A New Polycotylid Plesiosaur with Extensive Soft
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs. -
Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale Ian N
Fort Hays State University FHSU Scholars Repository Master's Theses Graduate School Spring 2014 Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale Ian N. Cost Fort Hays State University Follow this and additional works at: https://scholars.fhsu.edu/theses Part of the Biology Commons Recommended Citation Cost, Ian N., "Description of an Unusual Cervical Vertebral Column of a Plesiosaur from the Kiowa Shale" (2014). Master's Theses. 57. https://scholars.fhsu.edu/theses/57 This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of FHSU Scholars Repository. DESCRIPTION OF AN UNUSUAL CERVICAL VERTEBRAL COLUMN OF A PLESIOSAUR FROM THE KIOWA SHALE being A Thesis Presented to the Graduate Faculty of the Fort Hays State University in Partial Fulfillment of the Requirements for the Degree of Master of Science by Ian Cost B.A., Bridgewater State University M.Ed., Lesley University Date_____________________ Approved________________________________ Major Professor Approved________________________________ Chair, Graduate Council This Thesis for The Master of Science Degree By Ian Cost Has Been Approved __________________________________ Chair, Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Supervisory Committee __________________________________ Chair, Department of Biological Science i PREFACE This manuscript has been formatted in the style of the Journal of Vertebrate Paleontology. Keywords: plesiosaur, polycotylid, cervical vertebrae, Dolichorhynchops, Trinacromerum ii ABSTRACT The Early Cretaceous (Albian) Kiowa Shale of Clark County, Kansas consists mainly of dark gray shale with occasional limestone deposits that represent a near shore environment. -
Paleontology, Stratigraphy, Paleoenvironment and Paleogeography of the Seventy Tethyan Maastrichtian-Paleogene Foraminiferal Species of Anan, a Review
Journal of Microbiology & Experimentation Review Article Open Access Paleontology, stratigraphy, paleoenvironment and paleogeography of the seventy Tethyan Maastrichtian-Paleogene foraminiferal species of Anan, a review Abstract Volume 9 Issue 3 - 2021 During the last four decades ago, seventy foraminiferal species have been erected by Haidar Salim Anan the present author, which start at 1984 by one recent agglutinated foraminiferal species Emirates Professor of Stratigraphy and Micropaleontology, Al Clavulina pseudoparisensis from Qusseir-Marsa Alam stretch, Red Sea coast of Egypt. Azhar University-Gaza, Palestine After that year tell now, one planktic foraminiferal species Plummerita haggagae was erected from Egypt (Misr), two new benthic foraminiferal genera Leroyia (with its 3 species) Correspondence: Haidar Salim Anan, Emirates Professor of and Lenticuzonaria (2 species), and another 18 agglutinated species, 3 porcelaneous, 26 Stratigraphy and Micropaleontology, Al Azhar University-Gaza, Lagenid and 18 Rotaliid species. All these species were recorded from Maastrichtian P. O. Box 1126, Palestine, Email and/or Paleogene benthic foraminiferal species. Thirty nine species of them were erected originally from Egypt (about 58 %), 17 species from the United Arab Emirates, UAE (about Received: May 06, 2021 | Published: June 25, 2021 25 %), 8 specie from Pakistan (about 11 %), 2 species from Jordan, and 1 species from each of Tunisia, France, Spain and USA. More than one species have wide paleogeographic distribution around the Northern and Southern Tethys, i.e. Bathysiphon saidi (Egypt, UAE, Hungary), Clavulina pseudoparisensis (Egypt, Saudi Arabia, Arabian Gulf), Miliammina kenawyi, Pseudoclavulina hamdani, P. hewaidyi, Saracenaria leroyi and Hemirobulina bassiounii (Egypt, UAE), Tritaxia kaminskii (Spain, UAE), Orthokarstenia nakkadyi (Egypt, Tunisia, France, Spain), Nonionella haquei (Egypt, Pakistan). -
A Revision of the Classification of the Plesiosauria with a Synopsis of the Stratigraphical and Geographical Distribution Of
LUNDS UNIVERSITETS ARSSKRIFT. N. F. Avd. 2. Bd 59. Nr l. KUNGL. FYSIOGRAFISKA SÅLLSKAPETS HANDLINGAR, N. F. Bd 74. Nr 1. A REVISION OF THE CLASSIFICATION OF THE PLESIOSAURIA WITH A SYNOPSIS OF THE STRATIGRAPHICAL AND GEOGRAPHICAL DISTRIBUTION OF THE GROUP BY PER OVE PERSSON LUND C. W. K. GLEER UP Read before the Royal Physiographic Society, February 13, 1963. LUND HÅKAN OHLSSONS BOKTRYCKERI l 9 6 3 l. Introduction The sub-order Plesiosauria is one of the best known of the Mesozoic Reptile groups, but, as emphasized by KuHN (1961, p. 75) and other authors, its classification is still not satisfactory, and needs a thorough revision. The present paper is an attempt at such a revision, and includes also a tabular synopsis of the stratigraphical and geo graphical distribution of the group. Some of the species are discussed in the text (pp. 17-22). The synopsis is completed with seven maps (figs. 2-8, pp. 10-16), a selective synonym list (pp. 41-42), and a list of rejected species (pp. 42-43). Some forms which have been erroneously referred to the Plesiosauria are also briefly mentioned ("Non-Plesiosaurians", p. 43). - The numerals in braekets after the generic and specific names in the text refer to the tabular synopsis, in which the different forms are numbered in successional order. The author has exaroined all material available from Sweden, Australia and Spitzbergen (PERSSON 1954, 1959, 1960, 1962, 1962a); the major part of the material from the British Isles, France, Belgium and Luxembourg; some of the German spec imens; certain specimens from New Zealand, now in the British Museum (see LYDEK KER 1889, pp. -
KENNETH CARPENTER, Ph.D. Director and Curator Of
KENNETH CARPENTER, Ph.D. Director and Curator of Paleontology Prehistoric Museum Utah State University - College of Eastern Utah 155 East Main Street Price, Utah 84501 Education May, 1996. Ph.D., Geology University of Colorado, Boulder, CO. Dissertation “Sharon Springs Member, Pierre Shale (Lower Campanian) depositional environment and origin of it' s Vertebrate fauna, with a review of North American plesiosaurs” 251 p. May, 1980. B.S. in Geology, University of Colorado, Boulder, CO. Aug-Dec. 1977 Apprenticeship, Smithsonian Inst., Washington DC Professional Museum Experience 1975 – 1980: University of Colorado Museum, Boulder, CO. 1983 – 1984: Mississippi Museum of Natural History, Jackson, MS. 1984 – 1986: Academy of Natural Sciences of Philadelphia, Philadelphia. 1986: Carnegie Museum of Natural History, Pittsburgh, PA. 1986: Oklahoma Museum of Natural History, Norman, OK. 1987 – 1989: Museum of the Rockies, Bozeman, MT. 1989 – 1996: Chief Preparator, Denver Museum of Nature and Science, Denver, CO. 1996 – 2010: Chief Preparator, and Curator of Vertebrate Paleontology, Denver Museum of Nature and Science, Denver, CO. 2006 – 2007; 2008-2009: Acting Department Head, Chief Preparator, and Curator of Vertebrate Paleontology, Denver Museum of Nature and Science, Denver, CO. 2010 – present: Director, Prehistoric Museum, Price, UT 2010 – present: Associate Vice Chancellor, Utah State University Professional Services: 1991 – 1998: Science Advisor, Garden Park Paleontological Society 1994: Senior Organizer, Symposium "The Upper Jurassic Morrison Formation: An Interdisciplinary Study" 1996: Scientific Consultant Walking With Dinosaurs , BBC, England 2000: Scientific Consultant Ballad of Big Al , BBC, England 2000 – 2003: Associate Editor, Journal of Vertebrate Paleontology 2001 – 2003: Associate Editor, Earth Sciences History journal 2003 – present: Scientific Advisor, HAN Project 21 Dinosaur Expos, Tokyo, Japan. -
On the Cranial Anatomy of the Polycotylid Plesiosaurs, Including New Material of Polycotylus Latipinnis, Cope, from Alabama F
Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 2004 On the cranial anatomy of the polycotylid plesiosaurs, including new material of Polycotylus latipinnis, Cope, from Alabama F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Animal Sciences Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation O’Keefe, F. R. 2004. On the cranial anatomy of the polycotylid plesiosaurs, including new material of Polycotylus latipinnis, Cope, from Alabama. Journal of Vertebrate Paleontology 24(2):326–340. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ON THE CRANIAL ANATOMY OF THE POLYCOTYLID PLESIOSAURS, INCLUDING NEW MATERIAL OF POLYCOTYLUS LATIPINNIS, COPE, FROM ALABAMA F. ROBIN O’KEEFE Department of Anatomy, New York College of Osteopathic Medicine, Old Westbury, New York 11568, U.S.A., [email protected] ABSTRACT—The cranial anatomy of plesiosaurs in the family Polycotylidae (Reptilia: Sauropterygia) has received renewed attention recently because various skull characters are thought to indicate plesiosauroid, rather than plio- sauroid, affinities for this family. New data on the cranial anatomy of polycotylid plesiosaurs is presented, and is shown to compare closely to the structure of cryptocleidoid plesiosaurs. The morphology of known polycotylid taxa is reported and discussed, and a preliminary phylogenetic analysis is used to establish ingroup relationships of the Cryptocleidoidea. -
Cranial Anatomy and Taxonomy of Dolichorhynchops Bonneri New
Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences 2008 Cranial anatomy and taxonomy of Dolichorhynchops bonneri new combination, a polycotylid (Sauropterygia: Plesiosauria) from the Pierre Shale of Wyoming and South Dakota F. Robin O’Keefe Marshall University, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Animal Sciences Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation O'Keefe, F. R. (2008). Cranial anatomy and taxonomy of Dolichorhynchops bonneri new combination, a polycotylid (Sauropterygia: Plesiosauria) from the Pierre Shale of Wyoming and South Dakota. Journal of Vertebrate Paleontology, 28(3), 664-676. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. CRANIAL ANATOMY AND TAXONOMY OF DOLICHORHYNCHOPS BONNERI NEW COMBINATION, A POLYCOTYLID (SAUROPTERYGIA: PLESIOSAURIA) FROM THE PIERRE SHALE OF WYOMING AND SOUTH DAKOTA F. ROBIN O’KEEFE ABSTRACT The taxonomic identity of two well-preserved polycotylid plesiosaur skeletons from the Pierre Shale of far northern Wyoming and southern South Dakota has been controversial since their discovery. Originally referred to Dolichorhynchops osborni, the material was almost immediate-ly christened Trinacromerum bonneri Adams 1997; more recently the material has been referred to Polycotylus. Recent preparation of the well-preserved skull of one specimen permits detailed examination of the cranial morphology of this animal for the first time, and allows for its inclusion in a cladistic analysis of the Polycotylidae. -
A Guide to 1.000 Foraminifera from Southwestern Pacific New Caledonia
Jean-Pierre Debenay A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM Debenay-1 7/01/13 12:12 Page 1 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Debenay-1 7/01/13 12:12 Page 2 Debenay-1 7/01/13 12:12 Page 3 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Jean-Pierre Debenay IRD Éditions Institut de recherche pour le développement Marseille Publications Scientifiques du Muséum Muséum national d’Histoire naturelle Paris 2012 Debenay-1 11/01/13 18:14 Page 4 Photos de couverture / Cover photographs p. 1 – © J.-P. Debenay : les foraminifères : une biodiversité aux formes spectaculaires / Foraminifera: a high biodiversity with a spectacular variety of forms p. 4 – © IRD/P. Laboute : îlôt Gi en Nouvelle-Calédonie / Island Gi in New Caledonia Sauf mention particulière, les photos de cet ouvrage sont de l'auteur / Except particular mention, the photos of this book are of the author Préparation éditoriale / Copy-editing Yolande Cavallazzi Maquette intérieure et mise en page / Design and page layout Aline Lugand – Gris Souris Maquette de couverture / Cover design Michelle Saint-Léger Coordination, fabrication / Production coordination Catherine Plasse La loi du 1er juillet 1992 (code de la propriété intellectuelle, première partie) n'autorisant, aux termes des alinéas 2 et 3 de l'article L. 122-5, d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause, est illicite » (alinéa 1er de l'article L. -
How Plesiosaurs Swam: New Insights Into Their Underwater Flight Using “Ava”, a Virtual Pliosaur
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 October 2019 doi:10.20944/preprints201910.0094.v1 How Plesiosaurs Swam: New Insights into Their Underwater Flight Using “Ava”, a Virtual Pliosaur Max Hawthorne1,*, Mark A. S. McMenamin 2, Paul de la Salle3 1Far From The Tree Press, LLC, 4657 York Rd., #952, Buckingham, PA, 18912, United States 2Department of Geology and Geography, Mount Holyoke College, South Hadley, Massachusetts, United States 3Swindon, England *Correspondence: [email protected]; Tel.: 267-337-7545 Abstract Analysis of plesiosaur swim dynamics by means Further study attempted to justify the use of all four flippers of a digital 3D armature (wireframe “skeleton”) of a simultaneously via the use of paddle-generated vortices, pliosauromorph (“Ava”) demonstrates that: 1, plesiosaurs which require specific timing to achieve optimal additional used all four flippers for primary propulsion; 2, plesiosaurs thrust. These attempts have largely relied on anatomical utilized all four flippers simultaneously; 3, respective pairs studies of strata-compressed plesiosaur skeletons, and/or of flippers of Plesiosauridae, front and rear, traveled through preconceived notions as pertains to the paddles’ inherent distinctive, separate planes of motion, and; 4, the ability to ranges of motion [8, 10-12]. What has not been considered utilize all four paddles simultaneously allowed these largely are the opposing angles of the pectoral and pelvic girdles, predatory marine reptiles to achieve a significant increase in which strongly indicate varied-yet-complementing relations acceleration and speed, which, in turn, contributed to their between the front and rear sets of paddles, both in repose and sustained dominance during the Mesozoic. -
THE GENERA of REPTILES. By
T he Genera of Re pt il e s. By BARON FRANCIS NOPCSA (Budapest). (Eingelangt am 11. Mai 1927.) Among all the Paleontologists living none has dealt with the recent and fossil reptiles with a wider grasp than Prof. L. D o l l o and at his anniversary it seems quite appropriate to review their whole array. The classification used in the following enumeration of all genera of reptiles is much the same as in my hook „Die Familien der Reptilien“; at this instance however an effort has been made to give a precise definition of every systematic unit. Alteration of the classification became necessary among the Dino- cephalians, the Nothosaurians, the Lacertilians (called here Sauroidea), the Coelurosauroidea and the Crocodilia. The new classification of the Sauroidea is intermediate between the classifications proposed by B o u l e n g e r and C a m p . Naturally as a rule only those fossil genera are referred to, that are more than simple catalogue numbers that facilitate the finding of the respective piece in a collection; indeterminable problematic genera of small interest have mostly been omitted. Extinct units and genera are marked in the lists with a cross ("j*). Difficulties of classification have been encountered in the Lacertilia and Ophidia, for in the new system the conventional families of recent Lizards and Serpents has been given subfamily rank and conse quently the different recent subfamilies had to be dropped. Instead of these subfamilies the minor units were separated by greek letters. — The tedious and complicated revision of the genera of recent Lizards and Snakes was done by Prof. -
Paleontology and Paleoenvironment of the Early Paleogene Pakistanian Benthic Foraminiferal Species of Haque - Suborders Miliolina and Lagenina
Earth Sciences Pakistan (ESP) 5(1) (2021) 42-47 Earth Sciences Pakistan (ESP) DOI: http://doi.org/10.26480/esp.01.2021.42.47 ISSN: 2521-2893 (Print) ISSN: 2521-2907 (Online) CODEN: ESPADC REVIEW ARTICLE PALEONTOLOGY AND PALEOENVIRONMENT OF THE EARLY PALEOGENE PAKISTANIAN BENTHIC FORAMINIFERAL SPECIES OF HAQUE - SUBORDERS MILIOLINA AND LAGENINA Haidar Salim Anan Emeritus Professor of stratigraphy and micropaleontology, Al-Azhar University-Gaza, Palestine. *Corresponding Author Email: [email protected] This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ARTICLE DETAILS ABSTRACT Article History: Thirteen Early Paleogene Pakistanian smaller Miliolid and eight Lagenid benthic foraminiferal species and Received 15 April 2021 subspecies from the Ranikot and Laki Formations of the Nammal Gorge, Salt and Sor Ranges, Punjab of Accepted 20 May 2021 Northern Pakistan have been studied. The modern taxonomic consideration and systematic description of Available online 0 June 2021 the species is based on the diagnostic morphology, and provides a list of synonyms, short remarks about 9 morphological features of the taxa and some annotations about taxa with problematic generic status. Two species of them belong to the genus Spiroloculina(haquei, pakistanica), four of Quinqueloculina (inflata, pseudosimplex, pseudovata, ranikotensis), two of Triloculina (psudoenoplostoma, sarahae), two of Agglutinella (reinemundi, sori) and three of Dentostomina (ammobicarinata, ammoirregularis, gapperi). One species of the Lagenid belongs to the genus Frondicularia (nammalensis), one of Lenticulina (reussi), one subspecies of Palmula (woodi nammalensis), one of Astacolus (vomeriformis), one of Vaginulinopsis (nammalensis), one of Lagena (reticulatostriata), one of Galawayella (nammalensis) and one of Parafissurina (pakistanica). -
A Description and Phylogenetic Relationship of a Polycotylid Plesiosaur (Reptilia: Sauropterygia) from the Upper Cretaceous (Turonian) of Goulmima, Morocco
A description and phylogenetic relationship of a polycotylid plesiosaur (Reptilia: Sauropterygia) from the Upper Cretaceous (Turonian) of Goulmima, Morocco Master thesis by Patrick Ronander 2007 Contents Contents .................................................................................................................................................................... 2 Abstract ..................................................................................................................................................................... 4 Introduction ............................................................................................................................................................ 4 Geological setting ............................................................................................................................................. 5 Material and methods ......................................................................................................................................... 6 Cladistic analysis and ordination ............................................................................................................... 8 Skulls ..................................................................................................................................................................... 8 PMO 201.956 ................................................................................................................................................. 8 Comparative material ...............................................................................................................................