic share Domestic share Domestic share 329,000 Approx. Approx. 40,000 Approx. Approx. No. 1 Approx. tons per year tons per year DHA production 4,360 No. 1 1 volume (for use in tons per year * 27% 22% 17% 25% 26% health foods) Domestic share Domestic share Approx. Antarctic toothfish Greater amberjack Octopus Frozen soft foods Canned salmon 50% quota production output (West African) (nursing care) No. 1 Domestic share Fishing area Global share Approx. Domestic share Approx. Domestic share Domestic share Domestic share Domestic share Fishing area Approx. 2,500 Approx. 6,000 Approx. No. 1 Approx. No. 1 Approx. Antarctica 70% tons per year 10% tons per year 30% 36%*2 82% At 329,000 tons, the Alaska pollock catch Maruha Nichiro is a pioneer in bluefin Maruha Nichiro handles a great number Source: *1 INTAGE Inc. “SCI (Apr 2019 to Mar 2020)” Source: INTAGE Inc. “SRI (Apr 2019 to Mar 2020)” We produce and sell natural functional in Alaska, North America—one of the tuna aquaculture. In FY2019 the of fish species from around the world. It *2 Fuji Keizai Management Co., Ltd. “Future materials derived from seafood products Outlook of the Food Market for the Elderly We handle a wide variety of room world’s leading fishing grounds—makes company shipped approx. 4,360 tons, imports 40,000 tons of shrimp from 2019” resources, including DHA and chondroitin. temperature and chilled products for up 27% of the total American share. which accounts for roughly 22% of locations all over the world, giving it the These natural functional materials are We bring together capabilities for stable home use, including canned seafood Strict resource management is carried production for the entire country. top share of the market. It imports 6,000 used as raw materials for things such as procurement of raw materials, product products, fish sausages and jello cups. We out in Antarctic waters for the high-end Similarly, it shipped approx. 2,500 tons of tons of octopus from their primary supplements and medicines, giving us a development and technological prowess continue to maintain a high market share Antarctic toothfish. But Maruha Nichiro greater amberjack with beautiful tints of fishing grounds in West Africa, and is high market share in each of these fields. to offer high-value-added products. We among canned seafood products such as maintains about 70% of the fishing quota light-yellow silver and light-pink, increasing the volume it handles. For seasonings and dried foods, we have a full range of differentiated canned mackerel, canned sardines, there. accounting for approx. 10% of the leverage facilities and technologies that products that can meet a variety of canned salmon and canned crab. country’s total output and giving it the needs including nursing care foods in are superior to other companies to meet top share of the market. both private and commercial settings. the complex needs of our customers, and are increasing our market share year after year. 16 Maruha Nichiro Group Integrated Report 2020 Maruha Nichiro Group Integrated Report 2020 17.
Recommended publications
  • MARINE FISHERIES Fishing in the Ice: Is It Sustainable?
    NIWA Water & Atmosphere 11(3) 2003 MARINE FISHERIES Fishing in the ice: is it sustainable? Stuart Hanchet In recent years an exploratory fishery for The Ross Sea fishery is the southernmost fishery Antarctic toothfish has developed in in the world, and ice conditions and extreme Peter Horn the Ross Sea and in the Southern Ocean to cold make fishing both difficult and dangerous. Michael Stevenson the north. Fisheries in Antarctic waters are During most of the year the Ross Sea is covered managed by CCAMLR (Commission for by ice. However, during January and February the Conservation of Antarctic Marine Living areas of open water (called polynas) form, Resources). CCAMLR takes a precautionary which enable access to the continental shelf and approach to fisheries management and also slope. Longline vessels from New Zealand, has a strong mandate from its members to take South Africa and Russia start working in the A better into account ecosystem effects of fishing. In deep south at this time, but as sea ice forms knowledge of the conjunction with the Ministry of Fisheries they move north and by May are restricted to biology and habits (MFish) and New Zealand fishing companies, the northernmost fishing grounds. Antarctic NIWA has been involved in developing research toothfish has formed over 95% of the fishery’s of the Antarctic programmes to help ensure that the fishery is catch, which has steadily increased from about toothfish is needed both sustainable and has minimal impact on the 40 t in 1998 to over 1800 t in 2003. surrounding ecosystem. to manage a NIWA’s research related to the toothfish in the Ross Sea has concentrated on catch sampling sustainable fishery methods, genetics, age and growth, Antarctic toothfish get for this species in very big.
    [Show full text]
  • Good Whale Hunting Robert L
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the .SU . U.S. Department of Commerce Department of Commerce 2003 Good Whale Hunting Robert L. Pitman National Marine Fisheries Service Follow this and additional works at: http://digitalcommons.unl.edu/usdeptcommercepub Pitman, Robert L., "Good Whale Hunting" (2003). Publications, Agencies and Staff of ht e U.S. Department of Commerce. 509. http://digitalcommons.unl.edu/usdeptcommercepub/509 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the .SU . Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NATURALIST AT LARGE Good Whale Hunting Two tantalizing Russian reports take the author on a quest to the Antarctic, in search of two previously unrecognized kinds of killer whale. By Robert L. Pitman hey always remind me of witch’s hats—a little bit of THalloween in the winter wonderland. Looking across a flat plain of frozen Antarctic sea ice, I watch as a herd of killer whales swims along a lead—a long, narrow crack in the six- foot-thick ice. The fins of the males are black isosceles triangles, five feet tall, and they look like a band of trick- or-treaters coming our way. I am on board the U.S. Coast Guard icebreaker Polar Star as it back-and-rams the frozen ocean to open up a fourteen- mile-long channel into McMurdo Sta- tion, fifty feet at a whack.
    [Show full text]
  • A Balanced Model of the Food Web of the Ross Sea, Antarctica
    CCAMLR Science, Vol. 17 (2010): 1–31 A BALANCED MODEL OF THE FOOD WEB OF THE ROSS SEA, ANTARCTICA M.H. Pinkerton, J.M. Bradford-Grieve National Institute of Water and Atmospheric Research (NIWA) Ltd Private Bag 14901, Wellington 6241 New Zealand Email – [email protected] S.M. Hanchet NIWA Ltd PO Box 893, Nelson 7040 New Zealand Abstract A quantitative food web of the Ross Sea is presented here as a step towards investigating ecosystem effects of the fishery for Antarctic toothfishDissostichus ( mawsoni). The model consolidates quantitative information on trophic links across all the major biota of the Ross Sea and tests for data consistency. The model has 38 trophic groups and is balanced in terms of annual flows of organic carbon in an average recent year (1990–2000). The focus of the model is on the role of Antarctic toothfish in the food web which means that the model has greater taxonomic resolution towards the top of the food web than the base. A survey of the available literature and both published and unpublished data provided an initial set of parameters describing the annual average abundance, imports, exports, energetics (growth, reproduction, consumption) and trophic linkages (diets, key predators) for each model group. The relative level of uncertainty on these parameters was also estimated. This set of parameters was not self consistent, and a method is described to adjust the initial parameter set to give a balanced model, taking into account the estimates of parameter uncertainty and the large range of magnitude (>6 orders of magnitude) in trophic flows between groups.
    [Show full text]
  • The Southern Ocean 118 Worldwide Review of Bottom Fisheries in the High Seas
    THE SOUTHERN OCEAN 118 Worldwide review of bottom fisheries in the high seas 30°W 15°W 0° 15°E 30°E °S °S 10 10 47 °S a n t i c °S A t l O c e a 20 n 20 t h o u 41 S Bouvet Prince Edward 51 Island Islands R i d i a g So t e ut S o hern Crozet °S c O o °S S South Georgia ce 30 Island an Islands u 30 t h 48 I n d Kerguelen e Islands g i id a McDonald R g Islands r n Weddell e Heard b Sea Island ss u O 5858 a -G en c el u e rg Bellingshausen e a K 87 n 87 Sea Davis Amundsen Sea n a Sea e c S O o n Ross r e u h S Sea t t outh u o h e 88 S rn O P c ea a n c i °S f °S i M 30 c 30 a O c c qu Macquarie e a a r Island 81 n ie R 57 i d g e °S °S 20 20 Tasman 77 Sea °S °S 10 150°W 165°W 180° 165°E 150°E 10 Antarctic Convergence FAO Fishing Areas 200 nautical miles arcs CCAMLR Regulatory Area Map Projection: Lambert Azimuthal equal area FAO, 2008 MAP 1 The Southern Ocean 119 Southern Ocean FAO Statistical Areas 48, 58 and 88 GEOGRAPHIC DESCRIPTION OF THE REGION The Southern Ocean surrounds the continent of Antarctica, and constitutes about 15 percent of the world’s total ocean surface (CCAMLR, 2000).
    [Show full text]
  • The Values of the Antarctic Toothfish (Dissostichus Mawsoni)
    PCAS 15 (2012/2013) Critical Literature Review (ANTA602) The values of the Antarctic Toothfish (Dissostichus mawsoni) Richard Kennedy Student ID: 35501879 Word count: 2957 (excluding abstract and references) Abstract (ca. 200 words): The Antarctic Toothfish (Dissostichus mawsoni) is an apex predator found only in the Southern Ocean. Antarctic Toothfish are commercially harvested. The industry is controversial since it involves humans interfering with a ‘pristine’ environment. Many environmental groups are concerned that Toothfish fishing could be detrimental to the food web structure of the Southern Ocean due to Antarctic Toothfish having an apex role within the ecosystem, being long lived, and the fact that little is known about their reproduction. The fisheries for Toothfish are managed by the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR). The Toothfish is valuable as an economic resource for nations involved in harvesting, and also valuable from ecological, and scientific perspectives. This industry appears to contradict the environmentally friendly values of New Zealanders; on closer analysis this may not be the case. With careful management the values of the Antarctic Toothfish can be maintained for future generations. Most of the literature comes from the scientific community with little or no publications available from industry bodies on either matters of sustainability or economics. The Antarctic Toothfish (Dissostichus mawsoni) is found only in the Southern Ocean and has been commercially harvested for the past sixteen years. The Antarctic Toothfish industry is controversial, with debate focusing on arguments of economics and of leaving a “pristine untouched” environment. Many environmental groups are concerned that the fishing could be detrimental to the entire food web structure of the Southern Ocean.
    [Show full text]
  • News Feature Esfeature News
    NEWS FEATURE NEWS FEATURE Can animal culture drive evolution? Once the purview of humans, culture has been observed in all sorts of animals. But are these behaviors merely ephemeral fads or can they shape the genes and traits of future generations? Carolyn Beans, Science Writer In Antarctic waters, a group of killer whales makes a Scientists once placed culture squarely in the human wave big enough to knock a seal from its ice floe. domain. But discoveries in recent decades suggest that Meanwhile, in the North Atlantic, another killer whale a wide range of cultural practices—from foraging tactics group blows bubbles and flashes white bellies to and vocal displays to habitat use and play—may influ- herd a school of herrings into a ball. And in the Crozet ence the lives of other animals as well (3). Studies at- Archipelago in the Southern Ocean, still another group tribute additional orca behaviors, such as migration charges at seals on a beach, grasps the prey with their routes and song repertoires, to culture (4). Other re- ’ ’ teeth, and then backs into the water (1). Some re- search suggests that a finch ssong(5),achimpanzees ’ searchers see these as more than curious behaviors nut cracking (3), and a guppy s foraging route (6) are all manifestations of culture. Between 2012 and 2014, over or YouTube photo ops: they see cultural mores— 100 research groups published work on animal culture introduced into populations and passed to future gener- covering 66 species, according to a recent review (7). ations—that can actually affect animals’ fitness.
    [Show full text]
  • Deep-Ocean Climate Change Impacts on Habitat, Fish and Fisheries, by Lisa Levin, Maria Baker, and Anthony Thompson (Eds)
    ISSN 2070-7010 FAO 638 FISHERIES AND AQUACULTURE TECHNICAL PAPER 638 Deep-ocean climate change impacts on habitat, fish and fisheries Deep-ocean climate change impacts on habitat, fish and fisheries This publication presents the outcome of a meeting between the FAO/UNEP ABNJ Deep-seas and Biodiversity project and the Deep Ocean Stewardship Initiative. It focuses on the impacts of climatic changes on demersal fisheries, and the interactions of these fisheries with other species and vulnerable marine ecosystems. Regional fisheries management organizations rely on scientific information to develop advice to managers. In recent decades, climate change has been a focus largely as a unidirectional forcing over decadal timescales. However, changes can occur abruptly when critical thresholds are crossed. Moreover, distribution changes are expected as populations shift from existing to new areas. Hence, there is a need for new monitoring programmes to help scientists understand how these changes affect productivity and biodiversity. costa = 9,4 mm ISBN 978-92-5-131126-4 ISSN 2070-7010 FA 9 789251 311264 CA2528EN/1/09.19 O Cover image: Time of emergence of seafloor climate changes. Figure 7 in Chapter 8 of this Technical Paper. FAO FISHERIES AND Deep-ocean climate change AQUACULTURE TECHNICAL impacts on habitat, fish and PAPER fisheries 638 Edited by Lisa Levin Center for Marine Biodiversity and Conservation and Integrative Oceanography Division Scripps Institution of Oceanography University of California San Diego United States of America Maria Baker University of Southampton National Oceanography Centre Southampton United Kingdom of Great Britain and Northern Ireland Anthony Thompson Consultant Fisheries and Aquaculture Department Food and Agriculture Organization of the United Nations Rome Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2018 FAO.
    [Show full text]
  • Patagonian Toothfish FAO-ASFIS Code
    Stock Status Report: Patagonian toothfish [TOP] DOC/SC/07/2019 STATUS REPORT Dissostichus eleginoides Common Name: Patagonian toothfish FAO-ASFIS Code: TOP 2019 Updated 22 November, 2019 South East Atlantic Fisheries Organization [SEAFO] 1 Stock Status Report: Patagonian toothfish [TOP] DOC/SC/07/2019 TABLE OF CONTENTS 1. Description of the fishery ........................................................................................................................... 3 1.1 Description of fishing vessels and fishing gear ................................................................................. 3 1.2 Spatial and temporal distribution of fishing ..................................................................................... 5 1.3 Reported retained catches and discards ........................................................................................... 9 1.4 IUU .................................................................................................................................................... 9 2. Stock distribution and identity .................................................................................................................. 11 3. Data available for assessments, life history parameters and other population information ..................... 12 3.1 Samplings ............................................................................................................................................. 12 3.2 Length data and frequency distribution .........................................................................................
    [Show full text]
  • Annex 6 Report of the Working Group on Ecosystem
    Annex 6 Report of the Working Group on Ecosystem Monitoring and Management (Bologna, Italy, 4 to 15 July 2016) Contents Page Opening of the meeting ...................................................................... 201 Adoption of the agenda and organisation of the meeting ............................... 201 The krill-centric ecosystem and issues related to management of the krill fishery ................................................................................ 202 Fishing activities ............................................................................ 202 Krill fishery notifications ............................................................... 203 Escape mortality ......................................................................... 204 Reporting interval for the continuous fishing system ................................ 204 Use of net monitoring cables ........................................................... 205 CPUE and fishery performance ........................................................ 206 Fishing season ........................................................................... 207 SG-ASAM report ........................................................................... 207 Scientific observation ...................................................................... 208 Observer coverage ...................................................................... 208 Krill biology, ecology and ecosystem interactions ...................................... 210 Krill .....................................................................................
    [Show full text]
  • Uncharted Waters
    UNCHARTED WATERS IMPLEMENTATION ISSUES AND POTENTIAL BENEFITS OF LISTING TOOTHFISH IN APPENDIX II OF CITES ANNA WILLOCK A TRAFFIC REPORT Published by TRAFFIC International, UNCHARTED WATERS Cambridge, UK and TRAFFIC Oceania IMPLEMENTATION ISSUES AND POTENTIAL BENEFITS Sydney, Australia. OF LISTING TOOTHFISH IN APPENDIX II OF CITES ANNA WILLOCK © TRAFFIC International 2002 ISBN 1 85850 191 1 1 INTRODUCTION TO THE CASE STUDY 3 UK Registered Charity No. 1076722 2 SUMMARY OF BIOLOGICAL CHARACTERISTICS 4 3 CHARACTERISTICS OF THE GLOBAL TRADE IN TOOTHFISH 4 The designations of geographical entities 4 CURRENT CONSERVATION AND MANAGEMENT FRAMEWORK FOR TOOTHFISH 6 in this publication, and the presentation 4.1 International marine law 6 of material, do not imply the expresssion 4.2 The Commission for the Conservation of Antarctic Marine Living Resources 7 of any opinion whatsoever on the part of 4.2.1 Background information on CCAMLR 7 TRAFFIC or its supporting organisations 4.2.2 Key CCAMLR conservation measures for toothfish 7 concerning the legal status of any 4.2.3 High seas inside the CCAMLR Convention Area 9 country, territory, or area, or of its 4.2.4 Waters under national jurisdiction inside the CCAMLR Convention Area 9 authorities, or concerning the delimitation of its frontiers or boundries. 4.3 Outside the CCAMLR Convention Area 9 4.3.1 High seas outside the CCAMLR Convention Area 9 Any opinions expressed are those of the 4.3.2 Waters under national jurisdiction outside the CCAMLR Convention Area 10 writer and do not necessarily reflect those of TRAFFIC, WWF or IUCN 4.4 Key problems with the current conservation and management regime for toothfish 11 – The World Conservation Union.
    [Show full text]
  • 1 Ainley.Pdf
    55 MARINE ORNITHOLOGY Vol. 30 No. 2 2002 FORUM THE ROSS SEA, ANTARCTICA, WHERE ALL ECOSYSTEM PROCESSES STILL REMAIN FOR STUDY, BUT MAYBE NOT FOR LONG D.G. AINLEY H.T. Harvey & Associates, 3150 Almaden Expressway, Suite 145, San Jose, California 95118, USA ([email protected]) Received 29 October 2002, accepted 31 December 2002 SUMMARY AINLEY, D.G. 2002. The Ross Sea: where all ecosystem processes still remain for study, but maybe not for long. Marine Ornithology 30: 55–62. The Ross Sea is a well-defined embayment of Antarctica about the size of southern Europe, bounded by Victoria Land to the west, King Edward VII Peninsula, Marie Byrd Land to the east, the Ross Ice Shelf to the south, and the Pacific Sector of the Southern Ocean to the north. Its waters are composed of two related biotic systems: the Ross Sea Shelf Ecosystem (RSShelfE) and the Ross Sea Slope Ecosystem (RSSlopeE). The Ross Sea is off limits to mineral extraction, but pressures on its biological resources are growing. The economic value of the resources should be weighed against the value of the system as a unique scientific resource. The Ross Sea represents an unparal- leled natural laboratory in which the results of different fishery management strategies could be modeled in the context of short-term and decadal variation in biological populations, with these models applied throughout the Southern Ocean and elsewhere. The RSShelfE is the last Large Marine Ecosystem on Earth (except the Weddell Sea and, perhaps, Hudson Bay in the north of Canada) that has escaped direct anthropogenic alteration; the RSSlopeE, similar to all of Earth’s other marine ecosystems, has lost its large baleen whales but otherwise is intact.
    [Show full text]
  • Length- and Age-At-Spawning of Antarctic Toothfish (Dissostichus Mawsoni) in the Ross Sea Резюме В Данном Иссл
    CCAMLR Science, Vol. 17 (2010): 53–73 LENGTH- AND AGE-AT-SPAWNING OF ANTARCTIC TOOTHFISH (DISSOSTICHUS MAWSONI) IN THE ROSS SEA S.J. Parker National Institute of Water and Atmospheric Research (NIWA) Ltd PO Box 893 Nelson, New Zealand Email – [email protected] P.J. Grimes NIWA Ltd Private Bag 14901 Wellington, New Zealand Abstract This study uses histological assessments to determine age- and length-at-spawning for female and male Antarctic toothfish Dissostichus( mawsoni) from fish sampled in the Ross Sea spanning the 2000–2009 fishing seasons. A characterisation of the oocyte developmental cycle of D. mawsoni shows that once development begins, oocytes grow and accumulate at the cortical alveoli stage for at least one year. Individual oocytes are then recruited into the vitellogenic phase over at least a 6–12 month period, resulting in a developed group of oocytes accumulating at the final maturation stage by approximately May each year. The age at 50% spawning for females on the Ross Sea slope region is 16.6 years (95% CI 16.0–17.3) or 133.2 cm (95% CI 130.9–135.7) by length. On average, males spawn at a younger age with an A50% of 12.8 years (95% CI 11.9–14.0) or 120.4 cm (95% CI 114.8–126.7) by length. Evidence of skip-spawning was observed for females only and results in a flatter, right-shifted ogive, increasing the functional difference between male and female ogives. The degree to which the overall population ogive is biased right (older) by applying the slope-derived ogive to the northern Ross Sea region depends on the proportion of the total population occurring in the northern Ross Sea region, which is currently unknown.
    [Show full text]