Candidato LUCA PAGANI

Total Page:16

File Type:pdf, Size:1020Kb

Candidato LUCA PAGANI Procedura selettiva 2016RUB03 - Allegato n. 6 per l’assunzione di n. 1 posto di ricercatore a tempo determinato, presso il Dipartimento di Biologia per il settore concorsuale 05/B1 - Zoologia e antropologia (profilo: settore scientifico disciplinare BIO/08 - Antropologia) ai sensi dell'alt 24 comma 3 lettera b) della Legge 30 dicembre 2010, n. 240. Bandita con Decreto Pettorale n. 2219 de! 14 settembre 2016, con avviso pubblicato nella G.U. n. 77 del 27 settembre 2016, IV serie speciale - Concorsi ed Esami Allegato D) al Verbale n. 4 PUNTEGGI DEI TITOLI E DELLE PUBBLICAZIONI e GIUDIZI SULLA PROVA ORALE Candidato LUCA PAGANI Titoli titolo 1: Dottorato di Ricerca: punti 10 titolo 2: Attività didattica: punti 10 titolo 3: Premi e riconoscimenti: punti 2 titolo 3: Partecipazione a progetti di ricerca: punti 4 titolo 3: Relazioni a congressi internazionali: punti 3 titolo 3: Incarichi di ricerca: punti 20 Punteggio totale titoli: punti 49 Pubblicazioni presentate A u to ri A n n o R ivista P u n ti Luca Pagani, Casini Ayub, Daniel G MacArthur, Yali Xue, J Kenneth Baillie, Yuan Chen, Iwanka Kozarewa, Daniel J Turner, Sergio Tofanell't, Kazima Bulayeva, Kenneth Kidd, Human Genetics 09/2011; Giorgio Paoli, Chris Tyler-Smith 2 0 1 1 131(3):423-33 5 Luca Pagani, Toomas Kivisild, Ayeìe Tarekegn, Rosemary Ekong, Chris Plaster, Irene Gallego Romero, Qasim Ayub, S The American Journal of Qasirh Mehdi, M ark G Thomas, Donata Luiselli, Endashaw Human Genetics 06/2012; Bekele, Neil Bradman, David J Balding, Chris Tyler-Smith 2 0 1 2 91(l):83-96 5 Srilakshmi M Raj, Luca Pagani, Irene Gallego Romero, BMC Genetics 09/2013; Toomas Kivisild, W illiam Amos 2 0 1 3 1 4 (1 ): 8 7 2 Emilia Huerta-Sànchez, M ichael Degiorgio, Luca Pagani, Ayele Tarekegn, Rosemary Ekong, Tiago Antao, Alexia Cardona, Hugh E M ontgom ery, Gianpiero L Cavalieri, Peter A Robbins, Michael E W eale, Neil Bradman, Endashaw Bekele, Toomas Molecular Biology and Kivisild, Chris Tyler-Sm ith, Rasmus Nielsen 2 0 1 3 Evolution 05/2013; 30(8 5 Florian i. Clem ente, Alexia Cardona, Charlotte E. Inchley, The American Journal of Benjamin M . Peter, Guy Jacobs, Luca Pagani et al. 2 0 1 4 Human Genetics 10/2014 2 .5 Denis Pierron, Harilanto Razafindrazaka, Luca Pagani, Frangois-Xavier Ricaut, Tiago Antao, Mélanie Capredon, Clément Sambo, Chantal Radimilahy, Jean-Aimé Proceedings of the National Rakotoarisoa, Roger M Blench, Thierry Letellier, Toomas Academy of Sciences K ivisild 2 0 1 4 0 1 / 2 0 1 4 5 Vincenza Colonna, Qasim Ayub, Yuan Chen, Luca Pagani, Pierre Luisi, M arc Pybus, Erik Garrison, Yali Xue, Chris Tyler- Genome Biology 06/2014; S m ith 2 0 1 4 1 5 (6 ) :R 88 2 .5 Qasim Ayub, Loukas Moutsianas, Yuan Chen, Katliope The American Journal of Panoutsopouìou, Vincenza Colonna, Luca Pagani, Inga 2 0 1 4 Human Genetics 01/2014 2 .5 Prokopenko, Graham R S Ritchie, Chris Tyler-Smith, M ark 1 McCarthy, Eleftheria Zeggini, Yali Xue Deepti Gurdasani, Tomm y Carstensen, Fasil Tekola-Ayele, Nature 12/2014; Luca Pagani, Ioanna Tachmazidou, et al. 2 0 1 4 DOLIO. 1038/naturel3997 5 Monika Karmin, Lauri Saag, M ario Vicente, Melissa A. Wilson Sayres, M ari Jarve, Ulvi Gerst Talas, Siiri Rootsi, Anne-M ai Genome Research 03/2015; llumae, Reedik Magi, M ario M itt, Luca Pagani, et al. 2 0 1 5 DOI:10.1101/gr. 186684.114 2 .5 Yali Xue, Javier Prado-Martinez, Peter H. Sudmant, Vagheesh Narasimhan, Qasim Ayub, Michal Szpak, Peter Frandsen, Yuan Chen, Bryndis Yngvadottir, David N. Cooper, Marc de Manuel, Jessica Hernandez-Rodriguez, Irene Lobon, Hans R. Siegismund, Luca Pagani, Michael A. Quail, Christina Hvilsom, Antoine Mudakikwa, Evan E. Eichler, Michael R. Cranfield, Science 04/2015; Tomas Marques-Bonet, Chris Tyler-Smith, Aylwyn Scally 2 0 1 5 348(6231):242-245 2 ,5 Qasim Ayub, Massimo Mezzavilla, Luca Pagani, Marc Haber, The American Journal of Aisha Mohyuddin, Shagufta Khaliq, Syed Qasim Mehdi, Chris Human Genetics 05/2015; Tyler-Smith 2 0 1 5 9 6 ( 5 ) : l - 9 2 .5 Luca Pagani, Stephan Sohiffels, Deepti Gurdasani, Petr Danecek, Aylwyn Scally, Yuan Chen, Yali Xue, Marc Haber, Rosemary Ekong, Tarmai Oljira, Ephrem Mekonnen, Donata Luiselli, Neil Bradman, Endashaw Bekele, Pierre Zalloua, The American Journal of Richard Durbin, Toomas Kivisild, Chris Tyler-Smith 2 0 1 5 Human Genetics 05/2015 5 Luca Pagani (et al.) 2 0 1 6 Nature 538,238-242 5 Alexander Morseburg, Luca Pagani, Francois-Xavier Ricaut, Bryndis Yngvadottir, Eadaoin Harney, Cristina Castillo, Tom Hoogervorst, Tiago Antao, Pradiptajati Kusuma, Nicolas European Journal of Human Brucato, Alexia Cardona, Denis Pierron, Thierry Letellier, Genetics (2016) 24,1605- Joseph W ee, Syafiq Abdullah, M ait Metspalu, Toomas Kivisild 2 0 1 6 1 6 1 1 5 La somma dei punti ottenuti dalla valutazione delle 15 pubblicazioni è pari a 57. Alla data della valutazione del candidato, risultano 455 citazioni (Scopus), delle quali 454 dal 2012, per una media di 90.8 citazioni anno. Il candiato ottiene quindi 15 punti dalla valutazione delle citazioni. Dato che il punteggio massimo per la valutazione individuale delle 15 pubblicazioni presentate è stato fissato in punti 35, il punteggio totale delle pubblicazioni è risultato pari a punti 50. Punteggio totale dei titoli e delle pubblicazioni: punti 99/100 Giudizio sulla prova orale: Il Candidato LUCA PAGANI dimostra una completa padronanza delle tematiche relative alle sue ricerche antropologiche che hanno interessato principalmente la ricostruzione della storia evolutiva deN’uomo moderno attraverso le analisi genomiche delle popolazioni umane contemporanee e il loro confronto con le sequenze disponibili ottenute da DNA antico. Il candidato ho inoltre illustrato come le tecniche di analisi di dati ottenuti attraverso tecniche di Next Generation Sequencing permettano di investigare processi demografici (come colli di bottiglia e migrazioni) e selettivi, come quelli associati all’adattamento di popolazioni umane a quote elevate. Il candidato dimostra inoltre un’ottima conoscenza della lingua inglese. La commissione individua quale candidato vincitore LUCA PAGANI per le seguenti motivazioni: Il candidato Luca Pagani dimostra un eccellente curriculum, anche in relazione alla giovane età, come dimostrato dall’elevato punteggio ottenuto nella valutazione dei titoli e del curriculum. In particolare, dopo la laurea magistrale in Laurea specialistica in Scienze e Tecnologie Biomolecolari presso l'Università di Pisa (Voto: 110/110 cum laude) discutendo la tesi dal titolo "Characterization, through re-sequencing, of genetic variants associated with high altitude adaptation in North Caucasian ethnic groups", nel 2013 ha conseguito il dottorato di ricerca in Antropologia Biologica presso l'Università di Cambridge, GB con una tesi dal titolo “Through the layers of the Ethiopian genome: a survey of human genetic variation based on genome-wide genotyping and re-sequencing data”. Ha successivamente coperto il ruolo di post-doc per 3 anni prima presso il Wellcome Trust Sanger Institute, Hinxton, GB e successivamente presso l’Università di Cambridge, GB. Dal luglio 2016 è Senior Research Fellow presso l'Estonian Biocentre, Tartu, Estonia. Ha partecipato a numerosi progetti di ricerca internazionali relativi al sequenziamento di genomi umani da popolazioni attuali e da DNA antico, occupandosi principalmente dell’analisi di dati ottenuti attraverso metodologie di Next Generation Sequencing. Ha presentato i risultati delle sue ricerche in numerosi congressi e workshop internazionali, in molti dei quali come invited speaker. Ha pubblicato oltre 30 articoli su riviste scientifiche internazionali con impact factor (IF). Molti di questi articoli sono stati pubblicati su riviste di alto livello, inclusi due articoli su Nature e uno su Science. Complessivamente, l’IF medio delle pubblicazioni è risultato superiore a 10, con oltre 450 citazioni complessive (Scopus), con oltre 70 citazioni/anno nel periodo 2011-2015. L’H-index è risultato pari a 15 (Google Scholar). Le 15 pubblicazioni presentate sono tutte di livello eccellente (IF medio >15), e in 9 di queste il candidato risulta primo autore o equivalente, a dimostrazione di un contributo personale determinante. Il candidato ha inoltre una consistente esperienza didattica, avendo svolto un’attività regolare di tutoraggio per studenti di laurea triennale, e avendo svolto il ruolo di supervisore o co- supervisore per numerose tesi di laurea triennale, specialistica e per una tesi di dottorato. Nel corso della sua carriera ha ottenuto numerosi premi e grant competitivi da agenzie di finanziamento internazionali. Complessivamente il candidato presenta un curriculum adatto a ricoprire il ruolo di ricercatore a tempo determinato, per il settore concorsuale 05/B1 - Zoologia e antropologia, settore scientifico disciplinare BIO/08 - Antropologia, ai sensi delPart. 24 comma 3 lettera b) della Legge 30 dicembre 2010, n. 240. Nel corso del colloquio orale il Candidato, attraverso un’ampia discussione sulla sua complessiva produzione scientifica e sulle pubblicazioni presentate, dimostra un’ottima conoscenza delle tematiche più recenti e significative nell’ambito dell’antropologia, con particolare riferimento all’utilizzo dei dati di NGS, delle prospettive di sviluppo della ricerca in questo campo e delle opportunità per reperire risorse finanziarie attraverso la collaborazione con altri gruppi di ricerca gruppi nazionali e internazionali. In Candidato dimostra infine un’ottima padronanza della lingua inglese. Luogo Padova data 19-12-2016 LA COMMISSIONE Prof. Davide Pettener, professore Ordinario di Antropologia (SSD BIO/08) dell’Università degli Studi di Bologna______ \^ST^eÀjV€AAx:------- ------------------------------------------------------------------ Prof. David Caramelli, professore Ordinario di Antropologia (SSD BIO/08) dell’Università degli Studi di Firenze. p /X s u A (I)u U X / l / _______________________________________ Prof. Andrea Augusto Pilastro,ilastro, professorep/ofessqreprdinario Ordinario ddi Zoologia (SSD BIO/05) dell’Università degli Studi di Padova.
Recommended publications
  • Jawaharlal Nehru University, New Delhi
    Jawaharlal Nehru University, New Delhi Evaluative Report of the Department (science) Name of the School/Spl. Center Pages 1 School of Life Sciences 1-45 2. School of Biotechnology 46-100 3 School of Computer and systems Sciences 101-120 4 School of Computational and Integrative Sciences 121-141 5. School of Physical Sciences 142-160 6 School of Environmental Sciences 161-197 7 Spl. Center for Molecular Medicine 198-256 8 Spl Center for Nano Sciences 257-268 Evaluation Report of School of Life Sciences In the past century, biology, with inputs from other disciplines, has made tremendous progress in terms of advancement of knowledge, development of technology and its applications. As a consequence, in the past fifty years, there has been a paradigm shift in our interpreting the life process. In the process, modern biology had acquired a truly interdisciplinary character in which all streams of sciences have made monumental contributions. Because of such rapid emergence as a premier subject of teaching and research; a necessity to restructure classical teachings in biology was recognised by the academics worldwide. In tune with such trends, the academic leadership of Jawaharlal Nehru University conceptualised the School of Life Sciences as an interdisciplinary research/teaching programme unifying various facets of biology while reflecting essential commonality regarding structure, function and evolution of biomolecules. The School was established in 1973 and since offering integrated teaching and research at M. Sc/ Ph.D level in various sub-disciplines in life sciences. Since inception, it remained dedicated to its core objectives and evolved to be one of the top such institutions in India and perhaps in South East Asia.
    [Show full text]
  • Using Genetically Isolated Populations to Understand the Genomic Basis of Disease Eleftheria Zeggini
    Zeggini Genome Medicine 2014, 6:83 http://genomemedicine.com/content/6/10/83 RESEARCH HIGHLIGHT Using genetically isolated populations to understand the genomic basis of disease Eleftheria Zeggini Abstract use of next-generation association studies, a hybrid of genome-wide genotyping and whole genome sequencing Rare variation has a key role in the genetic etiology of (WGS) approaches, for complex disease gene mapping complex traits. Genetically isolated populations have [2,3]. In Iceland, numerous novel loci for complex dis- been established as a powerful resource for novel eases, such as type 2 diabetes (T2D) and prostate cancer locus discovery and they combine advantageous [4,5], have been identified through a combination of characteristics that can be leveraged to expedite WGS and long-range phasing-assisted imputation on a discovery. Genome-wide genotyping approaches genome-wide genotype scaffold, together with calcula- coupled with sequencing efforts have transformed the tion of genotype probabilities in approximately 300,000 landscape of disease genomics and highlight the untyped individuals by making use of the extended ge- potentially significant contribution of studies in nealogical information available. founder populations. More recently, novel insights into the biological path- ways underpinning T2D were achieved through the study of a Greenlandic founder population [6]. A non- Complex trait locus discovery in isolated TBC1D4 populations sense variant in the gene was found to be strongly associated with postprandial hyperglycemia, im- Genetically isolated or founder populations have recently paired glucose tolerance and T2D. These unique insights returned to the fore of genetic association studies as into the mechanism conferring muscle insulin resistance valuable resources for complex trait gene identification for this subset of T2D was afforded by studying the [1].
    [Show full text]
  • Evaluating the Glucose Raising Effect of Established Loci Via a Genetic Risk Score
    RESEARCH ARTICLE Evaluating the glucose raising effect of established loci via a genetic risk score Eirini Marouli1*, Stavroula Kanoni1, Vasiliki Mamakou2, Sophie Hackinger3, Lorraine Southam3,4, Bram Prins3, Angela Rentari5, Maria Dimitriou5, Eleni Zengini2,6, Fragiskos Gonidakis7, Genovefa Kolovou8, Vassilis Kontaxakis9, Loukianos Rallidis10, Nikolaos Tentolouris11, Anastasia Thanopoulou12, Klea Lamnissou13, George Dedoussis5, Eleftheria Zeggini3, Panagiotis Deloukas1,14 1 William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom, 2 Dromokaiteio Psychiatric Hospital, Athens, Greece, 3 Wellcome Trust Sanger Institute, Hinxton, Cambridge, 4 Wellcome Trust Centre for Human Genetics, Oxford, United a1111111111 Kingdom, 5 Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio a1111111111 University, Athens, Greece, 6 Department of Oncology and Metabolism, University of Sheffield, Sheffield, a1111111111 United Kingdom, 7 1st Psychiatric Department, National and Kapodistrian University of Athens, Medical a1111111111 School, Eginition Hospital, Athens, Greece, 8 Department of Cardiology, Onassis Cardiac Surgery Center, a1111111111 Athens, Greece, 9 Early Psychosis Unit, 1st Department of Psychiatry, National and Kapodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece, 10 Second Department of Cardiology, National and Kapodistrian University of Athens, Medical School, Attikon Hospital, Athens, Greece,
    [Show full text]
  • Audrey E. Hendricks, Phd
    Audrey E. Hendricks, PhD GENERAL INFORMATION Mailing Address: University of Colorado Denver Google Scholar: P.O. Box 173364 h-index = 11 Denver, CO i10-index = 11 80217-3364 693 citations 21 peer reviewed journal articles Telephone (303) 315-1722 E-mail [email protected] Website http://math.ucdenver.edu/~ahendricks CURRENT INTERESTS As a statistical geneticist and biostatistician, I am interested in the complex nature of human diseases and traits. This includes both applied and methodological development in the incorporation of multiple datasets and types (both genetic and environmental) to decipher complex relationships. My work has involved research across many genetics and public health settings including large scale association and expression studies as well as more focused brain and mouse studies. My most recent work involves the use of extremely large datasets such as Whole Exome Sequencing. I look forward to continuing this work on an even larger scale by incorporating other data, such as the human microbiome and biomarkers. KEY WORDS Statistics, biostatistics, genetics, ‘omics, obesity, face shape, big data, next-generation sequencing EDUCATION Visiting Postdoctoral Fellow; Broad Institute of MIT and Harvard (Sept. 2012-Aug. 2013) Visiting Postdoctoral Fellow; Massachusetts General Hospital (Sept. 2012-Aug. 2013); Assistant Professor of Medicine for Harvard Medical School-Diabetes Unit, Jose Florez Statistical Genetics Postdoctoral Fellow, Wellcome Trust Sanger Institute, Cambridge University (Sept. 2011- Aug. 2013); Head of Human Genetics & Metabolic Disease Group Leader, Inês Barroso; Analytical Genomics of Complex Traits Group Leader, Eleftheria Zeggini Ph.D in Biostatistics (2011); Boston University, Graduate School of Arts and Sciences Dissertation: “Exploration of Gene Region Simulation, Correction for Multiple Testing, and Summary Methods”; Thesis Advisor: Kathryn L.
    [Show full text]
  • Dissertation Jörn Leonhardt
    TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für genomorientierte Bioinformatik Comparative Omics Analysis in Mice and Men for Diabetes Research Jörn Leonhardt Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. Martin Hrabě de Angelis Prüfer der Dissertation: 1. Prof. Dr. Hans-Werner Mewes 2. apl. Prof. Dr. Johannes Beckers Die Dissertation wurde am 21.12.2016 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 05.04.2017 angenommen. iii Abstract Type 2 Diabetes Mellitus (T2DM) is one of the most prevalent metabolic diseases world wide with its clinical complications imposing major human and financial bur- den on societies. The etiology of T2DM is rather complex, involving interactions between various genetic and environmental factors. The underlying pathogenic mechanisms are not fully understood. Until today, there is no cure for T2DM. Functional studies aiming at the investigation of the disease’s underlying causes are primarily done in animal models, in particular in mouse models. While the clinical phenotypes of such models are usually well characterized, it is often not known how well they actually mimic the disease’s physiology on the molecular level. This gap of knowledge clearly complicates the replication of results among differ- ent models as well as the transfer of findings from animal models to human set- tings. The objective of this thesis was to assess the comparability of findings in mouse mod- els for diabetes research on the basis of results from large scale screening methods (›omics‹).
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Computational Genetic Approaches for Understanding the Genetic Basis of Complex Traits Permalink https://escholarship.org/uc/item/50j7w041 Author Kang, Eun Yong Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Computational Genetic Approaches for Understanding the Genetic Basis of Complex Traits A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science by Eun Yong Kang 2013 c Copyright by Eun Yong Kang 2013 ABSTRACT OF THE DISSERTATION Computational Genetic Approaches for Understanding the Genetic Basis of Complex Traits by Eun Yong Kang Doctor of Philosophy in Computer Science University of California, Los Angeles, 2013 Professor Eleazar Eskin, Chair Recent advances in genotyping and sequencing technology have enabled researchers to collect an enormous amount of high-dimensional genotype data. These large scale genomic data provide unprecedented opportunity for researchers to study and analyze the genetic factors of human complex traits. One of the major challenges in analyzing these high-throughput genomic data is requirements for effective and efficient compu- tational methodologies. In this thesis, I introduce several methodologies for analyzing these genomic data which facilitates our understanding of the genetic basis of complex human traits. First, I introduce a method for inferring biological networks from high- throughput data containing both genetic variation information and gene expression profiles from genetically distinct strains of an organism. For this problem, I use causal inference techniques to infer the presence or absence of causal relationships between yeast gene expressions in the framework of graphical causal models.
    [Show full text]
  • A Molecular Quantitative Trait Locus Map for Osteoarthritis
    ARTICLE https://doi.org/10.1038/s41467-021-21593-7 OPEN A molecular quantitative trait locus map for osteoarthritis Julia Steinberg 1,2,3,4, Lorraine Southam1,3, Theodoros I. Roumeliotis3,5, Matthew J. Clark 6, Raveen L. Jayasuriya6, Diane Swift6, Karan M. Shah 6, Natalie C. Butterfield 7, Roger A. Brooks8, Andrew W. McCaskie8, J. H. Duncan Bassett 7, Graham R. Williams 7, Jyoti S. Choudhary 3,5, ✉ ✉ J. Mark Wilkinson 6,9,11 & Eleftheria Zeggini 1,3,10,11 1234567890():,; Osteoarthritis causes pain and functional disability for over 500 million people worldwide. To develop disease-stratifying tools and modifying therapies, we need a better understanding of the molecular basis of the disease in relevant tissue and cell types. Here, we study primary cartilage and synovium from 115 patients with osteoarthritis to construct a deep molecular signature map of the disease. By integrating genetics with transcriptomics and proteomics, we discover molecular trait loci in each tissue type and omics level, identify likely effector genes for osteoarthritis-associated genetic signals and highlight high-value targets for drug development and repurposing. These findings provide insights into disease aetiopathology, and offer translational opportunities in response to the global clinical challenge of osteoarthritis. 1 Institute of Translational Genomics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany. 2 Cancer Research Division, Cancer Council NSW, Sydney, NSW, Australia. 3 Wellcome Sanger Institute, Hinxton, United Kingdom. 4 School of Public Health, The University of Sydney, Sydney, NSW, Australia. 5 The Institute of Cancer Research, London, United Kingdom. 6 Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.
    [Show full text]
  • Accelerating Functional Gene Discovery in Osteoarthritis
    The Jackson Laboratory The Mouseion at the JAXlibrary Faculty Research 2021 Faculty Research 1-20-2021 Accelerating functional gene discovery in osteoarthritis. Natalie C Butterfield Katherine F Curry Julia Steinberg Hannah Dewhurst Davide Komla-Ebri See next page for additional authors Follow this and additional works at: https://mouseion.jax.org/stfb2021 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons Authors Natalie C Butterfield, Katherine F Curry, Julia Steinberg, Hannah Dewhurst, Davide Komla-Ebri, Naila S Mannan, Anne-Tounsia Adoum, Victoria D Leitch, John G Logan, Julian A Waung, Elena Ghirardello, Lorraine Southam, Scott E Youlten, J Mark Wilkinson, Elizabeth A McAninch, Valerie E Vancollie, Fiona Kussy, Jacqueline K White, Christopher J Lelliott, David J Adams, Richard Jacques, Antonio C Bianco, Alan Boyde, Eleftheria Zeggini, Peter I Croucher, Graham R Williams, and J H Duncan Bassett ARTICLE https://doi.org/10.1038/s41467-020-20761-5 OPEN Accelerating functional gene discovery in osteoarthritis Natalie C. Butterfield 1, Katherine F. Curry1, Julia Steinberg 2,3,4, Hannah Dewhurst1, Davide Komla-Ebri 1, Naila S. Mannan1, Anne-Tounsia Adoum1, Victoria D. Leitch 1, John G. Logan1, Julian A. Waung1, Elena Ghirardello1, Lorraine Southam2,3, Scott E. Youlten 5, J. Mark Wilkinson 6,7, Elizabeth A. McAninch 8, Valerie E. Vancollie 3, Fiona Kussy3, Jacqueline K. White3,9, Christopher J. Lelliott 3, David J. Adams 3, Richard Jacques 10, Antonio C. Bianco11, Alan Boyde 12, ✉ ✉ Eleftheria Zeggini 2,3, Peter I. Croucher 5, Graham R. Williams 1,13 & J. H. Duncan Bassett 1,13 1234567890():,; Osteoarthritis causes debilitating pain and disability, resulting in a considerable socio- economic burden, yet no drugs are available that prevent disease onset or progression.
    [Show full text]
  • Hellenic Bioinformatics 10
    Hellenic Bioinformatics 10 AGENDA + ABSTRACTS HB-10 6-9 SEPTEMBER, 2017 HERAKLION, GREECE CONTENS CONFERENCE ANNOUNCEMENT Page 2 CONFERENCE POSTER Page 3 PRE-CONFERENCE WORKSHOPS Page 4 PRE-CONFERENCE TUTORIALS AND OPENING SESSION Page 5 ORGANIZERS Page 6 INVITED SPEAKERS Page 7 CONFERENCE AGENDA BY NUMBERS Page 8 CONFERENCE AGENDA AT A GLANCE Page 9 CONFERENCE AGENDA Page 11 SPONSORS Page 16 SPEAKER ABSTRACTS Page 17 POSTER ABSTRACTS Page 63 AUTHOR INDEX Page 79 HB-10 1 HB-10 The 10th Conference of Hellenic Bioinformatics September 6-9, 2017 Institute of Molecular Biology and Biotechnology (IMBB), Foundation of Research and Technology (FORTH) Heraklion, Crete, Greece Bioinformatics and its applications in Health, Biodiversity and the Environment about Elixir • biodiversity • bioinformatics • bioprospecting • computational biology • enzyme discovery • genomics • metabolic engineering • microbiome • pharmacogenomics • phylogeny • structural genomics • synthetic biology • systems biology • text mining • functional proteomics HB-10 2 HB-10 3 PRE-CONFERENCE WORKSHOPS Tuesday, September 5, 2017 Hall Alkiviades Payatakis Chair Michalis Aivaliotis 08:30-09:00 Registration & Coffee Workshop I Proteomics Workshop – Hands-on Proteomics Bioinformatics: From raw MS-data to knowledge Chair: Michalis Aivaliotis Michalis Aivaliotis: Introduction to proteomics 09:00-09:15 o Brief history of MS-based proteomics o State-of-the-art proteomics M. Aivaliotis, N. Kountourakis, K. Psatha, C. Seitanidou: Bioinformatics I – MS-Raw data processing 09:15-10.30
    [Show full text]
  • Genome-Wide Association Study Reveals First Locus for Anorexia Nervosa and Metabolic Correlations
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Am J Psychiatry Manuscript Author . Author Manuscript Author manuscript; available in PMC 2018 September 01. Published in final edited form as: Am J Psychiatry. 2017 September 01; 174(9): 850–858. doi:10.1176/appi.ajp.2017.16121402. Genome-Wide Association Study Reveals First Locus for Anorexia Nervosa and Metabolic Correlations Laramie Duncan, PhD, Zeynep Yilmaz, PhD, Raymond Walters, PhD, Jackie Goldstein, PhD, Verneri Anttila, PhD, Brendan Bulik-Sullivan, PhD, Stephan Ripke, MD, PhD, Eating Disorders Working Group of the Psychiatric Genomics Consortium, Laura Thornton, PhD, Anke Hinney, PhD, Mark Daly, PhD, Patrick Sullivan, MD, FRANZCP, Eleftheria Zeggini, PhD, Gerome Breen, PhD, and Cynthia Bulik, PhD Abstract Objective—To conduct a genome-wide association study (GWAS) of anorexia nervosa and to calculate genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Method—Following uniform quality control and imputation using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, we performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression (LDSC) was used to calculate genome-wide common variant heritability [ , partitioned heritability, and genetic correlations (rg)] between anorexia nervosa and other phenotypes. Results—Results were obtained for 10,641,224 single nucleotide polymorphisms (SNPs) and insertion-deletion variants with minor allele frequency > 1% and imputation quality scores > 0.6. The of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation.
    [Show full text]
  • Very Low Depth Whole Genome Sequencing in Complex Trait Association Studies
    Downloaded from https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty1032/5255875 by Institute of Child Health/University College London user on 16 January 2019 Subject Section Very low depth whole genome sequencing in complex trait association studies Arthur Gilly1,2, Lorraine Southam1,3, Daniel Suveges1, Karoline Kuchen- baecker1, Rachel Moore1, Giorgio E.M. Melloni4, Konstantinos Hat- zikotoulas1,2, Aliki-Eleni Farmaki5, Graham Ritchie1,6, Jeremy Schwartzentruber1, Petr Danecek1, Britt Kilian1, Martin O. Pollard1, Xiangyu Ge1, Emmanouil Tsafantakis7, George Dedoussis5, Eleftheria Zeggini1,2* 1Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1HH, UK, 2Institute of Translational Genomics, Helmholtz Zentrum München – Ger- man Research Center for Environmental Health, Neuherberg, Germany, 3Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK, 4Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA, 5Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, Greece, 6European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SH, UK, 7Anogia Medical Centre, Anogia, Greece *To whom correspondence should be addressed. Associate Editor: Alison Hutchins Received on XXXXX; revised on XXXXX; accepted on XXXXX Abstract Motivation: Very low depth sequencing has been proposed as a cost-effective approach to capture low-frequency and rare variation in complex trait association studies. However, a full characterisation of the genotype quality and association power for very low depth sequencing designs is still lacking. Results: We perform cohort-wide whole genome sequencing (WGS) at low depth in 1,239 individuals (990 at 1x depth and 249 at 4x depth) from an isolated population, and establish a robust pipeline for calling and imputing very low depth WGS genotypes from standard bioinformatics tools.
    [Show full text]
  • 20 May, 2016 CURRICULUM VITAE
    Konstantinos K Tsilidis 1 Curriculum Vitae 20 May, 2016 CURRICULUM VITAE Konstantinos K Tsilidis, PhD PERSONAL DATA Date of birth: 12-08-1978 Place of birth: Athens, Greece Home address: Business address: 34 Mpoumpoulinas street, Department of Hygiene and Epidemiology, Ioannina, University of Ioannina School of Medicine, 45445, Greece University Campus, Ioannina, 45110, Greece Tel: +30 26510 07734 Fax: +30 26510 07853 Email: [email protected], [email protected] Homepage: http://users.uoi.gr/ktsilidi/index.html EDUCATION May 2008 Ph.D. in Epidemiology Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA Thesis: "The association of insulin resistance and inflammation with sporadic colorectal neoplasia. Risk mediated by colonic epithelial damage?" May 2008 M.H.S. (Master of Health Science) in Biostatistics Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA July 2003 M.Sc. in Public Health Department of Nursing, National and Kapodistrian University of Athens, Athens, Greece (Grade: Excellent, 9.77 out of 10) June 2001 Bachelor in Nursing Department of Nursing, National and Kapodistrian University of Athens, Athens, Greece (Grade: Excellent, 8.74 out of 10) Konstantinos K Tsilidis 2 Curriculum Vitae RESEARCH / PROFESSIONAL EXPERIENCE February 2014- Assistant Professor in Epidemiology present Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece August 2014- Research Fellow in Cancer Epidemiology (part-time)
    [Show full text]