Newsletter - Nº 21, October 2007
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From the Middle Eocene of Belgium
[Palaeontology, Vol. 53, Part 2, 2010, pp. 365–376] BONY-TOOTHED BIRDS (AVES: PELAGORNITHIDAE) FROM THE MIDDLE EOCENE OF BELGIUM by GERALD MAYR* and THIERRY SMITH *Forschungsinstitut Senckenberg, Sektion Ornithologie, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany; e-mail [email protected] Royal Belgian Institute of Natural Sciences, Department of Paleontology, Rue Vautier 29, B-1000 Brussels, Belgium; e-mail [email protected] Typescript received 7 April 2009; accepted in revised form 19 July 2009 Abstract: We describe well-preserved remains of the Pelag- deidae (albatrosses) in overall morphology, but because ornithidae (bony-toothed birds) from the middle Eocene of bony-toothed birds lack apomorphies of the Procellariifor- Belgium, including a sternum, pectoral girdle bones and mes, the similarities are almost certainly owing to conver- humeri of a single individual. The specimens are tentatively gence. Bony-toothed birds were often compared with the assigned to Macrodontopteryx oweni Harrison and Walker, ‘Pelecaniformes’ by previous authors, who especially made 1976, which has so far only been known from the holotype comparisons with the Sulidae (gannets and boobies). How- skull and a referred proximal ulna. Another species, about ever, the coracoid distinctly differs from that of extant ‘pelec- two times larger, is represented by an incomplete humerus aniform’ birds, and the plesiomorphic presence of a foramen and tentatively identified as Dasornis emuinus (Bowerbank, nervi supracoracoidei as well as the absence of a well- 1854). The fossils provide critical new data on the osteology delimited articulation facet for the furcula supports a of the pectoral girdle of bony-toothed birds. For the first position outside the Suloidea, the clade to which the Sulidae time, the sternum of one of the smaller species is preserved, belong. -
Download Full Article in PDF Format
A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases. -
Onetouch 4.0 Scanned Documents
/ Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded. -
The Pliocene Demise of the Giant Volant Birds
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2021 doi:10.20944/preprints202103.0164.v1 Article Into Thinner Air: The Pliocene Demise of the Giant Volant Birds Alan Cannell 1 1 Istituto Italiano Di Paleontologia Umana; [email protected] Simple Summary: All very large flying birds with a mass greater than 20 kg became extinct about 3 million years ago. One possible reason for this is bio-mechanical stress during takeoff in less dense air. This possibility is examined using a bird flight simulation model and a paleo-air density value derived from two different proxies. Takeoff airspeed and power requirements for the three known species at this value are found to be similar to those of large extant birds, but at present air density, takeoff speed is significantly higher. The escape of lighter isotopes of nitrogen during long periods of weak geomagnetic fields could be a possible explanation for this loss in atmospheric mass and how this would appear in the geological record and how it would affect the climate in terms of cooling is discussed. Abstract: Three genera of very large volant birds existed for most of the Pliocene: the Pelagornithi- dae seabirds; the large North American Teratornithidae and the stork Leptoptilos falconeri in Africa and Asia. All became extinct around 3 Ma. The reasons for their demise are puzzling, as the Pela- gornithidae had a world-wide evolutionary history of more than 50 Ma, smaller teratorns were still extant in the Holocene and smaller stork species are still globally extant. Extant large birds have a common critical takeoff airspeed suggesting a biomechanical limit in terms of power, risk and launch speed, and simulations of the flight of these extinct species suggest that at 1 bar they would have exceeded this value. -
Middle Eocene Vertebrate Fauna from the Aridal Formation, Sabkha of Gueran, Southwestern Morocco
geodiversitas 2021 43 5 e of lif pal A eo – - e h g e r a p R e t e o d l o u g a l i s C - t – n a M e J e l m a i r o DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Didier Merle ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : Christine Argot (Muséum national d’Histoire naturelle, Paris) Beatrix Azanza (Museo Nacional de Ciencias Naturales, Madrid) Raymond L. Bernor (Howard University, Washington DC) Alain Blieck (chercheur CNRS retraité, Haubourdin) Henning Blom (Uppsala University) Jean Broutin (Sorbonne Université, Paris, retraité) Gaël Clément (Muséum national d’Histoire naturelle, Paris) Ted Daeschler (Academy of Natural Sciences, Philadelphie) Bruno David (Muséum national d’Histoire naturelle, Paris) Gregory D. Edgecombe (The Natural History Museum, Londres) Ursula Göhlich (Natural History Museum Vienna) Jin Meng (American Museum of Natural History, New York) Brigitte Meyer-Berthaud (CIRAD, Montpellier) Zhu Min (Chinese Academy of Sciences, Pékin) Isabelle Rouget (Muséum national d’Histoire naturelle, Paris) Sevket Sen (Muséum national d’Histoire naturelle, Paris, retraité) Stanislav Štamberg (Museum of Eastern Bohemia, Hradec Králové) Paul Taylor (The Natural History Museum, Londres, retraité) COUVERTURE / COVER : Réalisée à partir des Figures de l’article/Made from the Figures of the article. Geodiversitas est -
The Origin of Modern Birds This Talk Was Given at the Denver Museum Of
The Origin of Modern Birds This talk was given at the Denver Museum of Natural History by Dr. Daniel J. Field, a lecturer at the Department of Earth Sciences at Cambridge University. Dr. Field is a Research Associate at the Denver Museum of Natural Science and a Fellow in Natural Sciences at Christ’s College, Cambridge. He discussed how the K-T Mass Extinction affected the evolution on modern birds. Birds are the most ubiquitous and widespread vertebrate animals with nearly 11,000 species of different shapes, colors and sizes. Can the diversity be explained by extensively examining the fossil record? The last 10 years have been an exciting time to examine the origin of birds due to advances in genome sequencing, and in computing power to analyze vast datasets. The only direct method of determining bird evolution is the fossil record. For example, the pseudo-toothed birds, or pelagornis, can be traced to modern-day ducks and chickens. The name derives from the boney projections on the sides of their bills which are a re-invention of teeth. They are the largest flying birds to have ever lived, from the Paleocene to the Pleistocene, and the only way we know of their existence is through the fossil record. You can see representative size in the illustration comparing Pelagornis to the modern-day albatross. It is reconstructed in the Bird Hall of the Denver Museum. The closest relatives of birds are crocodilians which are in a group called the archosaurs, whose most recent common ancestor lived over 200 million years ago. -
Evolutionary Paleoecology of the Maryland Miocene
The Geology and Paleontology of Calvert Cliffs Calvert Formation, Calvert Cliffs, South of Plum Point, Maryland. Photo by S. Godfrey © CMM A Symposium to Celebrate the 25th Anniversary of the Calvert Marine Museum’s Fossil Club Program and Abstracts November 11, 2006 The Ecphora Miscellaneous Publications 1, 2006 2 Program Saturday, November 11, 2006 Presentation and Event Schedule 8:00-10:00 Registration/Museum Lobby 8:30-10:00 Coffee/Museum Lobby Galleries Open Presentation Uploading 8:30-10:00 Poster Session Set-up in Paleontology Gallery Posters will be up all day. 10:00-10:05 Doug Alves, Director, Calvert Marine Museum Welcome 10:05-10:10 Bruce Hargreaves, President of the CMMFC Welcome Induct Kathy Young as CMMFC Life Member 10:10-10:30 Peter Vogt & R. Eshelman Significance of Calvert Cliffs 10:30-11:00 Susan Kidwell Geology of Calvert Cliffs 11:00-11-15 Patricia Kelley Gastropod Predator-Prey Evolution 11:15-11-30 Coffee/Juice Break 11:30-11:45 Lauck Ward Mollusks 11:45-12:00 Bretton Kent Sharks 12:00-12:15 Michael Gottfried & L. Compagno C. carcharias and C. megalodon 12:15-12:30 Anna Jerve Lamnid Sharks 12:30-2:00 Lunch Break Afternoon Power Point Presentation Uploading 2:00-2:15 Roger Wood Turtles 2:15-2:30 Robert Weems Crocodiles 2:30-2:45 Storrs Olson Birds 2:45-3:00 Michael Habib Morphology of Pelagornis 3:00-3:15 Ralph Eshelman, B. Beatty & D. Domning Terrestrial Vertebrates 3:15-3:30 Coffee/Juice Break 3:30-3:45 Irina Koretsky Seals 3:45-4:00 Daryl Domning Sea Cows 4:00-4:15 Jennifer Gerholdt & S. -
Soaring Styles of Extinct Giant Birds and Pterosaurs
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.31.354605; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Soaring styles of extinct giant birds and pterosaurs 3 4 5 Authors: 6 Yusuke Goto1*, Ken Yoda2, Henri Weimerskirch1, Katsufumi Sato3 7 8 Author Affiliation: 9 1Centre d’Etudes Biologiques Chizé, CNRS – Université de la Rochelle, 79360 Villiers 10 En Bois, France. 11 2Graduate School of Environmental Studies, Nagoya University, Furo, Chikusa, 12 Nagoya, Japan. 13 3Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan. 14 15 16 Corresponding Author: 17 Yusuke Goto 18 Centre d’Etudes Biologiques Chizé, CNRS – Université de la Rochelle, 79360 Villiers 19 En Bois, France. 20 e-mail: [email protected] 21 TEL: +814-7136-6220 22 23 24 Keywords: 25 birds, pterosaurs, soaring performance, wind, dynamic soaring, thermal soaring 26 27 28 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.31.354605; this version posted November 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 29 Summary 30 The largest extinct volant birds (Pelagornis sandersi and Argentavis magnificens) and pterosaurs 31 (Pteranodon and Quetzalcoatlus) are thought to have used wind-dependent soaring flight, similar to 32 modern large birds. There are two types of soaring: thermal soaring, used by condors and frigatebirds, 33 which involves the use of updrafts over the land or the sea to ascend and then glide horizontally; and 34 dynamic soaring, used by albatrosses, which involves the use of wind speed differences with height above 35 the sea surface. -
A New Species of Bairdemys and the Paleoecology of Stereogenyina
The last marine pelomedusoids (Testudines: Pleurodira): a new species of Bairdemys and the paleoecology of Stereogenyina Gabriel S. Ferreira1, Ascanio D. Rincon´ 2, Andres´ Solorzano´ 2 and Max C. Langer1 1 Laboratorio´ de Paleontologia de Ribeirao˜ Preto, FFCLRP, Universidade de Sao˜ Paulo, Ribeirao˜ Preto, SP, Brazil 2 Laboratorio de Paleontolog´ıa, Centro de Ecolog´ıa, Instituto Venezolano de Investigaciones Cient´ıfcas (IVIC), Caracas, Venezuela ABSTRACT The extinct Stereogenyina turtles form a relatively diverse Podocnemididae lineage, with twelve described and phylogenetically positioned species. They are characterized by a wide geographic and temporal range, from the Eocene of Africa to the Pleistocene of Southeast Asia, and a peculiar palate morphology, with a secondary palate that is unique among side-necked turtles. Here, we describe a new Stereogenyina species, based on an almost complete skull from the middle Miocene Capadare Formation, of Venezuela. A new phylogenetic analysis supports the assignment of the new species to the genus Bairdemys. Based on geometric morphometrics analyses, we related the development of the stereogenyin secondary palate with the acquisition of a durophagous diet. Based on a review of the sedimentary environments where their fossils are found, we also propose that stereogenyins were a marine radiation of podocnemidid turtles, as corroborated by previous studies of fossil eggs and limb morphology. These two inferences allowed us to hypothesize that stereogenyins occupied an ecological niche similar to that of the Submitted 2 April 2015 extant Carettini sea turtles, and that the rise of the latter group may be related to the Accepted 9 June 2015 Stereogenyina diversity fall in the end of the Miocene. -
Soaring Styles of Extinct Giant Birds and Pterosaurs
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.31.354605; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Soaring styles of extinct giant birds and pterosaurs Authors: Yusuke Goto1*, Ken Yoda2, Henri Weimerskirch1, Katsufumi Sato3 Author Affiliation: 1Centre d’Etudes Biologiques Chizé, CNRS – Université de la Rochelle, 79360 Villiers En Bois, France. 2Graduate School of Environmental Studies, Nagoya University, Furo, Chikusa, Nagoya, Japan. 3Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan. Corresponding Author: Yusuke Goto Centre d’Etudes Biologiques Chizé, CNRS – Université de la Rochelle, 79360 Villiers En Bois, France. e-mail: [email protected] TEL: +814-7136-6220 Keywords: birds, pterosaurs, soaring flight, wind, dynamic soaring, thermal soaring bioRxiv preprint doi: https://doi.org/10.1101/2020.10.31.354605; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary The largest extinct volant birds (Pelagornis sandersi and Argentavis magnificens) and pterosaurs (Pteranodon and Quetzalcoatlus) are thought to have used wind-dependent soaring flight, similar to modern large birds. There are two types of soaring: thermal soaring, used by condors and frigatebirds, which involves the use of updrafts to ascend and then glide horizontally over the land or the sea; and dynamic soaring, used by albatrosses, which involves the use of wind speed differences with height above the sea surface. -
And Billfish Diversity in the Oligocene of South Carolina William N
Vertebrate Anatomy Morphology Palaeontology 8:98–104 98 ISSN 2292-1389 A new specimen of Xiphiorhynchus cf. X. aegyptiacus (Istiophoriformes, Xiphioidei, Xiphiidae) and Billfish Diversity in the Oligocene of South Carolina William N. McCuen1,*, Aika S. Ishimori1, and Robert W. Boessenecker1,2 1College of Charleston, Charleston, SC, 29424, USA; [email protected]; [email protected]; [email protected] 2University of California Museum of Paleontology, University of California, Berkeley, CA 94720 Abstract: A partial billfish rostrum from the Chandler Bridge Formation (early Chattian, Oligocene) near Ladson, South Carolina, U.S.A., is described and identified as Xiphiorhynchus cf. X. aegyptiacus. The angle of taper, depth to width ratio of the cross section, and other morphological features (including dorsolateral grooves and a planoconvex cross-section), indicate that this specimen (and an earlier published specimen) is closest in morphology to X. aegyptiacus from the Eocene Birket Qarun and Qasr el Sagha formations of Egypt. This confirms the presence of a second xiphiid in the Chandler Bridge Formation besides the well-documented giant swordfish X. rotundus. This is an unusual example of two Xiphiorhynchus species ex- isting in sympatry, and strongly contrasting morphologies and morphometrics may point to niche partition- ing between the two forms. The occurrence of specimens strongly resembling X. aegyptiacus in the western Atlantic also further substantiates past arguments that easy dispersal across the Atlantic was possible for this genus, and, by extension, that it shared the open-sea, migratory epipelagic lifestyle of modern swordfish. Moreover, the Chandler Bridge Formation boasts the most diverse billfish assemblage in the world, including Xiphiorhynchus cf. -
I SIMPOSIO - PALEONTOLOGÍA EN CHILE Santiago - 2008
I SIMPOSIO - PALEONTOLOGÍA EN CHILE Santiago - 2008 ______________ I SIMPOSIO - PALEONTOLOGÍA EN CHILE - LIBRO DE ACTAS Inscripción Propiedad Intelectual 182206 Editores: Alfonso Rubilar R.; David Rubilar-R.; Carolina S. Gutstein 2-3 de octubre de 2008 Tiraje: 200 ejemplares ______________ Colaboraron en la revisión de artículos: Enrique Bostelmann, Alberto Cione, Daniel Frassinetti, Rafael Labarca, Patricio López, Rubén Martínez, Patricio Moreno, F. Amaro Mourgues, Ernesto Pérez, Michel Sallaberry y Teresa Torres. I SIMPOSIO - PALEONTOLOGÍA EN CHILE Santiago 2-3 de octubre 2008 ORGANIZAN En Homenaje a la Memoria del Naturalista Rodulfo Amando Philippi (1808-1904) En el bicentenario de su natalicio Y Como Aporte a la Celebración del Año Internacional Planeta Tierra (AIPT) I SIMPOSIO - PALEONTOLOGÍA EN CHILE - 2008 Rodulfo Amando Philippi (1808-1904) (Rudolph Amandus Philippi) Es considerado uno de los naturalistas más influyentes en el desarrollo de las Ciencias Naturales en Chile. Fue el primer científico extranjero que, tras su llegada en 1851, se radicó en el país y dio inicio a la enseñanza de la botánica (1854), zoología (1855; tempranamente discontinuada) e ‘Historia Natural’ (1866), a nivel secundario y universitario. También elaboró dos textos pioneros que además trataban de especies propias de nuestro territorio: ‘Elementos de Historia Natural’ (1865) y ‘Elementos de Botánica para el uso de los estudiantes de medicina i farmacia en Chile’ (1869) (1, 2, 3). Por otra parte, fue el primer Director del Museo Nacional de Historia Natural (1853-1897). Las numerosas expediciones que realizó a lo largo del país, así como el aporte brindado por quienes le enviaron en forma permanente material de diversos taxones y localidades, permitieron incrementar en forma notable las colecciones de plantas así como de invertebrados y vertebrados (fósiles y actuales) conservadas en dicha institución.