The Weddell Gyre, Southern Ocean: Present Knowledge and Future Challenges

Total Page:16

File Type:pdf, Size:1020Kb

The Weddell Gyre, Southern Ocean: Present Knowledge and Future Challenges Vernet Maria (Orcid ID: 0000-0001-7534-5343) Hoppema Mario (Orcid ID: 0000-0002-2326-619X) Geibert Walter (Orcid ID: 0000-0001-8646-2334) Brown Peter (Orcid ID: 0000-0002-1152-1114) Haas Christian (Orcid ID: 0000-0002-7674-3500) Hellmer Hartmut, Heinz (Orcid ID: 0000-0002-9357-9853) Jokat Wilfried (Orcid ID: 0000-0002-7793-5854) Jullion Loïc (Orcid ID: 0000-0001-6269-6750) Mazloff Matthew, R. (Orcid ID: 0000-0002-1650-5850) Bakker Dorothee, C. E. (Orcid ID: 0000-0001-9234-5337) Brearley J., Alexander (Orcid ID: 0000-0003-3700-8017) Hattermann Tore (Orcid ID: 0000-0002-5538-2267) Hauck Judith (Orcid ID: 0000-0003-4723-9652) Hillenbrand Claus-Dieter (Orcid ID: 0000-0003-0240-7317) Huhn Oliver (Orcid ID: 0000-0003-3626-9135) Koch Boris, Peter (Orcid ID: 0000-0002-8453-731X) Lechtenfeld Oliver (Orcid ID: 0000-0001-5313-6014) Meredith Michael (Orcid ID: 0000-0002-7342-7756) Naveira Garabato Alberto, C. (Orcid ID: 0000-0001-6071-605X) Peeken Ilka (Orcid ID: 0000-0003-1531-1664) Rutgers van der Loeff Michiel (Orcid ID: 0000-0003-1393-3742) Schmidtko Sunke (Orcid ID: 0000-0003-3272-7055) Strass Volker, H. (Orcid ID: 0000-0002-7539-1400) Torres-Valdés Sinhué (Orcid ID: 0000-0003-2749-4170) Verdy Ariane (Orcid ID: 0000-0002-2774-2691) This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1029/2018RG000604 © 2019 American Geophysical Union. All rights reserved. The Weddell Gyre, Southern Ocean: present knowledge and future challenges M. Vernet1*, W. Geibert2*, M. Hoppema2*, P.J. Brown3, C. Haas2, H.H. Hellmer2, W. Jokat2, L. Jullion4, M. Mazloff1, D.C.E. Bakker5, J.A. Brearley6, P. Croot7, T. Hattermann2,8, J. Hauck2, C.-D. Hillenbrand6, C.J.M. Hoppe2, O. Huhn9, B.P. Koch2, O.J. Lechtenfeld10, M.P. Meredith6, A.C. Naveira Garabato11, E.-M. Nöthig2, I. Peeken2, M.M. Rutgers van der Loeff2, S. Schmidtko12, M. Schröder2, V.H. Strass2, S. Torres-Valdés3,2, A. Verdy1 1 Scripps Institution of Oceanography, La Jolla, California, USA 2 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany 3 National Oceanography Centre, Southampton, United Kingdom 4 Institut Méditerranéen d’Oceanologie, Marseille, France 5 Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK 6 British Antarctic Survey, Cambridge, UK 7 Irish Centre for Research in Applied Geoscience (iCRAG@NUIG), Earth and Ocean Sciences, National University of Ireland, Galway, Ireland 8 Norwegian Polar Institute, Fram Centre, Tromsø, Norway 9 Institute of Environmental Physics, University of Bremen, Bremen, Germany 10 Helmholtz Centre for Environmental Research, Leipzig, Germany 11 National Oceanography Centre, University of Southampton, Southampton, United Kingdom 12 GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany (*) Contributed equally to planning, organizing and editing this review © 2019 American Geophysical Union. All rights reserved. Corresponding author: Maria Vernet ([email protected]) Keywords: Weddell Gyre, Weddell Sea, Antarctica, deep-water formation, air-sea-ice interactions, ice shelf, sedimentation, carbon cycle, phytoplankton, ocean acidification, nutrients, iron, radionuclides, long-term sampling, regional models Key Points 1. Major research priorities to advance understanding of the Weddell Gyre are identified and justified against current knowledge. 2. Interdisciplinary approaches are needed to support system science research of the Weddell Gyre and promote collaborative projects. 3. Winter conditions, connectivity to lower latitudes, intensification of the gyre are the main interdisciplinary priorities. © 2019 American Geophysical Union. All rights reserved. Abstract The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state-of-the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system’s role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures and presence of sea ice year-round hamper field and remotely sensed measurements. We highlight the importance of winter and under-ice conditions in the southern WG, the role that new technology will play to overcome present-day sampling limitations, the importance of the WG connectivity to the low-latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East-West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long-term data to determine trends and will improve representation of processes for regional, Antarctic-wide and global modeling efforts – thereby enhancing predictions of the WG in global ocean circulation and climate. © 2019 American Geophysical Union. All rights reserved. Plain Language Summary The Weddell Gyre is one of the main oceanographic features in the ocean surrounding Antarctica, the Southern Ocean. Although located far from other continents, this polar region affects the planet through the exchange of gases between frigid ocean waters and the atmosphere, regulating oxygen and carbon dioxide farther north. Studying the Weddell Gyre is challenging, as sea ice covers the ocean surface year around, restricting access by research ships and sensing of ocean surface from satellites. New technology is now available to avoid past limitations, autonomous underwater vehicles, instruments flown by planes, and floats instrumented with sea ice detection. Only through international collaboration can we obtain adequate data to populate environmental models and study key areas in the gyre, or hot spots. In this review we identify the missing links in our knowledge of the gyre, propose research to address those questions. Three aspects are critical to understanding the processes that drive the gyre’s oceanography, ice, geology, chemistry and biology: winter and under-ice conditions that set the stage for the evolution of physics, ice and biogeochemistry; exchange of water, material and energy (or heat) with lower latitudes; and intensification of the clockwise circulation of the gyre with changes in winds. © 2019 American Geophysical Union. All rights reserved. 1 INTRODUCTION The Weddell Gyre (WG) is in many respects an unusual and extreme region, directly controlling the properties of substantial parts of the global deep (200 – 3000 m) and abyssal (>3000 m) ocean, and indirectly shaping global climate. South of the Antarctic Circumpolar Current (ACC) – the strongest current system on Earth – the WG is the largest of several coherent oceanic regions (Figure 1), spanning about 5.6 million km2. Together with the Ross Gyre, the WG comprises the southernmost open ocean reaches on the planet (Figure 1). Extremely low sea surface temperatures and extensive sea-ice formation are characteristics of this region. Consequently, it is a foremost location of deep and bottom water formation on the southern hemisphere. This region also plays an important role in regulating air-sea exchanges and heat flow as a result of a delicate balance between upwelling of relatively warm sub-surface waters and via its sea-ice cover (Fahrbach et al., 1994; Gordon & Huber, 1990). As outlined in more detail below, this strong connection between the atmosphere, surface ocean and deep waters make the WG arguably a most influential oceanic region with the capability of influencing global climate on timescales of hundreds to thousands of years. The WG is situated in the Atlantic sector of the Southern Ocean, south of 55-60°S and roughly between 60°W and 30°E (Deacon, 1979). It stretches over the Weddell abyssal plain, where the Weddell Sea is situated, and extends east into the Enderby abyssal plain (10-20°E; Figure 2). The gyre is, however, a dynamic feature, with its eastern boundary not fixed to a location; it has been suggested that it might extend as far as 70°E (Mackintosh, 1972; Y.H. Park et al., 2001). The WG is principally driven by wind forcing (see Section 4.1) and steered by topography, including continental boundaries and seabed structures. In the south and west (50°W), the gyre is bordered by the Antarctic mainland and its northward extension, the Antarctic Peninsula. In the north, the boundary is formed by the frontal structure of the southern ACC, which in turn is topographically guided by the South Scotia Ridge in the west and the North Weddell Ridge in the © 2019 American Geophysical Union. All rights reserved. east. In this way, the northern boundary of the gyre in the west is at about 60°S, whereas further east it moves to about 55°S, locally extending further north into the South Sandwich Trench at about 30°W (Figure 2). East of about 20°E, the gyre boundary takes a southward direction following the course of the ACC, steered east of the Gunnerus Ridge. Along its southern and western boundaries, the WG is flanked by floating ice shelves, the seaward extension of the Antarctic ice sheet (depicted by the red contour in Figure 2; see Section 5). They form as a result of the gravity-driven flow of inland ice towards the coast. Some of these ice shelves extend more than a hundred kilometers offshore, with the Filchner-Ronne Ice Shelf, which covers a portion of the southern Weddell Sea continental shelf over an area extent roughly the same size of Sweden, being the largest body of floating ice on earth.
Recommended publications
  • Advances in Polar Ecology Series Ed.: D
    Advances in Polar Ecology Series Ed.: D. Piepenburg In recent years, the polar regions have received increased scientific and public interest. Both the Arctic and Antarctic have been recognized as key regions in the regulation of the global climate and polar ecosystems have been identified to be particularly susceptible to the ongoing environmental changes. Consequently, the international efforts in polar research have been enhanced considerably, and a wealth of new findings is being produced at a growing rate by the international community of polar researchers. The aim of the book series Advances in Polar Ecology is to foster the progress in the scientific knowledge about the polar and sub-polar regions of both hemispheres by contributing to the fast and wide-ranging dissemination of novel scientific information gained from recent studies of sea, freshwater and land biota among polar researchers, environmental managers and policy makers. Advances in Polar Ecology’s broad ecology- oriented scope encompasses environmental and biological research of both recent and past ecosystems. The Series offers an outlet to publish contributions (monographs, edited works, conference proceedings, etc.) addressing scientific topics that need more comprehensive and in-depth analysis than the length of typical journal articles allow for. These include, but are not limited to, thorough accounts of the current status of active research areas of wide importance that outline promising perspectives for future research. An international editorial board oversees the rigorous peer review that all contributions will be subjected to. Springer books available as Recently published: Printed book Available from springer.com/shop J. Berge, G. Johnsen, J.
    [Show full text]
  • Mitigation of Arctic Tundra Surface Warming by Plant Evapotranspiration: Complete Energy Balance Component Estimation Using LANDSAT Satellite Data
    remote sensing Article Mitigation of Arctic Tundra Surface Warming by Plant Evapotranspiration: Complete Energy Balance Component Estimation Using LANDSAT Satellite Data Václav Nedbal 1,* , Kamil Láska 2,3 and Jakub Brom 1 1 Faculty of Agriculture, University of South Bohemia in Ceskˇ é Budˇejovice,Studentská 1668, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 2 Department of Geography, Faculty of Science, Masaryk University, Kotláˇrská 2, 611 37 Brno, Czech Republic; [email protected] 3 Centre for Polar Ecology, Faculty of Science, University of South Bohemia in Ceskˇ é Budˇejovice,Na Zlaté stoce 3, 370 05 Ceskˇ é Budˇejovice,Czech Republic * Correspondence: [email protected] Received: 19 September 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Global climate change is expected to cause a strong temperature increase in the polar regions, accompanied by a reduction in snow cover. Due to a lower albedo, bare ground absorbs more solar energy and its temperature can increase more. Here, we show that vegetation growth in such bare ground areas can efficiently mitigate surface warming in the Arctic, thanks to plant evapotranspiration. In order to establish a comprehensive energy balance for the Arctic land surface, we used an ensemble of methods of ground-based measurements and multispectral satellite image analysis. Our estimate is that the low vegetation of polar tundra transforms 26% more solar energy into evapotranspiration than bare ground in clear sky weather. Due to its isolation properties, vegetation further reduces ground heat flux under the surface by ~4%, compared to bare areas, thus lowering the increase in subsurface temperature.
    [Show full text]
  • 2. an Approach to Antarctic Glacial History: the Aims of Leg 1781
    Barker, P.F., Camerlenghi, A., Acton, G.D., et al., 1999 Proceedings of the Ocean Drilling Program, Initial Reports Volume 178 2. AN APPROACH TO ANTARCTIC GLACIAL HISTORY: THE AIMS OF LEG 1781 P.F. Barker2 and A. Camerlenghi3 Ocean Drilling Program (ODP) Leg 178 was proposed partly as an examination of Antarctic Peninsula glacial history and partly as a test of the strategy of determining this history by sampling glacially trans- ported sediments at the continental margin. If successful, it could lead to a program of two or three other legs around Antarctica that, in com- bination, might determine the long-term history of the entire Antarctic Ice Sheet. Leg 178 also had a second objective: to obtain a long, high- resolution record of Holocene climate from Palmer Deep, an isolated deep basin on the inner continental shelf. The proposal that became Leg 178 was therefore based on several assumptions, described below. Briefly, they are: 1. The Antarctic Ice Sheet is now and has been throughout its ex- istence an important component of the Earth’s climate engine, which it is necessary to document and understand. 2. An understanding of the ice sheet’s function and what controls its development cannot be obtained until its history is known. 3. Existing knowledge of Antarctic glacial history, derived largely from sparse onshore data and low-latitude climate proxies, is in- adequate and ambiguous; the proxies themselves disagree. Fur- thermore, continued use of the same proxies and onshore data is unlikely to resolve present ambiguities and disputes. 1Examples of how to reference the 4.
    [Show full text]
  • A Possible Brown Skua (<I>Stercorarius Antarcticus</I>) On
    lan McLaren mer (June-August)specimens in Canadi- in both publishedarticles and material an museumscollected prior to 1980 in At- postedon the WorldWideWeb,has indicat- BiologyDepartment lantic Canada have been critically identi- edto us thatthe Sable Island bird strongly fied as South Polar Skuas (Michel resembledBrown Skua, although deficien- DalhousieUniversity Gossefin, National Museum of Canada, cies in this information lead us to leave it pers. comm.;University of WesternOn- formallyunidentified. Halifax,Nova Scotia B3H 4J1 tario [seebelow]). All GreatSkua speci- mens have come from the Grand Banks: an ([email protected]) BACKGROUND ON CONFIRMED AND immature in late August 1961 (D. POSSIBLE BROWN SKUAS IN THE McAlpine,New Brunswick Museum, pers. NORTH ATLANTIC Zoe Lucas comm.)and severaladults in September Even after Chilean (S. chilensis)and South (M. Gossefin,pers. comm.). The Great Polar Skuaswere recognizedas distinct P.O.Box 64, Halifax CRO Skuaslisted for SableIsland by McLaren species,the three other skua taxa in the (1980)were not criticallyidentified. Nova Southern Hemisphere continued to be Halifax,Nova Scotia B3J 2L4 Scotianobservers have attemptedto dis- classifiedas formsof GreatSkua (e.g., tinguishthe two speciessince at leastthe Devillers1977). BrownSkna, however, has early 1980s.Since 1992, Lucas has studied becomegenerally recognized as a distinct six live Great Skuas on Sable Island at fair- specieswith threesubspecies (e.g., Olsen ABSTRRCT ly closerange and has found five tideline and Larsson 1997): Falkland Skua,
    [Show full text]
  • Manuscript Text Click Here to Download Manuscript LCDW-Sub-V4.4-Text.Docx Click Here to View Linked References 1 2 3 4 5 6 7
    Manuscript text Click here to download Manuscript LCDW-sub-v4.4-text.docx Click here to view linked References 1 Modification of the Deep Salinity-Maximum in the Southern Ocean by Circulation in the Antarctic 1 2 2 Circumpolar Current and the Weddell Gyre 3 4 3 Matthew Donnelly1, Harry Leach2 and Volker Strass3 5 6 4 1British Oceanographic Data Centre, National Oceanography Centre, Joseph Proudman Building, 6 Brownlow 7 8 5 Street, Liverpool, L3 5DA, UK 9 10 6 2Department of Earth, Ocean and Ecological Sciences, University of Liverpool, 4 Brownlow Street, Liverpool, 11 12 7 L69 3GP, UK 13 14 8 3Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Postfach 12 01 61, D-27515 15 16 9 Bremerhaven, Germany 17 18 10 Corresponding author: Matthew Donnelly 19 20 11 E-mail: [email protected] 21 22 12 Telephone: +44 151 795 4892 23 24 13 25 26 14 Abstract 27 28 29 15 The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is 30 31 16 assessed using a set of 37 hydrographic sections collected over a 20 year period in the Southern Ocean as part of 32 33 17 the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity maximum is observed 34 35 18 eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through 36 37 19 the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, 38 39 20 and in the Atlantic sector this acts to limit the direct poleward propagation of the salinity signal.
    [Show full text]
  • Years at the Amery Ice Shelf in September 2019
    https://doi.org/10.5194/tc-2020-219 Preprint. Discussion started: 19 August 2020 c Author(s) 2020. CC BY 4.0 License. 1 Atmospheric extremes triggered the biggest calving event in more than 50 2 years at the Amery Ice shelf in September 2019 3 4 Diana Francis 1*, Kyle S. Mattingly 2, Stef Lhermitte 3, Marouane Temimi 1, Petra Heil 4 5 6 1 Khalifa University of Science and Technology, P. O. Box 54224, Abu Dhabi, United Arab 7 Emirates. 8 2 Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers University, New Brunswick, NJ, 9 USA. 10 3 Department of Geoscience and Remote Sensing, Delft University of Technology, Mekelweg 5, 11 2628 CD Delft, Netherlands. 12 4 University of Tasmania, Hobart, Tasmania 7001, Australia. 13 14 * Corresponding Author: [email protected]. 15 16 Abstract 17 Ice shelf instability is one of the main sources of uncertainty in Antarctica’s contribution to future 18 sea level rise. Calving events play crucial role in ice shelf weakening but remain unpredictable and 19 their governing processes are still poorly understood. In this study, we analyze the unexpected 20 September 2019 calving event from the Amery Ice Shelf, the largest since 1963 and which 21 occurred almost a decade earlier than expected, to better understand the role of the atmosphere in 22 calving. We find that atmospheric extremes provided a deterministic role in this event. The calving 23 was triggered by the occurrence of a series of anomalously-deep and stationary explosive twin 24 polar cyclones over the Cooperation and Davis Seas which generated strong offshore winds 25 leading to increased sea ice removal, fracture amplification along the pre-existing rift, and 26 ultimately calving of the massive iceberg.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • MARINE FISHERIES Fishing in the Ice: Is It Sustainable?
    NIWA Water & Atmosphere 11(3) 2003 MARINE FISHERIES Fishing in the ice: is it sustainable? Stuart Hanchet In recent years an exploratory fishery for The Ross Sea fishery is the southernmost fishery Antarctic toothfish has developed in in the world, and ice conditions and extreme Peter Horn the Ross Sea and in the Southern Ocean to cold make fishing both difficult and dangerous. Michael Stevenson the north. Fisheries in Antarctic waters are During most of the year the Ross Sea is covered managed by CCAMLR (Commission for by ice. However, during January and February the Conservation of Antarctic Marine Living areas of open water (called polynas) form, Resources). CCAMLR takes a precautionary which enable access to the continental shelf and approach to fisheries management and also slope. Longline vessels from New Zealand, has a strong mandate from its members to take South Africa and Russia start working in the A better into account ecosystem effects of fishing. In deep south at this time, but as sea ice forms knowledge of the conjunction with the Ministry of Fisheries they move north and by May are restricted to biology and habits (MFish) and New Zealand fishing companies, the northernmost fishing grounds. Antarctic NIWA has been involved in developing research toothfish has formed over 95% of the fishery’s of the Antarctic programmes to help ensure that the fishery is catch, which has steadily increased from about toothfish is needed both sustainable and has minimal impact on the 40 t in 1998 to over 1800 t in 2003. surrounding ecosystem. to manage a NIWA’s research related to the toothfish in the Ross Sea has concentrated on catch sampling sustainable fishery methods, genetics, age and growth, Antarctic toothfish get for this species in very big.
    [Show full text]
  • The Undiscovered Oil and Gas of Antarctica
    DEPARTMENT OF THE INTERIOR U.S. Geological Survey The Undiscovered Oil and Gas of Antarctica by John Kingston^ OPEN-FILE REPORT 91-597 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. ^Santa Barbara, California CONTENTS Page Abstract ....................................................... 1 Introduction ................................................... 2 Size of area .............................................. 2 Premise and problems of petroleum recoverability .......... 2 Previous investigations and petroleum assessments ......... 2 Methods of assessment ..................................... 4 Regional geology and petroleum occurrence ...................... 6 Assessment by play analysis .................................... 13 Rifted continental margin provinces ....................... 13 General; the south Australia rifted margin analog .... 13 Antarctica-Australia rift province ................... 17 Antarctica-India rift province ....................... 20 Antarctica-Africa rift province ...................... 24 Antarctica-Falkland rift province .................... 24 Interior rift provinces ................................... 30 General .............................................. 30 Ross sea interior rift province ...................... 30 Weddell sea interior rift province ..................
    [Show full text]
  • BROWN SKUAS Stercorarius Antarcticus INCUBATE a MACARONI PENGUIN EUDYPTES CHRYSOLOPHUS EGG at MARION ISLAND
    Clokie & Cooper: Skuas incubate a Macaroni Penquin egg 59 BROWN SKUAS STERCORARIUS antarcticus INCUBATE A MACARONI PENGUIN EUDYPTES CHRYSOLOPHUS EGG AT MARION ISLAND LINDA CLOKIE1 & JOHN COOPER2,3 1Marine & Coastal Management Branch, Department of Environmental Affairs, Private Bag X2, Rogge Bay 8012, South Africa 2Animal Demography Unit, Department of Zoology, University of Cape Town, Rondebosch 7701, South Africa 3DST/NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa ([email protected]) Received 3 October 2009, accepted 5 February 2010 Brown/Sub-antarctic Skua Stercorarius antarcticus are widely -sized for skua eggs, thus deemed to be the birds’ own clutch, but distributed at cool-temperate and sub-Antarctic islands in the the third was an all-white egg (Fig. 1). This egg was noticeably Southern Ocean, where their diet includes burrowing petrels caught larger than the two skua eggs, and was more rounded in shape. at night and eggs stolen from incubating birds, especially penguins, On 19 December when the nest was revisited one of the two skua during the day (Furness 1987, Higgins & Davies 1996, Shirihai eggs was no longer present. During visits on 21 December 2008 2007). At Marion Island, Prince Edward Islands in the southern and on 4 and 15 January 2009 only the white egg was present, and Indian Ocean, Brown Skua prey on eggs of crested penguins the displaced incubating bird was quick to defend its nest. On 9 Eudyptes sp. during summer months which they remove in their February 2009 the skua pair was still present at the nest, with one bills from the colonies by flying to nearby middens where the eggs’ bird in an incubating position, but the nest was empty of contents.
    [Show full text]
  • An Investigation of Antarctic Circumpolar Current Strength in Response to Changes in Climate
    An Investigation of Antarctic Circumpolar Current Strength in Response to Changes in Climate Presented by Matt Laffin Presentation Outline Introduction to Marine Sediment as a Proxy Introduction to McCave paper and inference of current strength Discuss Sediment Core site Discuss sediment depositionBIG CONCEPT and oceanography of the region Discuss sorting sedimentBring process the attention and Particle of your Size audience Analyzer over a key concept using icons or Discussion of results illustrations Marine Sediment as a Proxy ● Marine sediment cores are an excellent resource to determine information about the past. ● As climatic changes occur so do changes in sediment transportation and deposition. ○ Sedimentation rates ○ Temperature ○ Biology How can we determine past ocean current strength using marine sediment? McCave et al, 1995 ● “Sortable silt” flow speed proxy ● Size distributions of sediment from the Nova Scotian Rise measured by Coulter Counter (a) Dominant 4 μm and weak 10 μm mode under slow currents (b) Silt signature after moderate currents of 5–10 cm s−1 (c) Pronounced mode in the part of the silt spectrum >10 μm after strong currents (10–15 cm s−1) McCave et al, 1995/2006 Complications to determine current strength ● Particles < 10 μm are subject to electrostatic forces which bind them ● The mean of 10–63 μm sortable silt denoted as is a more sensitive indicator of flow speed. McCave et al, 1995/2006 IODP Leg 178, Site 1096 A and B Depositional Environment Depositional Environment ● Sediment is eroded and transported
    [Show full text]
  • Open-Ocean Polynyas and Deep Convection in the Southern Ocean Woo Geun Cheon1 & Arnold L
    www.nature.com/scientificreports OPEN Open-ocean polynyas and deep convection in the Southern Ocean Woo Geun Cheon1 & Arnold L. Gordon 2 An open-ocean polynya is a large ice-free area surrounded by sea ice. The Maud Rise Polynya in the Received: 27 December 2018 Southern Ocean occasionally occurs during the austral winter and spring seasons in the vicinity of Maud Accepted: 18 April 2019 Rise near the Greenwich Meridian. In the mid-1970s the Maud Rise Polynya served as a precursor to Published: xx xx xxxx the more persistent, larger Weddell Polynya associated with intensive open-ocean deep convection. However, the Maud Rise Polynya generally does not lead to a Weddell Polynya, as was the situation in the September to November of 2017 occurrence of a strong Maud Rise Polynya. Using diverse, long- term observation and reanalysis data, we found that a combination of weakly stratifed ocean near Maud Rise and a wind induced spin-up of the cyclonic Weddell Gyre played a crucial role in generating the 2017 Maud Rise Polynya. More specifcally, the enhanced fow over the southwestern fank of Maud Rise intensifed eddy activity, weakening and raising the pycnocline. However, in 2018 the formation of a Weddell Polynya was hindered by relatively low surface salinity associated with the positive Southern Annular Mode, in contrast to the 1970s’ condition of a prolonged, negative Southern Annular Mode that induced a saltier surface layer and weaker pycnocline. In the Southern Ocean there are two modes in which surface water can attain sufcient density to descend into the deep ocean1.
    [Show full text]