Flight Performance of the Largest Volant Bird
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution and Presence of Diurnal Predatory Birds in the Carpathian Basin
Ornis Hungarica 2018. 26(1): 102–123. DOI: 10.1515/orhu-2018-0008 Evolution and presence of diurnal predatory birds in the Carpathian Basin Jenő (Eugen) KESSLER Received: February 05, 2018 – Revised: May 03, 2018 – Accepted: May 08, 2018 Kessler, J. (E.) 2018. Evolution and presence of diurnal predatory birds (Ord. Accipitriformes, and Falconiformes) in the Carpathian Basin. – Ornis Hungarica 26(1): 102–123. DOI: 10.1515/ orhu-2018-0008 Abstract The author describes the presence of the oldest extinct diurnal birds of prey species in the world and fossilized representatives of different families, as well as the presence of recent species in the Car- pathian Basin among fossilized remains. In case of ospreys, one of the oldest known materials is classified as a new extinct species named Pandion pannonicus. The text is supplemented by a plate and a size chart. Keywords: birds of prey, evolution, Carpathian Basin, Osprey, eagles, buzzards, vultures, falcons, Pandion pan- nonicus sp.n. Összefoglalás A szerző bemutatja a nappali ragadozók kihalt fajait és a különböző családok fosszilis képviselő- it, valamint a recens fajok Kárpát-medencei jelenlétét a fosszilis maradványokban. A halászsasok között itt kerül először leírásra egy új faj is (Pandion pannonicus), amely egyben az egyik legrégebbi is az eddig ismert anyagok- ból. A szöveget egy ábra és egy mérettáblázat egészíti ki. Kulcsszavak: ragadozó madarak, evolúció, Kárpát-medence, halászsas, sas, ölyv, keselyű, sólyom, Pandion pan- nonicus sp.n. Department of Paleontology, Eötvös Loránd University, 1117 Budapest, Pázmány Péter sétány 1/c, Hungary, e-mail: [email protected] Introduction Accipitridae is the most populous family in terms of species (eagles, goshawks, kites, harri- ers and vultures belong in the group). -
From the Middle Eocene of Belgium
[Palaeontology, Vol. 53, Part 2, 2010, pp. 365–376] BONY-TOOTHED BIRDS (AVES: PELAGORNITHIDAE) FROM THE MIDDLE EOCENE OF BELGIUM by GERALD MAYR* and THIERRY SMITH *Forschungsinstitut Senckenberg, Sektion Ornithologie, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany; e-mail [email protected] Royal Belgian Institute of Natural Sciences, Department of Paleontology, Rue Vautier 29, B-1000 Brussels, Belgium; e-mail [email protected] Typescript received 7 April 2009; accepted in revised form 19 July 2009 Abstract: We describe well-preserved remains of the Pelag- deidae (albatrosses) in overall morphology, but because ornithidae (bony-toothed birds) from the middle Eocene of bony-toothed birds lack apomorphies of the Procellariifor- Belgium, including a sternum, pectoral girdle bones and mes, the similarities are almost certainly owing to conver- humeri of a single individual. The specimens are tentatively gence. Bony-toothed birds were often compared with the assigned to Macrodontopteryx oweni Harrison and Walker, ‘Pelecaniformes’ by previous authors, who especially made 1976, which has so far only been known from the holotype comparisons with the Sulidae (gannets and boobies). How- skull and a referred proximal ulna. Another species, about ever, the coracoid distinctly differs from that of extant ‘pelec- two times larger, is represented by an incomplete humerus aniform’ birds, and the plesiomorphic presence of a foramen and tentatively identified as Dasornis emuinus (Bowerbank, nervi supracoracoidei as well as the absence of a well- 1854). The fossils provide critical new data on the osteology delimited articulation facet for the furcula supports a of the pectoral girdle of bony-toothed birds. For the first position outside the Suloidea, the clade to which the Sulidae time, the sternum of one of the smaller species is preserved, belong. -
F:\Boletín SVE\No.37\SOURCE\37
Bol. Soc. Venezolana Espeleol. 37: 27-30, 2003 BIOESPELEOLOGÍA PRIMER REGISTRO DE LA FAMILIA PELAGORNITHIDAE (AVES: PELECANIFORMES) PARA VENEZUELA Ascanio D. RINCÓN R.1 y Marcelo STUCCHI 2 han identificado nueve géneros, la mayor parte procedentes de 1. Laboratorio de Biología de Organismos, Centro de Ecología, América del Norte y Europa: Odontopteryx, Neodontornis, Instituto Venezolano de Investigaciones Científicas (IVIC) Macrodontornis, Dasornis, Argillornis, Gigantornis, Carretera Panamericana, Km 11, Aptdo. 21827, Cod. Postal Osteodontornis, Pseudodontornis y Pelagornis (Harrison & 1020-A Caracas – VENEZUELA & Sociedad Venezolana de Walker, 1976). Espeleología. Apartado 47334. Caracas 1041A. VENEZUELA. En América del Sur, los Pelagornithidae han sido registrados Correo electrónico: [email protected] hasta el momento en sólo dos localidades: la Formación Bahía 2. Asociación Ucumari, Jr. Los Agrólogos 220. Lima 12, Perú. Inglesa (norte de Chile) de edad Mioceno Tardío y la Formación Correo electrónico: [email protected] Pisco (centro-sur del Perú) de edad Mioceno Medio - Plioceno Temprano. En la primera de ellas, se ha reconocido Recibido en octubre de 2004 Pseudodontornis cf. longirostris y en la segunda Pelagornis cf. miocaenus (Chávez & Stucchi, 2002). Para la Antártida, Tonni (1980) y Tonni & Tambussi (1985) RESUMEN han referido material sólo a nivel familiar procedente de la For- Se registra la presencia de la familia Pelagornithidae (Aves: mación La Meseta (Isla Vicecomodoro Marambio) de edad Eo- Pelecaniformes) en Venezuela. El ejemplar proviene de la Cueva del Zum- Oligoceno. bador, la cual se desarrolla en calizas del Mioceno Medio de la Forma- El material estudiado en la presente nota, proviene de la Cueva ción Capadare afloradas en el Cerro Misión al oriente del estado Falcón, del Zumbador la cual se desarrolla en las calizas de la Formación Venezuela. -
Download Full Article in PDF Format
A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases. -
Breeding Ecology and Extinction of the Great Auk (Pinguinus Impennis): Anecdotal Evidence and Conjectures
THE AUK A QUARTERLY JOURNAL OF ORNITHOLOGY VOL. 101 JANUARY1984 No. 1 BREEDING ECOLOGY AND EXTINCTION OF THE GREAT AUK (PINGUINUS IMPENNIS): ANECDOTAL EVIDENCE AND CONJECTURES SVEN-AXEL BENGTSON Museumof Zoology,University of Lund,Helgonavi•en 3, S-223 62 Lund,Sweden The Garefowl, or Great Auk (Pinguinusimpen- Thus, the sad history of this grand, flightless nis)(Frontispiece), met its final fate in 1844 (or auk has received considerable attention and has shortly thereafter), before anyone versed in often been told. Still, the final episodeof the natural history had endeavoured to study the epilogue deservesto be repeated.Probably al- living bird in the field. In fact, no naturalist ready before the beginning of the 19th centu- ever reported having met with a Great Auk in ry, the GreatAuk wasgone on the westernside its natural environment, although specimens of the Atlantic, and in Europe it was on the were occasionallykept in captivity for short verge of extinction. The last few pairs were periods of time. For instance, the Danish nat- known to breed on some isolated skerries and uralist Ole Worm (Worm 1655) obtained a live rocks off the southwesternpeninsula of Ice- bird from the Faroe Islands and observed it for land. One day between 2 and 5 June 1844, a several months, and Fleming (1824) had the party of Icelanderslanded on Eldey, a stackof opportunity to study a Great Auk that had been volcanic tuff with precipitouscliffs and a flat caught on the island of St. Kilda, Outer Heb- top, now harbouring one of the largestsgan- rides, in 1821. nettles in the world. -
1 Crustaceans in Cold Seep Ecosystems: Fossil Record, Geographic Distribution, Taxonomic Composition, 2 and Biology 3 4 Adiël A
1 Crustaceans in cold seep ecosystems: fossil record, geographic distribution, taxonomic composition, 2 and biology 3 4 Adiël A. Klompmaker1, Torrey Nyborg2, Jamie Brezina3 & Yusuke Ando4 5 6 1Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 7 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA. Email: [email protected] 8 9 2Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92354, USA. 10 Email: [email protected] 11 12 3South Dakota School of Mines and Technology, Rapid City, SD 57701, USA. Email: 13 [email protected] 14 15 4Mizunami Fossil Museum, 1-47, Yamanouchi, Akeyo-cho, Mizunami, Gifu, 509-6132, Japan. 16 Email: [email protected] 17 18 This preprint has been submitted for publication in the Topics in Geobiology volume “Ancient Methane 19 Seeps and Cognate Communities”. Specimen figures are excluded in this preprint because permissions 20 were only received for the peer-reviewed publication. 21 22 Introduction 23 24 Crustaceans are abundant inhabitants of today’s cold seep environments (Chevaldonné and Olu 1996; 25 Martin and Haney 2005; Karanovic and Brandão 2015), and could play an important role in structuring 26 seep ecosystems. Cold seeps fluids provide an additional source of energy for various sulfide- and 27 hydrocarbon-harvesting bacteria, often in symbiosis with invertebrates, attracting a variety of other 28 organisms including crustaceans (e.g., Levin 2005; Vanreusel et al. 2009; Vrijenhoek 2013). The 29 percentage of crustaceans of all macrofaunal specimens is highly variable locally in modern seeps, from 30 0–>50% (Dando et al. 1991; Levin et al. -
Maximum Dive Depths Attained by South Georgia Diving Petrel Pelecanoides Georgicus at Bird Island, South Georgia
Antarctic Science 4 (4): 433434 (1992) Short note Maximum dive depths attained by South Georgia diving petrel Pelecanoides georgicus at Bird Island, South Georgia P.A. PRINCE and M. JONES British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET Accepted 25 September 1992 Introduction Maximum dive depths have been recorded for a number of powder was measured to the nearest 0.5 mm. Maximum sea-bird species using simple lightweight capillary gauges depth attained was calculated by the equation: (Burger & Wilson 1988). So far these studies have been dmax= 10.08 ($ -1) confined to penguins (Montague 1985, Seddon &vanHeezik d 1990, Whitehead 1989, Wilson & Wilson 1990, Scolaro & where dmaxismaximumdepth (m)Lsis theinitial length (mm) Suburo 1991), alcids (Burger & Simpson 1986, Burger & of undissolved indicator andL, the length (mm) on recovery Powell 1988, Harris etal. 1990,Burger 1991)andcormorants (Burger & Wilson 1988). (Burger 1991, Wanless et al. 1991). The most proficient divers of the order Procellariformes Results are likely to be thedivingpetrels in the family Pelecanoididae. Although the diet of some species has been studied (Payne & The results are shown in Table I. For all six gauges the mean Prince 1979), their divingperformance and foraging ecology maximumdepthdived was25.7m sd 11.4 (range=17.1-48.6). are unknown. This paper reports the first data on maximum If only the four gauges recovered within 24 h are considered depths attained by South Georgia divingpetrelsp. georgicus then the mean maximum dive depth is reduced to 21.3 m sd (weighing less than 1OOg) while engaged in rearing chicks. -
N E W S a N D C O M M E N
N E W S A N D C O M M E N T S ARGENTAVIS MAGNIFICENS: WORLD’S LARGEST FLYING BIRD Recently the Los Angeles County Natural History Museum displayed parts of a skeleton of the biggest known bird that ever flew. Looming over the entrance hall, a black silhouette of Argentavis magnificens spans its wings over 8 m and stands 3.5 m from tip of tail to end of beak. This is almost twice the size of Teratornis merriami which, until now, had been considered the largest size to which flying avians could evolve. Argentavis magnificens (new genus and species) has now wrested the title of “World’s largest flying bird” from Osteodotornis orri, the gigantic marine bird from the Miocene of California. E. Tonni and R. Pascual of the National Museum of La Plata, Argentina, uncovered the fossil remains of A. magnificens from the banks of Salinas Grandes de Hidalgo in the Argentine province of La Pampa, 400 miles SW of Buenos Aires. Their collection included portions of the skull, the coracoid, the left humerus (incomplete), a portion of the ulna and right radius, the right tibiotarsus, one end of metacarpal II, a portion of meta- carpal III, and a shaft of right tarsometatarsus. Systematics: Order. Accipitriformes Family. Teratornithidae New genus and species. Argentavis magnificens Etymology: Greek teretos (wonder) and ornis (bird) Latin argentum (silver) and avis (bird) This discovery did not come to the attention of the international scientific world until K. E. Campbell, curator of the Los Angeles County Natural History Museum and specialist in teratorns of Rancho La Brea, visited La Plata’s Museum and with Tonni began a detailed study of the collected fossils. -
71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas. -
Onetouch 4.0 Scanned Documents
/ Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded. -
A Review of the Fossil Seabirds from the Tertiary of the North Pacific
Paleobiology,18(4), 1992, pp. 401-424 A review of the fossil seabirds fromthe Tertiaryof the North Pacific: plate tectonics,paleoceanography, and faunal change Kenneth I. Warheit Abstract.-Ecologists attempt to explain species diversitywithin Recent seabird communities in termsof Recent oceanographic and ecological phenomena. However, many of the principal ocean- ographic processes that are thoughtto structureRecent seabird systemsare functionsof geological processes operating at many temporal and spatial scales. For example, major oceanic currents,such as the North Pacific Gyre, are functionsof the relative positions of continentsand Antarcticgla- ciation,whereas regional air masses,submarine topography, and coastline shape affectlocal processes such as upwelling. I hypothesize that the long-termdevelopment of these abiotic processes has influencedthe relative diversityand communitycomposition of North Pacific seabirds. To explore this hypothesis,I divided the historyof North Pacific seabirds into seven intervalsof time. Using published descriptions,I summarized the tectonicand oceanographic events that occurred during each of these time intervals,and related changes in species diversityto changes in the physical environment.Over the past 95 years,at least 94 species of fossil seabirds have been described from marine deposits of the North Pacific. Most of these species are from Middle Miocene through Pliocene (16.0-1.6 Ma) sediments of southern California, although species from Eocene to Early Miocene (52.0-22.0 Ma) deposits are fromJapan, -
History of Solar Flight July 2008
History of Solar Flight July 2008 solar airplane aircraft continuous sustainable flight solar-powered solar cells mppt helios Sky-Sailor sun-powered HALE platform solaire avion vol continu dévelopement durable énergie solaire cellules plateforme History of Solar flight André Noth, [email protected] Autonomous Systems Lab, Swiss Federal Institute of Technology Zürich 1. The conjunction of two pioneer fields, electric flight and solar cells The use of electric power for flight vehicles propulsion is not new. The first one was the hydrogen- filled dirigible France in year 1884 that won a 10 km race around Villacoulbay and Medon. At this time, the electric system was superior to its only rival, the steam engine but then with the arrival of gasoline engines, work on electrical propulsion for air vehicles was abandoned and the field lay dormant for almost a century [2]. On the 30th June 1957, Colonel H. J. Taplin of the United Kingdom made the first officially recorded electric powered radio controlled flight with his model “Radio Queen”, which used a permanent-magnet motor and a silver-zinc battery. Unfortunately, he didn’t carry on these experiments. Further developments in the field came from the great German pioneer, Fred Militky, who first achieved a successful flight with a Radio Queen, 1957 free flight model in October 1957. Since this premises, electric flight continuously evolved with constant improvements in the fields of motors and batteries [12]. Three years before Taplin and Militky’s experiments, in 1954, photovoltaic technology was born at Bell Telephone Laboratories. Daryl Chapin, Calvin Fuller, and Gerald Pearson developed the first silicon photovoltaic cell capable of converting enough of the sun’s energy into power to run everyday electrical Gerald Pearson, Daryl Chapin equipment.