Tribute to Roger Revelle and His Contribution to Studies of Carbon Dioxide and Climate Change
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nathaniel Rich's Losing Earth and the Role of William Nierenberg And
Nathaniel Rich’s Losing Earth and the Role of William Nierenberg and Other Science Advisors: Why didn’t we act on climate change in the 1980s? Ed Levy The entire New York Times Magazine of August 5, 2018 was devoted to an important article by Nathaniel Rich, Losing Earth: The Decade we almost stopped climate Change. In Rich’s account from 1979 to 1989 the United States came close to “breaking our suicide pact with fossil fuels.”1 Rich shows that at the beginning of that decade a broad international consensus had developed favoring action in the form of a global treaty to curb emissions and that U.S. leadership was required and possibly forthcoming. Yet at the end of the decade it was clear that these efforts had failed. Rich sets as his primary task answering the question, “Why didn’t we act?” He does not provide a satisfactory answer. However, Rich’s informative and nuanced accounts convey well the shifting positions about climate change in the US during the decade. At the beginning it was difficult to get widespread attention, later it looked as though linking global warming to other issues such as ozone depletion and CFCs could result in action. These accounts are based on a large number of interviews and extensive research, but the story is told primarily through the eyes of two significant players, Rafe Pomerance and James Hansen, “a hyperkinetic lobbyist and a guileless atmospheric physicist who, at great personal cost, tried to warn humanity of what was coming.” Still, Rich barely addresses the central question explicitly and does not come close to providing a convincing answer. -
A General Theory of Climate Denial Peter J
A General Theory of Climate Denial Peter J. Jacques A General Theory of Climate Denial • Peter J. Jacques There is now a well-recognized right-wing counter-movement challenging the trend, attribution, impact, and civic implications of orthodox climate change science. Where do the body and spirit of this counter-movement come from? Here I will reºect on some conspicuous questions. First, why have academics, the media, and the counter-movement itself had difªculty naming the counter- movement? Second, why reject the premise of global environmental change at all? Finally, what is the result of the apparent binary choice between the ac- knowledgment of the orthodoxy and its rejection? A General Theory of Denial I will argue that climate denial is an appropriate label consistent with Lang’s “General Theory of Historical Denial.”1 Currently, there is disagreement whether climate “skeptic,” “contrarian,” and “denier” are representative terms.2 I have used the word “skeptic,” but I admit here and elsewhere that it is inappro- priate,3 because the skepticism in environmental skepticism is asymmetrical. As skeptics cast doubt on ecological science, they have an abiding faith in industrial science and technology, free enterprise, and those great institutions of Western Enlightenment.4 Further, skeptics rightfully argue that skepticism is a funda- mental sentiment of rigorous science. Ecological cynicism is then positioned as scientiªc without drawing attention to the asymmetry. Lahsen has successfully used the word “contrarian” to denote the most outspoken leaders of climate rejection, particularly credentialed physicists and climate scientists such as Frederick Seitz, Robert Jastrow, William Nierenberg, Willie Soon, and Sallie Balliunas. -
1 Census of Marine Life Participants 2000-2010
Census of Marine Life Participants 2000-2010 Raza Abidi, Dalhousie University, Canada Jo Acebes, Asia Research Center, Philippines Arturo Acero, Universidad Nacional de Colombia, Colombia Shanta Nair Achuthankutty, National Centre for Antarctic and Ocean Research, India C.T. Achuthankutty, National Institute of Oceanography, India Colleen Adam, DIVERSITAS, France Sarah Adamowicz, University of Guelph, Canada Nathan Adams, United States Helena Adão, University of Évora, Portugal Adrian Aebischer, University of Bern and Museum Fribourg, Switzerland Steven Africk, Acentech Inc, United States Vikram Agadi, National Institute Scientific Communication & Information Resources, India Yogi Agrawal, Sequoia Scientific, United States Maite Aguado, Universidad Autonóma de Madrid, Spain Anelio Aguayo-Lobo, Instituto Antarctico Chileno, Chile Paula Aguiar, University of the Azores, Portugal John Ahearn, Museum Victoria, Australia Sayyed Ahmed, Sultan Qaboos University, Sultanate of Oman Shane Ahyong, National Institute of Water & Atmospheric Research (NIWA), New Zealand Jim Aiken, Plymouth Marine Laboratory, United Kingdom Cameron Ainsworth, University of British Columbia, Canada Laura Airoldi, Università di Bologna, Italy Belinda Aker, National Oceanography Centre, Southampton, United Kingdom Dag Aksnes, University of Bergen, Norway Farid Al-Abdali, Five Oceans LLC, Sultanate of Oman Nasser Al-Azri, HMR Environmental Engineering Cunsultants, Sultanate of Oman Adnan Al-Azri, Sultan Qaboos University, Sultanate of Oman Monica Albuquerque, University Lusófona de Humanidades e Tecnologias, Portugal Jacqueline Alder, UNEP, Kenya Viviana Alder, University of Buenos Aires, Argentina Juan Luis Aleget, Universitat de Girona, Spain Yaroslava Alekseeva, Russian Academy of Sciences, Russia Vera Alexander, University of Alaska Fairbanks, United States Karen Alexander, University of New Hampshire, United States Daniel Alexandrov, European University at St. Petersburg, Russia J.R.B. -
The Physical Tourist Physics and New York City
Phys. perspect. 5 (2003) 87–121 © Birkha¨user Verlag, Basel, 2003 1422–6944/05/010087–35 The Physical Tourist Physics and New York City Benjamin Bederson* I discuss the contributions of physicists who have lived and worked in New York City within the context of the high schools, colleges, universities, and other institutions with which they were and are associated. I close with a walking tour of major sites of interest in Manhattan. Key words: Thomas A. Edison; Nikola Tesla; Michael I. Pupin; Hall of Fame for GreatAmericans;AlbertEinstein;OttoStern;HenryGoldman;J.RobertOppenheimer; Richard P. Feynman; Julian Schwinger; Isidor I. Rabi; Bronx High School of Science; StuyvesantHighSchool;TownsendHarrisHighSchool;NewYorkAcademyofSciences; Andrei Sakharov; Fordham University; Victor F. Hess; Cooper Union; Peter Cooper; City University of New York; City College; Brooklyn College; Melba Phillips; Hunter College; Rosalyn Yalow; Queens College; Lehman College; New York University; Courant Institute of Mathematical Sciences; Samuel F.B. Morse; John W. Draper; Columbia University; Polytechnic University; Manhattan Project; American Museum of Natural History; Rockefeller University; New York Public Library. Introduction When I was approached by the editors of Physics in Perspecti6e to prepare an article on New York City for The Physical Tourist section, I was happy to do so. I have been a New Yorker all my life, except for short-term stays elsewhere on sabbatical leaves and other visits. My professional life developed in New York, and I married and raised my family in New York and its environs. Accordingly, writing such an article seemed a natural thing to do. About halfway through its preparation, however, the attack on the World Trade Center took place. -
SIO Biographical Files
http://oac.cdlib.org/findaid/ark:/13030/c8rn3dbg No online items SIO Biographical Files Special Collections & Archives, UC San Diego Special Collections & Archives, UC San Diego Copyright 2015 9500 Gilman Drive La Jolla 92093-0175 [email protected] URL: http://libraries.ucsd.edu/collections/sca/index.html SIO Biographical Files SAC 0005 1 Descriptive Summary Languages: English Contributing Institution: Special Collections & Archives, UC San Diego 9500 Gilman Drive La Jolla 92093-0175 Title: SIO Biographical Files Identifier/Call Number: SAC 0005 Physical Description: 31 Linear feet(78 archives boxes) Date (inclusive): 1850-2013 (bulk 1910-2011) Abstract: The collection contains biographical information about Scripps Institution of Oceanography (SIO) students, faculty, staff, and other individuals associated with SIO or with the history of oceanography. Scope and Content of Collection The collection contains biographical information about Scripps Institution of Oceanography (SIO) faculty, staff, students, and other individuals associated with SIO or with the history of oceanography, collected by SIO Archives staff. The files include biographies, obituaries, bibliographies, correspondence, photographs, memoirs, oral histories, newspaper clippings, press releases, articles, and other sources of information. The collection is arranged in two separate series: materials collected before 1981, and materials collected from 1981 to 2013. The Library no longer adds to the biographical information files. MATERIALS COLLECTED PRE-1981: This section of the collection contains biographical materials, including personal papers and correspondence, gathered by Elizabeth Shor, the acting SIO archivist, from the 1970s to 1981. Shor arranged materials alphabetically by the surname of the subject. The bulk of the files contain correspondence and the personal and professional papers of individual SIO faculty and staff who transferred their materials to the Archives. -
CO2, Hothouse and Snowball Earth
CO2, Hothouse and Snowball Earth Gareth E. Roberts Department of Mathematics and Computer Science College of the Holy Cross Worcester, MA, USA Mathematical Models MATH 303 Fall 2018 November 12 and 14, 2018 Roberts (Holy Cross) CO2, Hothouse and Snowball Earth Mathematical Models 1 / 42 Lecture Outline The Greenhouse Effect The Keeling Curve and the Earth’s climate history Consequences of Global Warming The long- and short-term carbon cycles and silicate weathering The Snowball Earth hypothesis Roberts (Holy Cross) CO2, Hothouse and Snowball Earth Mathematical Models 2 / 42 Chapter 1 Historical Overview of Climate Change Science Frequently Asked Question 1.3 What is the Greenhouse Effect? The Sun powers Earth’s climate, radiating energy at very short Earth’s natural greenhouse effect makes life as we know it pos- wavelengths, predominately in the visible or near-visible (e.g., ul- sible. However, human activities, primarily the burning of fossil traviolet) part of the spectrum. Roughly one-third of the solar fuels and clearing of forests, have greatly intensifi ed the natural energy that reaches the top of Earth’s atmosphere is refl ected di- greenhouse effect, causing global warming. rectly back to space. The remaining two-thirds is absorbed by the The two most abundant gases in the atmosphere, nitrogen surface and, to a lesser extent, by the atmosphere. To balance the (comprising 78% of the dry atmosphere) and oxygen (comprising absorbed incoming energy, the Earth must, on average, radiate the 21%), exert almost no greenhouse effect. Instead, the greenhouse same amount of energy back to space. Because the Earth is much effect comes from molecules that are more complex and much less colder than the Sun, it radiates at much longer wavelengths, pri- common. -
Keeling Curve: Result, Interpretation & Global Monitoring
International Journal for Empirical Education and Research Keeling Curve: Result, Interpretation & Global Monitoring Augustyn Ostrowski Faculty of Geography & Geology Jagiellonian University Email: [email protected] (Author of Correspondence) Poland Abstract The Keeling Curve is a graph of the accumulation of carbon dioxide in the Earth's atmosphere based on continuous measurements taken at the Mauna Loa Observatory on the island of Hawaii from 1958 to the present day. The curve is named for the scientist Charles David Keeling, who started the monitoring program and supervised it until his death in 2005. Keywords: Mauna Loa Measurements; Results and Interpretation; Global Monitoring; Ralph Keeling. ISSN Online: 2616-4833 ISSN Print: 2616-4817 35 1. Introduction Keeling's measurements showed the first significant evidence of rapidly increasing carbon dioxide levels in the atmosphere. According to Dr Naomi Oreskes, Professor of History of Science at Harvard University, the Keeling curve is one of the most important scientific works of the 20th century. Many scientists credit the Keeling curve with first bringing the world's attention to the current increase of carbon dioxide in the atmosphere. Prior to the 1950s, measurements of atmospheric carbon dioxide concentrations had been taken on an ad hoc basis at a variety of locations. In 1938, engineer and amateur meteorologist Guy Stewart Callendar compared datasets of atmospheric carbon dioxide from Kew in 1898-1901, which averaged 274 parts per million by volume (ppm), and from the eastern United States in 1936-1938, which averaged 310 ppmv, and concluded that carbon dioxide concentrations were rising due to anthropogenic emissions. However, Callendar's findings were not widely accepted by the scientific community due to the patchy nature of the measurements. -
National Academy of Sciences July 1, 1979 Officers
NATIONAL ACADEMY OF SCIENCES JULY 1, 1979 OFFICERS Term expires President-PHILIP HANDLER June 30, 1981 Vice-President-SAUNDERS MAC LANE June 30, 1981 Home Secretary-BRYCE CRAWFORD,JR. June 30, 1983 Foreign Secretary-THOMAS F. MALONE June 30, 1982 Treasurer-E. R. PIORE June 30, 1980 Executive Officer Comptroller Robert M. White David Williams COUNCIL Abelson, Philip H. (1981) Markert,C. L. (1980) Berg, Paul (1982) Nierenberg,William A. (1982) Berliner, Robert W. (1981) Piore, E. R. (1980) Bing, R. H. (1980) Ranney, H. M. (1980) Crawford,Bryce, Jr. (1983) Simon, Herbert A. (1981) Friedman, Herbert (1982) Solow, R. M. (1980) Handler, Philip (1981) Thomas, Lewis (1982) Mac Lane, Saunders (1981) Townes, Charles H. (1981) Malone, Thomas F. (1982) Downloaded by guest on September 30, 2021 SECTIONS The Academyis divided into the followingSections, to which membersare assigned at their own choice: (11) Mathematics (31) Engineering (12) Astronomy (32) Applied Biology (13) Physics (33) Applied Physical and (14) Chemistry Mathematical Sciences (15) Geology (41) Medical Genetics Hema- (16) Geophysics tology, and Oncology (21) Biochemistry (42) Medical Physiology, En- (22) Cellularand Develop- docrinology,and Me- mental Biology tabolism (23) Physiological and Phar- (43) Medical Microbiology macologicalSciences and Immunology (24) Neurobiology (51) Anthropology (25) Botany (52) Psychology (26) Genetics (53) Social and Political Sci- (27) Population Biology, Evo- ences lution, and Ecology (54) Economic Sciences In the alphabetical list of members,the numbersin parentheses, followingyear of election, indicate the respective Class and Section of the member. CLASSES The members of Sections are grouped in the following Classes: I. Physical and Mathematical Sciences (Sections 11, 12, 13, 14, 15, 16). -
How I Stave Off Despair As a Climate Scientist So Much Warming, So Many Dire Effects, So Little Action — Dave Reay Reveals YVONNE COOPER/UNIV
WORLD VIEW A personal take on events How I stave off despair as a climate scientist So much warming, so many dire effects, so little action — Dave Reay reveals YVONNE COOPER/UNIV. EDINBURGH COOPER/UNIV. YVONNE how dreams of soggy soil and seaweed keep him going. here’s a curve that is quietly plotting our performance as a behind my eyelids, that’s what helps me sleep. species. This curve is not a commodity price or a technology That, and a personal plot to pull a lifetime’s worth of carbon out of index. It has no agenda or steering committee. It is the Keeling the atmosphere. Tcurve. It is painfully consistent in its trajectory and brutally honest in The dream with which I’ve bored my family to distraction for the its graphical indictment of our society as one that stands ready to stand past 20 years is going truly ‘net zero’: paring down emissions to the by as islands submerge, cities burn and coasts flood. bare minimum, and then managing a chunk of land to try to sequester Established by Charles David Keeling in 1958, the curve records the remainder. how much carbon dioxide is in our atmosphere — fewer than 330 parts Last month, that dream came true. Years of saving, a large dollop per million then, more than 400 today. Each month for the past decade, of luck and an even larger loan made me and my wife the nervous my geeky addiction has been to scan the latest data. To search for some owners of 28 hectares of rough grassland and wild rocky shores in hint that ‘Stabilization Day’ will come: when global emissions and the west of Scotland. -
The Scripps Carbon Dioxide and Oxygen Programs Ralph F. Keeling Scripps Institution of Oceanography [email protected]
The Scripps carbon dioxide and oxygen programs Ralph F. Keeling Scripps Institution of Oceanography [email protected] The Scripps CO2 program was initiated in 1956 by Charles David Keeling and operated under his direction until his passing in 2005. It is currently being continued by Ralph F. Keeling, who also runs the parallel Scripps O2 program. The combined programs are sustaining the longest continuous measurements of changes in atmospheric carbon dioxide concentration, the isotopes of CO2, the atmospheric O2 concentration (as O2/N2 ratio). The program involves flask collections made through cooperative programs with field stations at roughly a dozen stations around the world. The emphasis in the program is in the detection of global and hemispheric trends in these species. The measurements are pertinent to assessing global and hemispheric sources and sinks of CO2 and their changes from year to year. The records are also relevant source/sink estimates on finer spatial scales, and are among the first places to look for evidence of climate feedbacks or other "surprises" in the records. For more than decade, the program has been archiving CO2 from air samples in sealed glass ampoules for retrospective analysis. As an example of an application, these archives has recently allowed the generation of time series of the radiocarbon content of atmospheric CO2, which is relevant for assessing the distribution of carbon between reservoirs and rates of fossil-fuel burning. The O2 program has also expanded recently to include measurements of the Ar concentration (as Ar/N2 ratio). This ratio varies as the ocean warms and cools due to thermally-driven ingassing and outgassing of Ar and N2 by the oceans. -
Walter Heinrich Munk
WALTER HEINRICH MUNK 19 october 1917 . 8 february 2019 PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY VOL. 163, NO. 3, SEPTEMBER 2019 biographical memoirs alter Heinrich Munk was a brilliant scholar and scientist who was considered one of the greatest oceanographers of W his time. He was born in Vienna, Austria in 1917 as the Austro-Hungarian Empire was declining and just before the death of one of its great artists, Gustav Klimt. Hedwig Eva Maria Kiesler, who later changed her name to Hedy Lamarr to accommodate her film career, was one of Walter’s childhood friends.1 Walter’s mother, Rega Brunner,2 the daughter of a wealthy Jewish banker, divorced Walter’s father in 1927 and married Dr. Rudolf Engelsberg in 1928. By age 14, Walter apparently had not distinguished himself in his school studies and announced that he intended to become a ski instructor. Walter later claimed that it was this that caused his mother to send him to work at a family bank in New York. The validity of this claim should be tempered by the political turmoil in Germany and its proximity to Austria. In any case, Walter left Vienna in 1932. In New York, he attended Silver Bay Preparatory School for Boys on Lake George and then became a lowly employee in the Cassel Bank, which was associated with the family’s Brunner Bank in New York. In the meantime, Walter restarted his education at Columbia’s Extension School. He greatly disliked the work at the bank and apparently made a number of mistakes, which didn’t endear him to the owners of the Cassel Bank. -
A Rational Discussion of Climate Change: the Science, the Evidence, the Response
A RATIONAL DISCUSSION OF CLIMATE CHANGE: THE SCIENCE, THE EVIDENCE, THE RESPONSE HEARING BEFORE THE SUBCOMMITTEE ON ENERGY AND ENVIRONMENT COMMITTEE ON SCIENCE AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED ELEVENTH CONGRESS SECOND SESSION NOVEMBER 17, 2010 Serial No. 111–114 Printed for the use of the Committee on Science and Technology ( Available via the World Wide Web: http://www.science.house.gov U.S. GOVERNMENT PRINTING OFFICE 62–618PDF WASHINGTON : 2010 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE AND TECHNOLOGY HON. BART GORDON, Tennessee, Chair JERRY F. COSTELLO, Illinois RALPH M. HALL, Texas EDDIE BERNICE JOHNSON, Texas F. JAMES SENSENBRENNER JR., LYNN C. WOOLSEY, California Wisconsin DAVID WU, Oregon LAMAR S. SMITH, Texas BRIAN BAIRD, Washington DANA ROHRABACHER, California BRAD MILLER, North Carolina ROSCOE G. BARTLETT, Maryland DANIEL LIPINSKI, Illinois VERNON J. EHLERS, Michigan GABRIELLE GIFFORDS, Arizona FRANK D. LUCAS, Oklahoma DONNA F. EDWARDS, Maryland JUDY BIGGERT, Illinois MARCIA L. FUDGE, Ohio W. TODD AKIN, Missouri BEN R. LUJA´ N, New Mexico RANDY NEUGEBAUER, Texas PAUL D. TONKO, New York BOB INGLIS, South Carolina STEVEN R. ROTHMAN, New Jersey MICHAEL T. MCCAUL, Texas JIM MATHESON, Utah MARIO DIAZ-BALART, Florida LINCOLN DAVIS, Tennessee BRIAN P. BILBRAY, California BEN CHANDLER, Kentucky ADRIAN SMITH, Nebraska RUSS CARNAHAN, Missouri PAUL C. BROUN, Georgia BARON P. HILL, Indiana PETE OLSON, Texas HARRY E. MITCHELL, Arizona CHARLES A. WILSON, Ohio KATHLEEN DAHLKEMPER, Pennsylvania ALAN GRAYSON, Florida SUZANNE M.