Genome-Wide Association Study Reveals First Locus for Anorexia Nervosa and Metabolic Correlations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EBP1/PA2G4 Rabbit Pab
Leader in Biomolecular Solutions for Life Science EBP1/PA2G4 Rabbit pAb Catalog No.: A5376 Basic Information Background Catalog No. This gene encodes an RNA-binding protein that is involved in growth regulation. This A5376 protein is present in pre-ribosomal ribonucleoprotein complexes and may be involved in ribosome assembly and the regulation of intermediate and late steps of rRNA Observed MW processing. This protein can interact with the cytoplasmic domain of the ErbB3 receptor 44kDa and may contribute to transducing growth regulatory signals. This protein is also a transcriptional co-repressor of androgen receptor-regulated genes and other cell cycle Calculated MW regulatory genes through its interactions with histone deacetylases. This protein has 38kDa/43kDa been implicated in growth inhibition and the induction of differentiation of human cancer cells. Six pseudogenes, located on chromosomes 3, 6, 9, 18, 20 and X, have been Category identified. Primary antibody Applications WB, IHC Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 5036 Q9UQ80 IHC 1:50 - 1:200 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 1-394 of human EBP1/PA2G4 (NP_006182.2). Synonyms PA2G4;EBP1;HG4-1;p38-2G4 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using EBP1/PA2G4 antibody (A5376) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. -
Genome-Wide Analysis of Androgen Receptor Binding and Gene Regulation in Two CWR22-Derived Prostate Cancer Cell Lines
Endocrine-Related Cancer (2010) 17 857–873 Genome-wide analysis of androgen receptor binding and gene regulation in two CWR22-derived prostate cancer cell lines Honglin Chen1, Stephen J Libertini1,4, Michael George1, Satya Dandekar1, Clifford G Tepper 2, Bushra Al-Bataina1, Hsing-Jien Kung2,3, Paramita M Ghosh2,3 and Maria Mudryj1,4 1Department of Medical Microbiology and Immunology, University of California Davis, 3147 Tupper Hall, Davis, California 95616, USA 2Division of Basic Sciences, Department of Biochemistry and Molecular Medicine, Cancer Center and 3Department of Urology, University of California Davis, Sacramento, California 95817, USA 4Veterans Affairs Northern California Health Care System, Mather, California 95655, USA (Correspondence should be addressed to M Mudryj at Department of Medical Microbiology and Immunology, University of California, Davis; Email: [email protected]) Abstract Prostate carcinoma (CaP) is a heterogeneous multifocal disease where gene expression and regulation are altered not only with disease progression but also between metastatic lesions. The androgen receptor (AR) regulates the growth of metastatic CaPs; however, sensitivity to androgen ablation is short lived, yielding to emergence of castrate-resistant CaP (CRCaP). CRCaP prostate cancers continue to express the AR, a pivotal prostate regulator, but it is not known whether the AR targets similar or different genes in different castrate-resistant cells. In this study, we investigated AR binding and AR-dependent transcription in two related castrate-resistant cell lines derived from androgen-dependent CWR22-relapsed tumors: CWR22Rv1 (Rv1) and CWR-R1 (R1). Expression microarray analysis revealed that R1 and Rv1 cells had significantly different gene expression profiles individually and in response to androgen. -
(12) United States Patent (10) Patent No.: US 7,592,444 B2 Khvorova Et Al
USOO7592444B2 (12) United States Patent (10) Patent No.: US 7,592,444 B2 KhVOrOVa et al. (45) Date of Patent: Sep. 22, 2009 (54) SIRNA TARGETING MYELOID CELL 2003/0228597 A1 12/2003 COWSert LEUKEMIA SEQUENCE 1 2004/OO29275 A1 2/2004 Brown et al. 2004.00541.55 A1 3, 2004 Woolf (75) Inventors: Anastasia Khvorova, Boulder, CO 2004-0063654. A 42004 Davis et al. (US); Angela Reynolds, Conifer, CO S.S. A. 3. Singhofer (US);O O Devin Leake, Denver, CO (US); 2004/O180357 A1 9, 2004 eich William Marshall, Boulder, CO (US); 2004/O192629 A1 9, 2004 Xu et al. Stephen Scaringe, Lafayette, CO (US); 2004/0204380 A1 10, 2004 Ackerman Steven Read, Boulder, CO (US) 2004/0219671 A1 1 1/2004 McSwiggen 2004/024.8296 A1 12/2004 Beresford (73) Assignee: Dharmacon, Inc., Lafayette, CO (US) 2004/0248299 A1 12/2004 Jayasena 2004/0259247 A1 12, 2004 TuSchlet al. (*) Notice: Subject to any disclaimer, the term of this 2005/0048529 A1 3/2005 McSwiggen patent is extended or adjusted under 35 2005/0107328 A1 5/2005 Wyatt U.S.C. 154(b) by 0 days. 2005. O130181 A1 6/2005 McSwiggen 2005/0176O25 A1 8/2005 McSwiggen (21) Appl. No.: 12/378,164 2005, 0181382 A1 8, 2005 Zamore 2005, 0186586 A1 8, 2005 Zamore 2005/0227935 A1 10/2005 McSwiggen (22) Filed: Feb. 11, 2009 2005/0239731 A1 10/2005 McSwiggen 2005.0245475 A1 11/2005 Khvorova (65) Prior Publication Data 2006/0286575 A1 12/2006 Farrell US 2009/O1637O2A1 Jun. 25, 2009 2007/0031844 A1 2/2007 Khvorova 2007,0254.850 A1 11/2007 Lieberman Related U.S. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
PA2G4 Antibody (F54781)
PA2G4 Antibody / EBP1 / ErbB3-binding protein 1 (F54781) Catalog No. Formulation Size F54781-0.4ML In 1X PBS, pH 7.4, with 0.09% sodium azide 0.4 ml F54781-0.08ML In 1X PBS, pH 7.4, with 0.09% sodium azide 0.08 ml Bulk quote request Availability 1-3 business days Species Reactivity Human Format Purified Clonality Polyclonal (rabbit origin) Isotype Rabbit Ig Purity Purified UniProt Q9UQ80 Localization Cytoplasmic, nuclear Applications Immunofluorescence : 1:25 Flow cytometry : 1:25 (1x10e6 cells) Immunohistochemistry (FFPE) : 1:25 Western blot : 1:500-1:1000 Limitations This PA2G4 antibody is available for research use only. IHC testing of FFPE human lung carcinoma tissue with PA2G4 antibody. HIER: steam section in pH6 citrate buffer for 20 min and allow to cool prior to staining. Immunofluorescent staining of fixed and permeabilized human U-251 cells with PA2G4 antibody (green), DAPI nuclear stain (blue) and anti-Actin (red). Western blot testing of human 1) A431 and 2) Jurkat cell lysate with PA2G4 antibody. Predicted molecular weight ~44 kDa. Flow cytometry testing of human A2058 cells with PA2G4 antibody; Blue=isotype control, Green= PA2G4 antibody. Description PA2G4 is an RNA-binding protein that is involved in growth regulation. This protein is present in pre-ribosomal ribonucleoprotein complexes and may be involved in ribosome assembly and the regulation of intermediate and late steps of rRNA processing. The protein can interact with the cytoplasmic domain of the ErbB3 receptor and may contribute to transducing growth regulatory signals. It is also a transcriptional co-repressor of androgen receptor-regulated genes and other cell cycle regulatory genes through its interactions with histone deacetylases. -
A Dissertation Entitled the Androgen Receptor
A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen. -
Identification and Subcellular Localization of Human Rab5b, a New Member of the Ras-Related Superfamily of Gtpases
Identification and subcellular localization of human rab5b, a new member of the ras-related superfamily of GTPases. D B Wilson, M P Wilson J Clin Invest. 1992;89(3):996-1005. https://doi.org/10.1172/JCI115683. Research Article Members of the mammalian rab family of GTPases are associated with specific subcellular compartments, where these proteins are postulated to function in vesicular transport. By screening a human umbilical vein endothelial cell library with degenerate oligonucleotide probes, we have isolated a 1.6-kb cDNA clone encoding a 215-amino-acid protein belonging to the rab family of GTPases. This newly identified rab protein is 81% identical to human rab5, the canine counterpart of which has been localized to the plasma membrane and early endosomes. In light of this homology, we have named this new member of the GTPase superfamily "rab5b." Northern analysis using the rab5b cDNA as a probe revealed a 3.6-kb mRNA in a variety of cell types, including human umbilical vein endothelial cells, K562 erythroleukemia cells, U937 monoblastic cells, and HeLa cells. A fusion protein between glutathione-S-transferase (GST) and rab5b was expressed in bacteria and purified to homogeneity. The recombinant protein was shown to bind GTP and GDP. As is typical of other recombinant rab proteins, the rab5b-GST fusion protein displayed a low intrinsic rate of GTP hydrolysis (0.005/min). An antiserum to rab5b was prepared and used to determine the apparent molecular size and subcellular distribution of the protein. Western blotting with this antibody revealed a 25-kD protein in COS cells transfected with rab5b and in nontransfected HeLa cells. -
Open Data for Differential Network Analysis in Glioma
International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes. -
(12) Patent Application Publication (10) Pub. No.: US 2008/0132691 A1 Khvorova Et Al
US 2008O132691A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0132691 A1 KhVOrOVa et al. (43) Pub. Date: Jun. 5, 2008 (54) SIRNA TARGETING KINASE INSERT Related U.S. Application Data DOMAIN RECEPTOR (KDR) (63) Continuation-in-part of application No. 10/940,892, filed on Sep. 14, 2004, which is a continuation of (75) Inventors: Anastasia Khvorova, Boulder, CO application No. PCT/US04/14885, filed on May 12, (US); Angela Reynolds, Conifer, 2004, Continuation-in-part of application No. 10/714, CO (US); Devin Leake, Denver, 333, filed on Nov. 14, 2003. CO (US); William Marshall, (60) Provisional application No. 60/426,137, filed on Nov. Boulder, CO (US); Steven Read, 14, 2002, provisional application No. 60/502,050, Denver, CO (US); Stephen filed on Sep. 10, 2003. Scaringe, Lafayette, CO (US) Publication Classification Correspondence Address: (51) Int. C. KALOW & SPRINGUT LLP C7H 2L/02 (2006.01) 488 MADISONAVENUE, 19TH FLOOR (52) U.S. Cl. ....................................................... 536/24.5 NEW YORK, NY 10022 (57) ABSTRACT Efficient sequence specific gene silencing is possible through (73) Assignee: DHARMACON, INC., Lafayette, the use of siRNA technology. By selecting particular siRNAs CO (US) by rational design, one can maximize the generation of an effective gene silencing reagent, as well as methods for (21) Appl. No.: 11/978,107 silencing genes. Methods, compositions, and kits generated through rational design of siRNAS are disclosed including (22) Filed: Oct. 26, 2007 those directed to nucleotide sequences for KDR. s S & 3 & SSSSSSSSSSS k kD CHC & 17O CLCa H EEA 1-> k O-Actinin-> --, -er is a set sat -100 DynII-> .. -
Genome-Wide Association Study in Alopecia Areata Implicates Both Innate and Adaptive Immunity
Vol 466 | 1 July 2010 | doi:10.1038/nature09114 LETTERS Genome-wide association study in alopecia areata implicates both innate and adaptive immunity Lynn Petukhova1, Madeleine Duvic2, Maria Hordinsky3, David Norris4, Vera Price5, Yutaka Shimomura1, Hyunmi Kim1, Pallavi Singh1, Annette Lee6, Wei V. Chen7, Katja C. Meyer8, Ralf Paus8,9, Colin A. B. Jahoda10, Christopher I. Amos7, Peter K. Gregersen6 & Angela M. Christiano1,11 Alopecia areata (AA) is among the most highly prevalent human multiple lines of evidence4. AA hair follicles are surrounded by an autoimmune diseases, leading to disfiguring hair loss due to the immune infiltrate with activated T-helper cells (TH cells), cytotoxic T collapse of immune privilege of the hair follicle and subsequent cells (TC cells) and natural killer (NK) cells, characterized as a TH1- autoimmune attack1,2. The genetic basis of AA is largely unknown. type inflammatory response5,6. The notion of a collapse of immune We undertook a genome-wide association study (GWAS) in a privilege is thought to be a key event in triggering AA4,7. sample of 1,054 cases and 3,278 controls and identified 139 single Evidence supporting a genetic basis for AA stems from multiple nucleotide polymorphisms that are significantly associated with AA lines of research, including the observed heritability in first-degree (P # 5 3 1027). Here we show an association with genomic regions relatives8,9, twin studies10 and, most recently, from our family-based containing several genes controlling the activation and prolifera- linkage studies11. Although a number of candidate-gene association tion of regulatory T cells (Treg cells), cytotoxic T lymphocyte- studies were performed over the past two decades, the informative- associated antigen 4 (CTLA4), interleukin (IL)-2/IL-21,IL-2 ness of these studies was inherently limited by small sample sizes and receptor A (IL-2RA; CD25)andEos (also known as Ikaros family preselection of candidate genes. -
PA2G4 Antibody (Center R243) Blocking Peptide Synthetic Peptide Catalog # Bp2848d
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 PA2G4 Antibody (Center R243) Blocking Peptide Synthetic peptide Catalog # BP2848d Specification PA2G4 Antibody (Center R243) Blocking PA2G4 Antibody (Center R243) Blocking Peptide - Peptide - Background Product Information PA2G4 is an RNA-binding protein that is Primary Accession Q9UQ80 involved in growth regulation. This protein is present in pre-ribosomal ribonucleoprotein complexes and may be involved in ribosome PA2G4 Antibody (Center R243) Blocking Peptide - Additional Information assembly and the regulation of intermediate and late steps of rRNA processing. The protein can interact with the cytoplasmic domain of Gene ID 5036 the ErbB3 receptor and may contribute to transducing growth regulatory signals. It is also Other Names a transcriptional co-repressor of androgen Proliferation-associated protein 2G4, Cell receptor-regulated genes and other cell cycle cycle protein p38-2G4 homolog, hG4-1, regulatory genes through its interactions with ErbB3-binding protein 1, PA2G4, EBP1 histone deacetylases. It has been implicated in Target/Specificity growth inhibition and the induction of The synthetic peptide sequence used to differentiation of human cancer cells. generate the antibody <a href=/products/AP2848d>AP2848d</a> PA2G4 Antibody (Center R243) Blocking was selected from the Center region of Peptide - References human PA2G4. A 10 to 100 fold molar excess to antibody is recommended. Zhang,Y., Mol. Cancer Ther. 7 (10), 3176-3186 Precise conditions should be optimized for a (2008)Zhang,Y., Cancer Lett. 265 (2), 298-306 particular assay. (2008)Okada,M., J. Biol. Chem. 282 (50), 36744-36754 (2007) Format Peptides are lyophilized in a solid powder format. -
A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.