Modeling of Thermal Dynamics in Chevrolet Volt Gen Ii Hybrid Electric Vehicle for Integrated Powertrain and Hvac Optimal Operation Through Connectivity
Total Page:16
File Type:pdf, Size:1020Kb
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2019 MODELING OF THERMAL DYNAMICS IN CHEVROLET VOLT GEN II HYBRID ELECTRIC VEHICLE FOR INTEGRATED POWERTRAIN AND HVAC OPTIMAL OPERATION THROUGH CONNECTIVITY Nehal Doshi Michigan Technological University, [email protected] Copyright 2019 Nehal Doshi Recommended Citation Doshi, Nehal, "MODELING OF THERMAL DYNAMICS IN CHEVROLET VOLT GEN II HYBRID ELECTRIC VEHICLE FOR INTEGRATED POWERTRAIN AND HVAC OPTIMAL OPERATION THROUGH CONNECTIVITY", Open Access Master's Thesis, Michigan Technological University, 2019. https://digitalcommons.mtu.edu/etdr/871 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Automotive Engineering Commons, and the Energy Systems Commons MODELING OF THERMAL DYNAMICS IN CHEVROLET VOLT GEN II HYBRID ELECTRIC VEHICLE FOR INTEGRATED POWERTRAIN AND HVAC OPTIMAL OPERATION THROUGH CONNECTIVITY By Nehal Doshi A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Mechanical Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2019 © 2019 Nehal Doshi This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Mechanical Engineering. Department of Mechanical Engineering-Engineering Mechanics Thesis Co-advisor: Dr. Mahdi Shahbakhti Thesis Co-advisor: Dr. Darrell Robinette Committee Member: Dr. Jeffrey Naber Department Chair: Dr. William W. Predebon Dedication To my mother, father and sister who have never wavered in their support and without whose resolute belief in me, neither I nor this work would be what it is today. Contents List of Figures ................................. xi List of Tables .................................. xvii Preface ...................................... xix Acknowledgments ............................... xxi List of Abbreviations ............................. xxiii Abstract ..................................... xxix 1 Background and Introduction ...................... 1 1.1 Trends in Modern Automotive Industry ................ 1 1.2NEXTCARProgram.......................... 4 1.3LiteratureReview............................ 7 1.4Motivation................................ 10 1.5OrganizationofThesis......................... 14 2 Experimental Setup ............................ 15 vii 2.1VehicleSpecifications.......................... 15 2.2CabinTemperatureMeasurement................... 16 2.3SolarIrradiationMeasurement..................... 17 2.4CabinBlowerFlowRateMeasurement................ 18 2.5 Cabin Thermal Masses Characterization ............... 20 2.6CANDataAcquisition......................... 21 2.7ArgonneNationalLaboratory(ANL)TestData........... 23 3 Modeling ................................... 25 3.1Background............................... 25 3.1.1 HVACHeatingLoop...................... 28 3.1.2 HVAC Cooling Loop ...................... 28 3.2CabinThermalModel......................... 31 3.2.1 HVAC supply heat flow rate .................. 32 3.2.2 Heat transfer interactions ................... 33 3.2.3 Radiative heat transfer ..................... 34 3.2.4 Heatfromoccupants...................... 35 3.2.5 Auxiliary heat .......................... 35 3.2.6 Solarheatflowrate....................... 35 3.2.7 Solarirradiationload...................... 36 3.3EngineCoolantTemperatureModel.................. 38 3.4CabinElectricHeaterModel...................... 39 viii 3.5BatteryElectricHeaterModel..................... 41 3.6CabinHeaterCoreModel....................... 41 3.7CatalystTemperatureModel...................... 44 3.8 Compressor Model ........................... 46 4 Model Validation .............................. 51 4.1CharacterizationofCabinThermalDynamics............ 51 4.2CabinBlowerCharacterization..................... 53 4.3CabinTemperature........................... 54 4.4CoolantTemperature.......................... 57 4.5CatalystTemperature......................... 60 4.6CabinElectricHeaterEnergy..................... 62 4.7 A/C Compressor Energy ........................ 63 5 Vehicle Energy Consumption Reduction Strategies ........ 65 5.1 Integrated HVAC – Powertrain Operation .............. 65 5.1.1 CaseStudy........................... 68 5.2 Coordinated Thermal Management .................. 74 5.2.1 CaseStudy........................... 76 5.3MonteCarloSimulations........................ 81 5.3.1 Integrated HVAC – Powertrain Operation .......... 83 5.3.2 Coordinated Thermal Management .............. 85 ix 6 Conclusion and Future Work ...................... 87 6.1Conclusion................................ 88 6.2FutureWork............................... 89 References .................................... 93 A Publication from thesis .......................... 103 B Summary of Model and Data Files .................. 105 B.1Chapter1................................ 105 B.2Chapter2................................ 106 B.3Chapter3................................ 107 B.4Chapter4................................ 108 B.5Chapter5................................ 109 C Summary of Figure Files ......................... 113 x List of Figures 1.1 Projected trends in global light-duty vehicle fleet [1] ......... 2 1.2 Projected market share (in USD Billion) of connected vehicles in North America[2]............................... 3 1.3Connectedandautonomousvehiclesglobalmarketshare[3].... 4 1.4ExistingandNEXTCAR’sproposedsysteminteractions...... 5 (a) ................................... 5 (b) ................................... 5 1.5 Overview of Michigan Tech’s NEXTCAR project proposal ..... 6 1.6CustomdrivecycledevisedbytheMTUNEXTCARteam..... 11 (a) Drivecycleonmap........................ 11 (b) Velocityprofile.......................... 11 1.7 Comparison of total vehicle energy distribution to understand HVAC contribution (Experimental data) ................... 11 1.8 Experimental test data in cold ambient conditions for MTUDC . 13 (a) HVACheatingoperation..................... 13 (b) Energy distribution summary .................. 13 xi 2.1 Test vehicle setup for solar load measurement at Keweenaw Research Center.................................. 18 2.2 Flow bench setup for test vehicle cabin blower characterization at Ad- vanced Power Systems Research Center Laboratory ......... 19 2.3 Cabin thermal mass characterization test setup at Advanced Power Systems Research Center Laboratory ................. 21 2.4CANdataacquisitionsetupintestvehicle.............. 22 (a) VectorCANoesetup....................... 22 (b) dSpace MicroAutoBox setup ................... 22 3.1OverviewofintegratedHVAC-VD&PTmodel........... 27 3.2Testvehicle’scabinheatingloop.................... 29 3.3 Test vehicle’s integrated cooling loops ................. 30 3.4 Cabin model control volume with heat loads ............. 31 3.5 Schematic of lumped engine coolant temperature model ....... 39 3.6Schematicofcabinheatercoremodel................. 42 3.7Schematicofthree-waycatalysttemperaturemodel......... 45 3.8 Schematic of A/C compressor neural network model ......... 47 3.9 Performance R-values for trained compressor neural network .... 48 3.10 Cross-validation test results for trained neural network ....... 49 4.1Resultsofcabinthermalmasscharacterizationtest......... 52 4.2Resultsofcabinblowercharacterizationtest............. 54 xii 4.3Temperaturedistributioninsidetestvehiclecabin.......... 55 4.4 Validation of cabin temperature during heating and cooling ..... 56 (a) Cabin heating validation ..................... 56 (b) Cabin cooling validation ..................... 56 4.5 Validation of solar irradiation model during a 24hr. test ....... 57 4.6 Effect of vehicle speed on coolant temperature at 20mph cruising speed................................... 58 4.7 Effect of vehicle speed on coolant temperature at 55mph cruising speed................................... 59 4.8 Validation of coolant temperature model at Tambient = −4°C .... 60 4.9 Validation of catalyst temperature during cool-down in 2 different op- erating conditions ............................ 61 (a) Validation at Tambient = −7°C .................. 61 (b) Validation at Tambient =22°C .................. 61 4.10 Validation of catalyst temperature during heat-up in 2 different oper- ating conditions ............................. 61 (a) Validation at Tambient = −7°C .................. 61 (b) Validation at Tambient =22°C .................. 61 4.11 Validation of cabin electric heater energy consumption . ...... 62 (a) Validation at Tambient = −4°C .................. 62 (b) Validation at Tambient = −10°C ................. 62 xiii 4.12 Validation of electric compressor energy consumption ........ 63 5.1 Sample simulation example to illustrate integrated HVAC – Powertrain operationforcabinheating....................... 67 5.2 Sample test data collection at APSRC Labs to illustrate baseline cabin heating operation in cold ambient conditions ............. 67 5.3 Model-based optimization for integrated HVAC – Powertrain opera- tion................................... 70 5.4 Comparison of cabin air temperature between baseline and integrated HVAC – Powertrain operation ..................... 72 5.5 Comparison of cabin heating operation between baseline and optimal solution................................. 73 (a) Baseline operation ........................ 73 (b) Optimaloperation........................ 73 5.6 Sample simulation example of coordinated thermal management at Tambient =22°C ............................. 76 (a) Coolant temperature-Baseline .................