Genome-Wide Association Study Reveals First Locus for Anorexia Nervosa and Metabolic Correlations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jawaharlal Nehru University, New Delhi
Jawaharlal Nehru University, New Delhi Evaluative Report of the Department (science) Name of the School/Spl. Center Pages 1 School of Life Sciences 1-45 2. School of Biotechnology 46-100 3 School of Computer and systems Sciences 101-120 4 School of Computational and Integrative Sciences 121-141 5. School of Physical Sciences 142-160 6 School of Environmental Sciences 161-197 7 Spl. Center for Molecular Medicine 198-256 8 Spl Center for Nano Sciences 257-268 Evaluation Report of School of Life Sciences In the past century, biology, with inputs from other disciplines, has made tremendous progress in terms of advancement of knowledge, development of technology and its applications. As a consequence, in the past fifty years, there has been a paradigm shift in our interpreting the life process. In the process, modern biology had acquired a truly interdisciplinary character in which all streams of sciences have made monumental contributions. Because of such rapid emergence as a premier subject of teaching and research; a necessity to restructure classical teachings in biology was recognised by the academics worldwide. In tune with such trends, the academic leadership of Jawaharlal Nehru University conceptualised the School of Life Sciences as an interdisciplinary research/teaching programme unifying various facets of biology while reflecting essential commonality regarding structure, function and evolution of biomolecules. The School was established in 1973 and since offering integrated teaching and research at M. Sc/ Ph.D level in various sub-disciplines in life sciences. Since inception, it remained dedicated to its core objectives and evolved to be one of the top such institutions in India and perhaps in South East Asia. -
(12) United States Patent (10) Patent No.: US 7,592,444 B2 Khvorova Et Al
USOO7592444B2 (12) United States Patent (10) Patent No.: US 7,592,444 B2 KhVOrOVa et al. (45) Date of Patent: Sep. 22, 2009 (54) SIRNA TARGETING MYELOID CELL 2003/0228597 A1 12/2003 COWSert LEUKEMIA SEQUENCE 1 2004/OO29275 A1 2/2004 Brown et al. 2004.00541.55 A1 3, 2004 Woolf (75) Inventors: Anastasia Khvorova, Boulder, CO 2004-0063654. A 42004 Davis et al. (US); Angela Reynolds, Conifer, CO S.S. A. 3. Singhofer (US);O O Devin Leake, Denver, CO (US); 2004/O180357 A1 9, 2004 eich William Marshall, Boulder, CO (US); 2004/O192629 A1 9, 2004 Xu et al. Stephen Scaringe, Lafayette, CO (US); 2004/0204380 A1 10, 2004 Ackerman Steven Read, Boulder, CO (US) 2004/0219671 A1 1 1/2004 McSwiggen 2004/024.8296 A1 12/2004 Beresford (73) Assignee: Dharmacon, Inc., Lafayette, CO (US) 2004/0248299 A1 12/2004 Jayasena 2004/0259247 A1 12, 2004 TuSchlet al. (*) Notice: Subject to any disclaimer, the term of this 2005/0048529 A1 3/2005 McSwiggen patent is extended or adjusted under 35 2005/0107328 A1 5/2005 Wyatt U.S.C. 154(b) by 0 days. 2005. O130181 A1 6/2005 McSwiggen 2005/0176O25 A1 8/2005 McSwiggen (21) Appl. No.: 12/378,164 2005, 0181382 A1 8, 2005 Zamore 2005, 0186586 A1 8, 2005 Zamore 2005/0227935 A1 10/2005 McSwiggen (22) Filed: Feb. 11, 2009 2005/0239731 A1 10/2005 McSwiggen 2005.0245475 A1 11/2005 Khvorova (65) Prior Publication Data 2006/0286575 A1 12/2006 Farrell US 2009/O1637O2A1 Jun. 25, 2009 2007/0031844 A1 2/2007 Khvorova 2007,0254.850 A1 11/2007 Lieberman Related U.S. -
The Path to New Therapies for Schizophrenia and Bipolar Illness
THE JOURNAL • PERSPECTIVE • www.fasebj.org The Path to New Therapies for Schizophrenia and Bipolar Illness Edward M. Scolnick1 Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA ABSTRACT: Schizophrenia and bipolar illness are two of the most serious forms of mental illness. Until relatively recently, almost nothing was known about the molecular pathogenesis of either illness. The single largest risk factor that predisposes people to schizophrenia or bipolar illness is genetic risk. Heritability is high, and the incidence is significantly higher in identical twins than in nonidentical twins. Despite decades of work aimed at identifying the genes involved in these two illnesses, virtually no progress had been made until the past decade. With the knowledge and technologies that have been gained from the Human Genome Project, it has been possible to begin to understand the underlying genetics and to use the new information to begin the effort to discover new and better medicines to treat these illnesses. This article will describe the past decade of work toward this goal and articulate both the promise that now exists and what is still needed to bring dramatic and tangible change to patients.—Scolnick, E. M. The path to new therapies for schizophrenia and bipolar illness. FASEB J. 31, 1254–1259 (2017). www.fasebj.org KEY WORDS: genetics • pharmacology • progress In the fall of 2004, I became an associate member of the bipolar illness for many years. Virtually no reproducible Broad Institute, founded on the principle of collaboration results had been achieved. The Broad Institute had a su- among scientists at the Massachusetts Institute of Tech- perb group of scientific experts in human genetics, a field nology, Harvard, and Harvard-affiliated hospitals. -
Using Genetically Isolated Populations to Understand the Genomic Basis of Disease Eleftheria Zeggini
Zeggini Genome Medicine 2014, 6:83 http://genomemedicine.com/content/6/10/83 RESEARCH HIGHLIGHT Using genetically isolated populations to understand the genomic basis of disease Eleftheria Zeggini Abstract use of next-generation association studies, a hybrid of genome-wide genotyping and whole genome sequencing Rare variation has a key role in the genetic etiology of (WGS) approaches, for complex disease gene mapping complex traits. Genetically isolated populations have [2,3]. In Iceland, numerous novel loci for complex dis- been established as a powerful resource for novel eases, such as type 2 diabetes (T2D) and prostate cancer locus discovery and they combine advantageous [4,5], have been identified through a combination of characteristics that can be leveraged to expedite WGS and long-range phasing-assisted imputation on a discovery. Genome-wide genotyping approaches genome-wide genotype scaffold, together with calcula- coupled with sequencing efforts have transformed the tion of genotype probabilities in approximately 300,000 landscape of disease genomics and highlight the untyped individuals by making use of the extended ge- potentially significant contribution of studies in nealogical information available. founder populations. More recently, novel insights into the biological path- ways underpinning T2D were achieved through the study of a Greenlandic founder population [6]. A non- Complex trait locus discovery in isolated TBC1D4 populations sense variant in the gene was found to be strongly associated with postprandial hyperglycemia, im- Genetically isolated or founder populations have recently paired glucose tolerance and T2D. These unique insights returned to the fore of genetic association studies as into the mechanism conferring muscle insulin resistance valuable resources for complex trait gene identification for this subset of T2D was afforded by studying the [1]. -
Identification and Subcellular Localization of Human Rab5b, a New Member of the Ras-Related Superfamily of Gtpases
Identification and subcellular localization of human rab5b, a new member of the ras-related superfamily of GTPases. D B Wilson, M P Wilson J Clin Invest. 1992;89(3):996-1005. https://doi.org/10.1172/JCI115683. Research Article Members of the mammalian rab family of GTPases are associated with specific subcellular compartments, where these proteins are postulated to function in vesicular transport. By screening a human umbilical vein endothelial cell library with degenerate oligonucleotide probes, we have isolated a 1.6-kb cDNA clone encoding a 215-amino-acid protein belonging to the rab family of GTPases. This newly identified rab protein is 81% identical to human rab5, the canine counterpart of which has been localized to the plasma membrane and early endosomes. In light of this homology, we have named this new member of the GTPase superfamily "rab5b." Northern analysis using the rab5b cDNA as a probe revealed a 3.6-kb mRNA in a variety of cell types, including human umbilical vein endothelial cells, K562 erythroleukemia cells, U937 monoblastic cells, and HeLa cells. A fusion protein between glutathione-S-transferase (GST) and rab5b was expressed in bacteria and purified to homogeneity. The recombinant protein was shown to bind GTP and GDP. As is typical of other recombinant rab proteins, the rab5b-GST fusion protein displayed a low intrinsic rate of GTP hydrolysis (0.005/min). An antiserum to rab5b was prepared and used to determine the apparent molecular size and subcellular distribution of the protein. Western blotting with this antibody revealed a 25-kD protein in COS cells transfected with rab5b and in nontransfected HeLa cells. -
Evaluating the Glucose Raising Effect of Established Loci Via a Genetic Risk Score
RESEARCH ARTICLE Evaluating the glucose raising effect of established loci via a genetic risk score Eirini Marouli1*, Stavroula Kanoni1, Vasiliki Mamakou2, Sophie Hackinger3, Lorraine Southam3,4, Bram Prins3, Angela Rentari5, Maria Dimitriou5, Eleni Zengini2,6, Fragiskos Gonidakis7, Genovefa Kolovou8, Vassilis Kontaxakis9, Loukianos Rallidis10, Nikolaos Tentolouris11, Anastasia Thanopoulou12, Klea Lamnissou13, George Dedoussis5, Eleftheria Zeggini3, Panagiotis Deloukas1,14 1 William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom, 2 Dromokaiteio Psychiatric Hospital, Athens, Greece, 3 Wellcome Trust Sanger Institute, Hinxton, Cambridge, 4 Wellcome Trust Centre for Human Genetics, Oxford, United a1111111111 Kingdom, 5 Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio a1111111111 University, Athens, Greece, 6 Department of Oncology and Metabolism, University of Sheffield, Sheffield, a1111111111 United Kingdom, 7 1st Psychiatric Department, National and Kapodistrian University of Athens, Medical a1111111111 School, Eginition Hospital, Athens, Greece, 8 Department of Cardiology, Onassis Cardiac Surgery Center, a1111111111 Athens, Greece, 9 Early Psychosis Unit, 1st Department of Psychiatry, National and Kapodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece, 10 Second Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Attikon Hospital, Athens, Greece, -
(12) Patent Application Publication (10) Pub. No.: US 2008/0132691 A1 Khvorova Et Al
US 2008O132691A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0132691 A1 KhVOrOVa et al. (43) Pub. Date: Jun. 5, 2008 (54) SIRNA TARGETING KINASE INSERT Related U.S. Application Data DOMAIN RECEPTOR (KDR) (63) Continuation-in-part of application No. 10/940,892, filed on Sep. 14, 2004, which is a continuation of (75) Inventors: Anastasia Khvorova, Boulder, CO application No. PCT/US04/14885, filed on May 12, (US); Angela Reynolds, Conifer, 2004, Continuation-in-part of application No. 10/714, CO (US); Devin Leake, Denver, 333, filed on Nov. 14, 2003. CO (US); William Marshall, (60) Provisional application No. 60/426,137, filed on Nov. Boulder, CO (US); Steven Read, 14, 2002, provisional application No. 60/502,050, Denver, CO (US); Stephen filed on Sep. 10, 2003. Scaringe, Lafayette, CO (US) Publication Classification Correspondence Address: (51) Int. C. KALOW & SPRINGUT LLP C7H 2L/02 (2006.01) 488 MADISONAVENUE, 19TH FLOOR (52) U.S. Cl. ....................................................... 536/24.5 NEW YORK, NY 10022 (57) ABSTRACT Efficient sequence specific gene silencing is possible through (73) Assignee: DHARMACON, INC., Lafayette, the use of siRNA technology. By selecting particular siRNAs CO (US) by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for (21) Appl. No.: 11/978,107 silencing genes. Methods, compositions, and kits generated through rational design of siRNAS are disclosed including (22) Filed: Oct. 26, 2007 those directed to nucleotide sequences for KDR. s S & 3 & SSSSSSSSSSS k kD CHC & 17O CLCa H EEA 1-> k O-Actinin-> --, -er is a set sat -100 DynII-> .. -
Candidato LUCA PAGANI
Procedura selettiva 2016RUB03 - Allegato n. 6 per l’assunzione di n. 1 posto di ricercatore a tempo determinato, presso il Dipartimento di Biologia per il settore concorsuale 05/B1 - Zoologia e antropologia (profilo: settore scientifico disciplinare BIO/08 - Antropologia) ai sensi dell'alt 24 comma 3 lettera b) della Legge 30 dicembre 2010, n. 240. Bandita con Decreto Pettorale n. 2219 de! 14 settembre 2016, con avviso pubblicato nella G.U. n. 77 del 27 settembre 2016, IV serie speciale - Concorsi ed Esami Allegato D) al Verbale n. 4 PUNTEGGI DEI TITOLI E DELLE PUBBLICAZIONI e GIUDIZI SULLA PROVA ORALE Candidato LUCA PAGANI Titoli titolo 1: Dottorato di Ricerca: punti 10 titolo 2: Attività didattica: punti 10 titolo 3: Premi e riconoscimenti: punti 2 titolo 3: Partecipazione a progetti di ricerca: punti 4 titolo 3: Relazioni a congressi internazionali: punti 3 titolo 3: Incarichi di ricerca: punti 20 Punteggio totale titoli: punti 49 Pubblicazioni presentate A u to ri A n n o R ivista P u n ti Luca Pagani, Casini Ayub, Daniel G MacArthur, Yali Xue, J Kenneth Baillie, Yuan Chen, Iwanka Kozarewa, Daniel J Turner, Sergio Tofanell't, Kazima Bulayeva, Kenneth Kidd, Human Genetics 09/2011; Giorgio Paoli, Chris Tyler-Smith 2 0 1 1 131(3):423-33 5 Luca Pagani, Toomas Kivisild, Ayeìe Tarekegn, Rosemary Ekong, Chris Plaster, Irene Gallego Romero, Qasim Ayub, S The American Journal of Qasirh Mehdi, M ark G Thomas, Donata Luiselli, Endashaw Human Genetics 06/2012; Bekele, Neil Bradman, David J Balding, Chris Tyler-Smith 2 0 1 2 91(l):83-96 5 Srilakshmi M Raj, Luca Pagani, Irene Gallego Romero, BMC Genetics 09/2013; Toomas Kivisild, W illiam Amos 2 0 1 3 1 4 (1 ): 8 7 2 Emilia Huerta-Sànchez, M ichael Degiorgio, Luca Pagani, Ayele Tarekegn, Rosemary Ekong, Tiago Antao, Alexia Cardona, Hugh E M ontgom ery, Gianpiero L Cavalieri, Peter A Robbins, Michael E W eale, Neil Bradman, Endashaw Bekele, Toomas Molecular Biology and Kivisild, Chris Tyler-Sm ith, Rasmus Nielsen 2 0 1 3 Evolution 05/2013; 30(8 5 Florian i. -
Audrey E. Hendricks, Phd
Audrey E. Hendricks, PhD GENERAL INFORMATION Mailing Address: University of Colorado Denver Google Scholar: P.O. Box 173364 h-index = 11 Denver, CO i10-index = 11 80217-3364 693 citations 21 peer reviewed journal articles Telephone (303) 315-1722 E-mail [email protected] Website http://math.ucdenver.edu/~ahendricks CURRENT INTERESTS As a statistical geneticist and biostatistician, I am interested in the complex nature of human diseases and traits. This includes both applied and methodological development in the incorporation of multiple datasets and types (both genetic and environmental) to decipher complex relationships. My work has involved research across many genetics and public health settings including large scale association and expression studies as well as more focused brain and mouse studies. My most recent work involves the use of extremely large datasets such as Whole Exome Sequencing. I look forward to continuing this work on an even larger scale by incorporating other data, such as the human microbiome and biomarkers. KEY WORDS Statistics, biostatistics, genetics, ‘omics, obesity, face shape, big data, next-generation sequencing EDUCATION Visiting Postdoctoral Fellow; Broad Institute of MIT and Harvard (Sept. 2012-Aug. 2013) Visiting Postdoctoral Fellow; Massachusetts General Hospital (Sept. 2012-Aug. 2013); Assistant Professor of Medicine for Harvard Medical School-Diabetes Unit, Jose Florez Statistical Genetics Postdoctoral Fellow, Wellcome Trust Sanger Institute, Cambridge University (Sept. 2011- Aug. 2013); Head of Human Genetics & Metabolic Disease Group Leader, Inês Barroso; Analytical Genomics of Complex Traits Group Leader, Eleftheria Zeggini Ph.D in Biostatistics (2011); Boston University, Graduate School of Arts and Sciences Dissertation: “Exploration of Gene Region Simulation, Correction for Multiple Testing, and Summary Methods”; Thesis Advisor: Kathryn L. -
Dissertation Jörn Leonhardt
TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für genomorientierte Bioinformatik Comparative Omics Analysis in Mice and Men for Diabetes Research Jörn Leonhardt Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. Martin Hrabě de Angelis Prüfer der Dissertation: 1. Prof. Dr. Hans-Werner Mewes 2. apl. Prof. Dr. Johannes Beckers Die Dissertation wurde am 21.12.2016 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 05.04.2017 angenommen. iii Abstract Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent metabolic diseases world wide with its clinical complications imposing major human and financial bur- den on societies. The etiology of T2DM is rather complex, involving interactions between various genetic and environmental factors. The underlying pathogenic mechanisms are not fully understood. Until today, there is no cure for T2DM. Functional studies aiming at the investigation of the disease’s underlying causes are primarily done in animal models, in particular in mouse models. While the clinical phenotypes of such models are usually well characterized, it is often not known how well they actually mimic the disease’s physiology on the molecular level. This gap of knowledge clearly complicates the replication of results among differ- ent models as well as the transfer of findings from animal models to human set- tings. The objective of this thesis was to assess the comparability of findings in mouse mod- els for diabetes research on the basis of results from large scale screening methods (›omics‹). -
Evidence for Two Independent Associations with Type 1 Diabetes at the 12Q13 Locus
Genes and Immunity (2012) 13, 66–70 & 2012 Macmillan Publishers Limited All rights reserved 1466-4879/12 www.nature.com/gene ORIGINAL ARTICLE Evidence for two independent associations with type 1 diabetes at the 12q13 locus KL Keene1,2, AR Quinlan1,2,3, X Hou2,3, IM Hall1, JC Mychaleckyj2,3, S Onengut-Gumuscu2,4 and P Concannon1,2 1Department of Biochemistry and Molecular Genetics, UVA School of Medicine, University of Virginia, Charlottesville, VA, USA; 2Center for Public Health Genomics, UVA School of Medicine, University of Virginia, Charlottesville, VA, USA; 3Department of Public Health Sciences, UVA School of Medicine, University of Virginia, Charlottesville, VA, USA and 4Division of Endocrinology and Metabolism, UVA School of Medicine, University of Virginia, Charlottesville, VA, USA Genome-wide association studies have identified associations between type 1 diabetes and single-nucleotide polymorphisms (SNPs) at chromosome 12q13, surrounding the gene ERBB3. Our objective was to fine map this region to further localize causative variants. Re-sequencing identified more than 100 putative SNPs in an 80-kb region at 12q13. By genotyping 42 SNPs, spanning B214 kb, in 382 affected sibling pair type 1 diabetes families, we were able to genotype or tag 67 common SNPs (MAFX0.05) identified from HapMap CEU data and CEU data from the 1000 Genomes Project, plus additional rare coding variants identified from our re-sequencing efforts. In all, 15 SNPs provided nominal evidence for association (Pp0.05), with type 1 diabetes. The most significant associations were observed with rs2271189 (P ¼ 4.22 Â 10À5), located in exon 27 of the ERBB3 gene, and an intergenic SNP rs11171747 (P ¼ 1.70 Â 10À4). -
UCLA Electronic Theses and Dissertations
UCLA UCLA Electronic Theses and Dissertations Title Computational Genetic Approaches for Understanding the Genetic Basis of Complex Traits Permalink https://escholarship.org/uc/item/50j7w041 Author Kang, Eun Yong Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Computational Genetic Approaches for Understanding the Genetic Basis of Complex Traits A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science by Eun Yong Kang 2013 c Copyright by Eun Yong Kang 2013 ABSTRACT OF THE DISSERTATION Computational Genetic Approaches for Understanding the Genetic Basis of Complex Traits by Eun Yong Kang Doctor of Philosophy in Computer Science University of California, Los Angeles, 2013 Professor Eleazar Eskin, Chair Recent advances in genotyping and sequencing technology have enabled researchers to collect an enormous amount of high-dimensional genotype data. These large scale genomic data provide unprecedented opportunity for researchers to study and analyze the genetic factors of human complex traits. One of the major challenges in analyzing these high-throughput genomic data is requirements for effective and efficient compu- tational methodologies. In this thesis, I introduce several methodologies for analyzing these genomic data which facilitates our understanding of the genetic basis of complex human traits. First, I introduce a method for inferring biological networks from high- throughput data containing both genetic variation information and gene expression profiles from genetically distinct strains of an organism. For this problem, I use causal inference techniques to infer the presence or absence of causal relationships between yeast gene expressions in the framework of graphical causal models.