Simpleetl: ETL Processing by Simple Specifications

Total Page:16

File Type:pdf, Size:1020Kb

Simpleetl: ETL Processing by Simple Specifications Aalborg Universitet SimpleETL ETL Processing by Simple Specifications Andersen, Ove; Thomsen, Christian; Torp, Kristian Published in: Proceedings of the 20th International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data co-located with 10th EDBT/ICDT Joint Conference Creative Commons License CC BY-NC-ND 4.0 Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link to publication from Aalborg University Citation for published version (APA): Andersen, O., Thomsen, C., & Torp, K. (2018). SimpleETL: ETL Processing by Simple Specifications. In Proceedings of the 20th International Workshop on Design, Optimization, Languages and Analytical Processing of Big Data co-located with 10th EDBT/ICDT Joint Conference (Vol. 2062). CEUR Workshop Proceedings. CEUR Workshop Proceedings Vol. 2062 http://ceur-ws.org/Vol-2062/paper10.pdf General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: October 05, 2021 SimpleETL: ETL Processing by Simple Specifications∗ Ove Andersen Christian Thomsen Kristian Torp Aalborg University & FlexDanmark Aalborg University Aalborg University Denmark Denmark Denmark [email protected] [email protected] [email protected] [email protected] ABSTRACT Massive quantities of data are today collected from many sources. However, it is often labor-intensive to handle and integrate these data sources into a data warehouse. Further, the complexity is increased when specific requirements exist. One such new re- quirement, is the right to be forgotten where an organization upon request must delete all data about an individual. Another require- ment is when facts are updated retrospectively. In this paper, we present the general framework SimpleETL which is currently Figure 1: Example Case Star Schema used for Extract-Transform-Load (ETL) processing in a company with such requirements. SimpleETL automatically handles all database interactions such as creating fact tables, dimensions, taxi company are stored. Each travel is a fact stored in a fact table, and foreign keys. The framework also has features for handling connected with a vehicle, a customer, and a date dimension. It is version management of facts and implements four different meth- common practice that facts are deleted, e.g., if it is discovered that ods for handling deleted facts. The framework enables, e.g., data an ordered trip two days ago was not executed anyway then the scientists, to program complete and complex ETL solutions very fact will be removed, or a facts gets updates, due to late arriving efficiently with only few lines of code, which is demonstrated accounting information. Further, for audit reasons, it is required with a real-world example. that changes must be tracked, e.g., if a price is updated. The presented SimpleETL framework enables data scientists to program an ETL solution in a very efficient and convenient 1 INTRODUCTION way with only few lines of code mainly with specifications of Data is being collected at unprecedented speed partly due to metadata. The framework manages everything behind the scene cheaper sensor technology and inexpensive communication. from structuring data warehouse schema, fact tables, dimensions, Companies have realized that detailed data is valuable because references, indexes, and data version tracking. This also includes it can provide up-to-date and accurate information on how the handling of changes to facts in line with Kimball’s slowly changing business is doing. These changes have in recent year coined dimensions [12]. Processing data using SimpleETL is automati- terms such as “Big Data”, “The five V’s”, and “Data Scientist”. It cally highly parallelized such that every dimension is handled in is, however, not enough to collect data; it should also be possible its own process and fact table processing is spread across multiple 1 for the data scientist to integrate it with existing data and to processes. analyze it. The rest of the paper is structured as follows: First related A data warehouse is often used for storing large quantity of work is discussed in Section 2. Then a simple use-case is intro- data possibly integrated from many sources. A wide range of duced in Section 3 followed by an example implementation in Extract-Transform-Load (ETL) tools support cleaning, structur- Section 4 showing how a user efficiently programs an ETL flow. ing, and integration of data. The available ETL tools offer many In Section 5, the support for fact version management and dele- advanced features, which make them very powerful but also both tion of facts is described. Then in Section 6 it is described how overwhelming and sometimes rigid in their use. It can thus be a data scientist configures and initializes an ETL run including challenging for a data scientist to quickly add a new data source. how the framework operates along with a real-world use case Further, many of these products mainly focus on data processing example. Section 7 concludes the paper and points to directions and less on aspects such as database schema handling. Other for future work. important topics are privacy and anonymity concerns of citizens, which has caused the EU (and others) to introduce regulations 2 RELATED WORK where citizens have a right to be forgotten [9]. Violating these A survey of ETL processes and technologies is given by [16]. regulations can lead to large penalties and it is thus important to A plethora of ETL tools exist from commercial vendors such enable easy removal of an individual citizen’s data from a data as IBM, Informatica, Microsoft, Oracle, and SAP [2–5, 7]. Open warehouse. source ETL tools also exist such as Pentaho Data Integration A simplified real-world example use case is presented bya and Talend [6, 8]. Gartner presents the widely used tools in its star-schema in Figure 1, where passenger travels carried out by a Magic Quadrant [10]. With most ETL tools, the user designs the ∗Produces the permission block, and copyright information ETL flow in a graphical user-interface by means of connecting 1 By “data scientist” we in this paper refer to someone focused at analyzing data boxes (representing transformations or operations) with arrows and less in the technical aspects of DBMSs, e.g., ETL tools and Data Warehousing. (representing data flows). © 2018 Copyright held by the owner/author(s). Published in the Workshop Another approach is taken for the tool pygrametl [14] for Proceedings of the EDBT/ICDT 2018 Joint Conference (March 26, 2018, Vienna, Austria) on CEUR-WS.org (ISSN 1613-0073). Distribution of this paper is permitted which it is argued that programmatic ETL, i.e., creating ETL pro- under the terms of the Creative Commons license CC-by-nc-nd 4.0. grams by writing code, can be beneficial. With pygrametl, the user programs Python objects for dimension and fact tables to handle insert/update operations on the target data warehouse. SimpleETL, however, hides complexity from the user and con- veniently handles all schema management. Based on the speci- fication of metadata, SimpleETL creates 1) the required SQLto generate or alter the target data warehouse schema; 2) the neces- sary database actions and pygrametl objects to modify the tables; and 3) processes for parallel execution. SimpleETL provides tem- plate code for its supported functionality, e.g., history tracking of changing facts. It is therefore simple and fast for a data scien- tist to define an ETL flow or add new sources and dimensions, Figure 2: UML Class Diagram for SimpleETL because she does not have to make the code for this, but only specify the metadata. Tomingas et al. [15] propose an approach where Apache Ve- Listing 1: Defining Year Data Type locity templates and user-specified mappings are used and trans- 1 from simpleetl import Datatype 2 def _validate_year(val): formed into SQL statements. In contrast, SimpleETL is based on 3 if str(val).isnumeric() and 1900 <= int(intval) <= 2099: Python, which makes it easy for data scientists to exploit their 4 return int(intval) 5 return -1 existing knowledge and to use third party libraries. 6 yeartype = Datatype('smallint', _validate_year) BIAccelerator [13] is another template-based approach for cre- ating ETL flows with Microsoft’s SSIS [4], enabling properties that shows all components in the framework. Next, each compo- to be defined as parameters at runtime. Business Intelligence nent is described in more details by from the use case in Section 3. Markup Language (Biml) [1] is a domain-specific XML-based language to define SSIS packages (as well as SQL scripts, OLAP 4.1 Class Diagram cube definitions and more). The focus of BIAccelerator and Bim- l/BimlScript is to let the user define templates generating SSIS Figure 2 shows the UML class diagram for the SimpleETL frame- packages for repetitive tasks while SimpleETL makes it easy work that consists of three classes. The class Datatype is used to to create and load a data warehouse based on the templating define the type of a column in both dimension tables and(mea- provided by the framework.
Recommended publications
  • Cubes Documentation Release 1.0.1
    Cubes Documentation Release 1.0.1 Stefan Urbanek April 07, 2015 Contents 1 Getting Started 3 1.1 Introduction.............................................3 1.2 Installation..............................................5 1.3 Tutorial................................................6 1.4 Credits................................................9 2 Data Modeling 11 2.1 Logical Model and Metadata..................................... 11 2.2 Schemas and Models......................................... 25 2.3 Localization............................................. 38 3 Aggregation, Slicing and Dicing 41 3.1 Slicing and Dicing.......................................... 41 3.2 Data Formatters........................................... 45 4 Analytical Workspace 47 4.1 Analytical Workspace........................................ 47 4.2 Authorization and Authentication.................................. 49 4.3 Configuration............................................. 50 5 Slicer Server and Tool 57 5.1 OLAP Server............................................. 57 5.2 Server Deployment.......................................... 70 5.3 slicer - Command Line Tool..................................... 71 6 Backends 77 6.1 SQL Backend............................................. 77 6.2 MongoDB Backend......................................... 89 6.3 Google Analytics Backend...................................... 90 6.4 Mixpanel Backend.......................................... 92 6.5 Slicer Server............................................. 94 7 Recipes 97 7.1 Recipes...............................................
    [Show full text]
  • Business Intelligence and Column-Oriented Databases
    Central____________________________________________________________________________________________________ European Conference on Information and Intelligent Systems Page 12 of 344 Business Intelligence and Column-Oriented Databases Kornelije Rabuzin Nikola Modrušan Faculty of Organization and Informatics NTH Mobile, University of Zagreb Međimurska 28, 42000 Varaždin, Croatia Pavlinska 2, 42000 Varaždin, Croatia [email protected] [email protected] Abstract. In recent years, NoSQL databases are popular document-oriented database systems is becoming more and more popular. We distinguish MongoDB. several different types of such databases and column- oriented databases are very important in this context, for sure. The purpose of this paper is to see how column-oriented databases can be used for data warehousing purposes and what the benefits of such an approach are. HBase as a data management Figure 1. JSON object [15] system is used to store the data warehouse in a column-oriented format. Furthermore, we discuss Graph databases, on the other hand, rely on some how star schema can be modelled in HBase. segment of the graph theory. They are good to Moreover, we test the performances that such a represent nodes (entities) and relationships among solution can provide and we compare them to them. This is especially suitable to analyze social relational database management system Microsoft networks and some other scenarios. SQL Server. Key value databases are important as well for a certain key you store (assign) a certain value. Keywords. Business Intelligence, Data Warehouse, Document-oriented databases can be treated as key Column-Oriented Database, Big Data, NoSQL value as long as you know the document id. Here we skip the details as it would take too much time to discuss different systems [21].
    [Show full text]
  • CDW: a Conceptual Overview 2017
    CDW: A Conceptual Overview 2017 by Margaret Gonsoulin, PhD March 29, 2017 Thanks to: • Richard Pham, BISL/CDW for his mentorship • Heidi Scheuter and Hira Khan for organizing this session 3 Poll #1: Your CDW experience • How would you describe your level of experience with CDW data? ▫ 1- Not worked with it at all ▫ 2 ▫ 3 ▫ 4 ▫ 5- Very experienced with CDW data Agenda for Today • Get to the bottom of all of those acronyms! • Learn to think in “relational data” terms • Become familiar with the components of CDW ▫ Production and Raw Domains ▫ Fact and Dimension tables/views • Understand how to create an analytic dataset ▫ Primary and Foreign Keys ▫ Joining tables/views Agenda for Today • Get to the bottom of all of those acronyms! • Learn to think in “relational data” terms • Become familiar with the components of CDW ▫ Production and Raw Domains ▫ Fact and Dimension tables/views • Creating an analytic dataset ▫ Primary and Foreign Keys ▫ Joining tables/views “C”DW, “R”DW & “V”DW • Users will see documentation referring to xDW. • The “x” is a variable waiting to be filled in with either: ▫ “V” for VISN, ▫ “R” for region or ▫ “C” for corporate (meaning “national VHA”) • Each organizational level of the VA has its own data warehouse focusing on its own population. • This talk focuses on CDW only. 7 Flow of data into the warehouse VistA = Veterans Health Information Systems and Technology Architecture C“DW” • The “DW” in CDW stands for “Data Warehouse.” • Data Warehouse = a data delivery system intended to give users the information they need to support their business decisions.
    [Show full text]
  • Building an Effective Data Warehousing for Financial Sector
    Automatic Control and Information Sciences, 2017, Vol. 3, No. 1, 16-25 Available online at http://pubs.sciepub.com/acis/3/1/4 ©Science and Education Publishing DOI:10.12691/acis-3-1-4 Building an Effective Data Warehousing for Financial Sector José Ferreira1, Fernando Almeida2, José Monteiro1,* 1Higher Polytechnic Institute of Gaya, V.N.Gaia, Portugal 2Faculty of Engineering of Oporto University, INESC TEC, Porto, Portugal *Corresponding author: [email protected] Abstract This article presents the implementation process of a Data Warehouse and a multidimensional analysis of business data for a holding company in the financial sector. The goal is to create a business intelligence system that, in a simple, quick but also versatile way, allows the access to updated, aggregated, real and/or projected information, regarding bank account balances. The established system extracts and processes the operational database information which supports cash management information by using Integration Services and Analysis Services tools from Microsoft SQL Server. The end-user interface is a pivot table, properly arranged to explore the information available by the produced cube. The results have shown that the adoption of online analytical processing cubes offers better performance and provides a more automated and robust process to analyze current and provisional aggregated financial data balances compared to the current process based on static reports built from transactional databases. Keywords: data warehouse, OLAP cube, data analysis, information system, business intelligence, pivot tables Cite This Article: José Ferreira, Fernando Almeida, and José Monteiro, “Building an Effective Data Warehousing for Financial Sector.” Automatic Control and Information Sciences, vol.
    [Show full text]
  • Integrating Compression and Execution in Column-Oriented Database Systems
    Integrating Compression and Execution in Column-Oriented Database Systems Daniel J. Abadi Samuel R. Madden Miguel C. Ferreira MIT MIT MIT [email protected] [email protected] [email protected] ABSTRACT commercial arena [21, 1, 19], we believe the time is right to Column-oriented database system architectures invite a re- systematically revisit the topic of compression in the context evaluation of how and when data in databases is compressed. of these systems, particularly given that one of the oft-cited Storing data in a column-oriented fashion greatly increases advantages of column-stores is their compressibility. the similarity of adjacent records on disk and thus opportuni- Storing data in columns presents a number of opportuni- ties for compression. The ability to compress many adjacent ties for improved performance from compression algorithms tuples at once lowers the per-tuple cost of compression, both when compared to row-oriented architectures. In a column- in terms of CPU and space overheads. oriented database, compression schemes that encode multi- In this paper, we discuss how we extended C-Store (a ple values at once are natural. In a row-oriented database, column-oriented DBMS) with a compression sub-system. We such schemes do not work as well because an attribute is show how compression schemes not traditionally used in row- stored as a part of an entire tuple, so combining the same oriented DBMSs can be applied to column-oriented systems. attribute from different tuples together into one value would We then evaluate a set of compression schemes and show that require some way to \mix" tuples.
    [Show full text]
  • Column-Stores Vs. Row-Stores: How Different Are They Really?
    Column-Stores vs. Row-Stores: How Different Are They Really? Daniel J. Abadi Samuel R. Madden Nabil Hachem Yale University MIT AvantGarde Consulting, LLC New Haven, CT, USA Cambridge, MA, USA Shrewsbury, MA, USA [email protected] [email protected] [email protected] ABSTRACT General Terms There has been a significant amount of excitement and recent work Experimentation, Performance, Measurement on column-oriented database systems (“column-stores”). These database systems have been shown to perform more than an or- Keywords der of magnitude better than traditional row-oriented database sys- tems (“row-stores”) on analytical workloads such as those found in C-Store, column-store, column-oriented DBMS, invisible join, com- data warehouses, decision support, and business intelligence appli- pression, tuple reconstruction, tuple materialization. cations. The elevator pitch behind this performance difference is straightforward: column-stores are more I/O efficient for read-only 1. INTRODUCTION queries since they only have to read from disk (or from memory) Recent years have seen the introduction of a number of column- those attributes accessed by a query. oriented database systems, including MonetDB [9, 10] and C-Store [22]. This simplistic view leads to the assumption that one can ob- The authors of these systems claim that their approach offers order- tain the performance benefits of a column-store using a row-store: of-magnitude gains on certain workloads, particularly on read-intensive either by vertically partitioning the schema, or by indexing every analytical processing workloads, such as those encountered in data column so that columns can be accessed independently. In this pa- warehouses.
    [Show full text]
  • Using Online Analytical Processing (OLAP) in Data Warehousing
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Using Online Analytical Processing (OLAP) in Data Warehousing Mohieldin Mahmoud1, Alameen Eltoum2, Ramadan Faraj3 1, 2, 3al Asmarya Islamic University Abstract: Data warehousing is needed in recent time to give information that helps in the development of a company, support decision makers, it provides an efficient ways for transforming, manipulating analyzing large amount of data from different organizations or companies. In this paper we aimed to over view, data warehousing definition; how data are gathered from multi sources in to data warehousing using a model. Important techniques were shown; how to analyze data using data warehousing, to make decisions, this technique called: Online Analytical Processing OLAP. Keywords: Data Warehousing, OLAP, gathering, data cleansing, OLAP FASMI Test. 1. Introduction Enhances Data Quality and Consistency, Provides Historical data And Generates a High ROI. The concept of data warehousing returns back to the early 1980s, where was considered relational database 3. Gathering Data From Multi Source management systems. A data warehouse is a destination (archive) of information gathered from many sources, kept The data sources send new information in to warehouse, under a unified schema, at a single site. either continuously or periodically where data warehouse periodically requests new information from data sources then The businesses of all sizes its realized the importance of data keeping warehouse exactly synchronized from data sources warehouse, because there are significant benefits by but that is too expensive, and acts on data updates are implementing a Data warehouse.
    [Show full text]
  • Columnar Storage in SQL Server 2012
    Columnar Storage in SQL Server 2012 Per-Ake Larson Eric N. Hanson Susan L. Price [email protected] [email protected] [email protected] Abstract SQL Server 2012 introduces a new index type called a column store index and new query operators that efficiently process batches of rows at a time. These two features together greatly improve the performance of typical data warehouse queries, in some cases by two orders of magnitude. This paper outlines the design of column store indexes and batch-mode processing and summarizes the key benefits this technology provides to customers. It also highlights some early customer experiences and feedback and briefly discusses future enhancements for column store indexes. 1 Introduction SQL Server is a general-purpose database system that traditionally stores data in row format. To improve performance on data warehousing queries, SQL Server 2012 adds columnar storage and efficient batch-at-a- time processing to the system. Columnar storage is exposed as a new index type: a column store index. In other words, in SQL Server 2012 an index can be stored either row-wise in a B-tree or column-wise in a column store index. SQL Server column store indexes are “pure” column stores, not a hybrid, because different columns are stored on entirely separate pages. This improves I/O performance and makes more efficient use of memory. Column store indexes are fully integrated into the system. To improve performance of typical data warehous- ing queries, all a user needs to do is build a column store index on the fact tables in the data warehouse.
    [Show full text]
  • Virtual Denormalization Via Array Index Reference for Main Memory OLAP
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. X, XXXXX 2015 1 Virtual Denormalization via Array Index Reference for Main Memory OLAP Yansong Zhang, Xuan Zhou, Ying Zhang, Yu Zhang, Mingchuan Su, and Shan Wang Abstract—Denormalization is a common tactic for enhancing performance of data warehouses, though its side-effect is quite obvious. Besides being confronted with update abnormality, denormalization has to consume additional storage space. As a result, this tactic is rarely used in main memory databases, which regards storage space, i.e., RAM, as scarce resource. Nevertheless, our research reveals that main memory database can benefit enormously from denormalization, as it is able to remarkably simplify the query processing plans and reduce the computation cost. In this paper, we present A-Store, a main memory OLAP engine customized for star/snowflake schemas. Instead of generating fully materialized denormalization, A-Store resorts to virtual denormalization by treating array indexes as primary keys. This design allows us to harvest the benefit of denormalization without sacrificing additional RAM space. A-Store uses a generic query processing model for all SPJGA queries. It applies a number of state-of-the-art optimization methods, such as vectorized scan and aggregation, to achieve superior performance. Our experiments show that A-Store outperforms the most prestigious MMDB systems significantly in star/snowflake schema based query processing. Index Terms—Main-memory, OLAP, denormalization, A-Store, array index. Ç 1INTRODUCTION HE purpose of database normalization is to eliminate strategy of denormalization. Recent development of MMDB Tdata redundancy, so as to save storage space and avoid [1], [2], [3] has shown that simplicity of data processing update abnormality.
    [Show full text]
  • Splitting Facts Using Weights
    SPLITTING FACTS USING WEIGHTS Liga Grundmane, Laila Niedrite University of Latvia, Department of Computer Science, 19 Raina blvd., Riga, Latvia Keywords: Data Warehouse, Weights, Fact Granularity. Abstract: A typical data warehouse report is the dynamic representation of some objects’ behaviour or changes of objects’ properties. If this behaviour is changing, it is difficult to make such reports in an easy way. It is possible to use the fact splitting to make this task simpler and more comprehensible for users. In the presented paper two solutions of splitting facts by using weights are described. One of the possible solutions is to make the proportional weighting accordingly to splitted record set size. It is possible to take into account the length of the fact validity time period and the validity time for each splitted fact record. 1 INTRODUCTION one set have to be 100 percent. There exists an opinion that bridge tables are not easily Following the classical data warehouse theory understandable for users, however such a modeling (Kimball, 1996), (Inmon, 1996) there are fact tables technique satisfies business requirements quite good. and dimension tables in the data warehouse. If a data mart exists with only aggregated values, Measures about the objects of interest of business it is not possible to get the exact initial values. It is analysts are stored in the fact table. This information possible to get only some approximation. So if we is usually represented as different numbers. At the need to lower the fact table grain, we have to split same time the information about properties of these the aggregated fact value accordingly to the chosen objects is stored in the dimensions.
    [Show full text]
  • Automated Presentation of Slowly Changing Dimensions
    IT 09 025 Examensarbete 30 hp Juni 2009 Automated presentation of slowly changing dimensions Christer Boedeker Institutionen för informationsteknologi Department of Information Technology Abstract Automated presentation of slowly changing dimensions Christer Boedeker Teknisk- naturvetenskaplig fakultet UTH-enheten On the subject of data warehousing, a lot of material is available on what needs to be done to maintain a presentation area, but very little on how to do it. This paper Besöksadress: presents a structure and process for automatically maintaining and updating a Ångströmlaboratoriet Lägerhyddsvägen 1 multidimensional presentation area from a fully normalized data staging area. The Hus 4, Plan 0 paper also discusses a theoretical algorithm for finding the best division of slowly changing dimension attributes into several groups based on how they change Postadress: together. Box 536 751 21 Uppsala Telefon: 018 – 471 30 03 Telefax: 018 – 471 30 00 Hemsida: http://www.teknat.uu.se/student Handledare: Andreas Perjus Ämnesgranskare: Tore Risch Examinator: Anders Jansson IT 09 025 Tryckt av: Reprocentralen ITC Contents 1. Abstract ........................................................................................................................................ 3 2. Introduction .................................................................................................................................. 7 3. Background ..................................................................................................................................
    [Show full text]
  • Data Warehouse and OLAP
    Data Warehouse and OLAP Week 5 1 Midterm I • Friday, March 4 • Scope – Homework assignments 1 – 4 – Open book Team Homework Assignment #7 • RdRead pp. 121 – 139, 146 – 150 of the text bkbook. • Do Examples 3.8, 3.10 and Exercise 3.4 (b) and (c). Prepare for the results of the homework assignment. • Due date – beginning of the lecture on Friday March11th. Topics • Definition of data warehouse • Multidimensional data model • Data warehouse architecture • From data warehousing to data mining What is Data Warehouse ?(1)? (1) • A data warehouse is a repository of information collected from multiple sources, stored under a unified schema, and that usually resides at a single site • A data warehouse is a semantically consistent data store that serves as a physical implementation of a decision support data model and stores the information on which an enterprise need to make strategic decisions What is Data Warehouse? (2) • Data warehouses provide on‐line analytical processing (OLAP) tools for the interactive analysis of multidimensional data of varied granularities, which facilitate effective data generalization and data mining • Many other data mining functions, such as association, classification, prediction, and clustering, can be itintegra tdted with OLAP operations to enhance interactive mining of knowledge at multiple levels of abstraction What is Data Warehouse? (3) • A decision support database that is maintained separately from the organization’s operational database • “A data warehouse is a subject‐oriented, integrated, time‐variant, and nonvolatile collection of data in support of management’s decision‐making process [Inm96].”—W. H. Inmon Data Warehouse Framework data mining Figure 1.7 Typical framework of a data warehouse for AllElectronics 8 Data Warehouse is SbjSubject-OiOriente d • Organized around major subjects, such as customer, product, sales, etc.
    [Show full text]