To Err Is Human, but Smaller Funds Can Succeed by Mitigating Cognitive Bias

Total Page:16

File Type:pdf, Size:1020Kb

To Err Is Human, but Smaller Funds Can Succeed by Mitigating Cognitive Bias FEATURE | SMALLER FUNDS CAN SUCCEED BY MITIGATING COGNITIVE BIAS To Err Is Human, but Smaller Funds Can Succeed by Mitigating Cognitive Bias By Bruce Curwood, CIMA®, CFA® he evolution of investment manage­ 2. 2000–2008: Acknowledgement, where Diversification meant simply expanding the ment has been a long and painful plan sponsors discovered the real portfolio beyond domestic markets into T experience for many institutional meaning of risk. less­correlated foreign equities and return plan sponsors. It’s been trial by fire and 3. Post­2009: Action, which resulted in a was a simple function of increasing the risk learning important lessons the hard way, risk revolution. (more equity, increased leverage, greater generally from past mistakes. However, foreign currency exposure, etc.). After all, “risk” doesn’t have to be a four­letter word Before 2000, modern portfolio theory, history seemed to show that equities and (!@#$). In fact, in case you haven’t noticed, which was developed in the 1950s and excessive risk taking outperformed over the there is currently a revolution going on 1960s, was firmly entrenched in academia long term. In short, the crux of the problem in our industry. Most mega funds (those but not as well understood by practitioners, was the inequitable amount of time and well­governed funds in excess of $10 billion whose focus was largely on optimizing effort that investors spent on return over under management) already have moved return. The efficient market hypothesis pre­ risk, and that correlation and causality were to a more comprehensive risk management vailed along with the rationality of man, supposedly closely linked. strategy, also known as enterprise risk grounded in sound economics. The tools management (ERM), with very positive within the investment industry were some­ The wake­up call came during 2000–2008, results. Will smaller funds be able to over­ what basic. The personal computer was just when returns mean­reverted to their his­ come the governance gap (fewer resources, coming into vogue, and variance, standard torical average and investment funds shud­ lack of scale, etc.) and cognitive biases to deviation, and correlation were the key dered under the weight of three disasters adopt these new risk­managed approaches? measures of risk. Most funds used asset­ in one decade: the “tech wreck,” the global Or will apathy, inertia, and herding prevail liability modeling and some Monte Carlo financial crisis (GFC), and the European such that smaller funds continue to invest theory in conducting their annual or tri­ debt crisis. As equities fell nearly 50 per­ as they have in the past, concerned more annual asset allocation exercises. Sponsors cent during the GFC and most assets with with asset returns than meeting liabilities focused on their assets (not their liabilities), any credit exposure were also negatively or their primary goal? Risk management and the spotlight centered on the average impacted, investors had few places to hide is now firmly ensconced in the recent forecasted return rather than the full range to avoid the market downdraft other than investment literature. But knowing the of possible outcomes, perhaps anticipating government bonds and gold. Normal stan­ right answer and implementing the best an occasional one­ or, at most, a two­stan­ dard deviation and correlation were fully approach are two very different things, so dard deviation temporary setback, in an exposed as unstable, inconsistent, and of this article will focus on overcoming inves­ ever­rising equity market. Tail events were limited value in a stressed environment. tor irrationality by mitigating cognitive largely ignored, with most additional effort Pension surplus in the United States fell bias. Keep in mind that theory and practice concentrated on adding value through from 130 percent in 2000 to less than seldom align, and viewpoints vary at any active management, and tracking error 85 percent in 2008, and endowments gave one time about the best approach, resulting denoted the main measure of active risk. back most or all of their cumulative gains. in leads and lags in behavior. Capital markets were nevertheless favorable Investment results were similar around the and equities well­rewarded throughout this world. In fairness, after the first calamity An Historical Perspective on Risk timeframe, with only brief downturns. You some funds tried to diversify into alterna­ Risk management has evolved through often saw articles with titles like “Why Not tives (hedge funds, private equity, infra­ three noticeable periods since 1980: 100% Equities?” Academics and practi­ structure, and so on), but they forgot about tioners alike tended to treat investments as a the three deadly portfolio sins: leverage, 1. Pre­2000: Acceptance, where risk was science (e.g., physics, subject to natural law) illiquidity, and the lack of transparency in largely ignored. where quantitative analysis was king. many derivative products. These sins mag­ 32 INVESTMENTS&WEALTH MONITOR © 2014 Investment Management Consultants Association Inc. Reprinted with permission. All rights reserved. FEATURE | SMALLER FUNDS CAN SUCCEED BY MITIGATING COGNITIVE BIAS nified embedded market risks. Then, as our Since 2009 and the perfect investment becomes less stable), and co­variation economic and banking systems teetered, storm, a plethora of books on risk manage­ (trading flows matter), better explain the the majority recognized the true meaning ment and behavioral science have detailed complex dynamic world we live in and the of proper portfolio diversification and the the lessons learned. A variety of new and effect of irrational investors on the markets. benefits of risk management. In short, interesting investment solutions have been Therefore changing peoples’ views and out­ investors realized that the global economy generated (risk parity, dynamic asset alloca­ dated practices are a large part of the solu­ is a complex, tightly coupled, nonlinear tion, defensive equity, liability­responsive tion, which means behavioral science is system that is turbulent and nearly impos­ asset allocation, liability­driven investing, also an important prescriptive element. sible to predict, and that equities and vari­ goal­oriented investing, etc.) and more reli­ Larger institutional investment funds have ous risky assets could underperform for able tools have been utilized (e.g., condi­ seen the light and have taken action, and a prolonged periods. There are just too many tional Value­at­Risk, multi­factor analysis, risk­management revolution has taken variables to consider, including investors’ stress testing, scenario analysis, and cash hold, with corresponding changes in gover­ emotions. People are often irrational, so flow and liquidity reviews). Computer nance to limit cognitive error. the markets can be irrationally exuberant, capabilities advanced tremendously and leading to bubbles and crashes. There are investors were willing to admit to their foi­ Since 2008, fund fiduciaries have realized the business cycles, credit cycles, market bles and acknowledge the limitations of the limitations of past practices and the need to cycles, and yes, even cycles of market bub­ human mind. They realized that sometimes change their approaches to investments by bles (investor optimism becomes euphoria, they needed to be protected from them­ taking remedial action. Very little is straight­ followed by disillusionment, ending in selves. A renaissance in thought process forward in the world of economics because it panicked losses). Economics fundamen­ took hold regarding risk management and is often governed by emotion. Attempts to tally underlie market movements, but mar­ behavioral finance finally came of age. In make the profession more of a science than kets can be easily overwhelmed by fear and addition, many recognized that being more an art have floundered on the rocks of a con­ greed. We quickly understood that market forward­looking than historically focused stantly changing world that undermines eco­ risk was not stable over time and that in our investment approach was far more nomic models and makes forecasting hazard­ investors’ risk tolerances were subject to beneficial. Past deficiencies in risk manage­ ous. Many mega funds have adopted better, dramatic change, which exacerbated the ment and distorted incentive systems more prudent, risk­management and gover­ predicament. So trying to solve the risk clearly pointed to poor board oversight in nance processes and started to consider the riddle with a simple, two­dimensional the prior periods. Regulators entered the impact of human behavior on investment (mean­variance) optimization tool fray and saw risk policy as the primary duty decision making. This requires a new designed for normal markets wouldn’t of the board in any organization. The dom­ approach to risk management and gover­ work (see appendix 1). Risk­return inant theme in the literature, however, is nance. We’re not talking about structural tradeoffs were needed, along with an eval­ that good risk­management policies and tweaks. We are talking about the hard work uation of the multi­dimensionality of risk, effective fund governance are intertwined of building a better risk­management frame­ which required better tools and insights. and risk is a multi­dimensional process work and collaborative organizational culture From a macro perspective, Stultz (2009) requiring various diagnostics, both quanti­ to overcome cognitive bias. This is why we summed up
Recommended publications
  • Ambiguity Aversion in Qualitative Contexts: a Vignette Study
    Ambiguity aversion in qualitative contexts: A vignette study Joshua P. White Melbourne School of Psychological Sciences University of Melbourne Andrew Perfors Melbourne School of Psychological Sciences University of Melbourne Abstract Most studies of ambiguity aversion rely on experimental paradigms involv- ing contrived monetary bets. Thus, the extent to which ambiguity aversion is evident outside of such contexts is largely unknown, particularly in those contexts which cannot easily be reduced to numerical terms. The present work seeks to understand whether ambiguity aversion occurs in a variety of different qualitative domains, such as work, family, love, friendship, exercise, study and health. We presented participants with 24 vignettes and measured the degree to which they preferred risk to ambiguity. In a separate study we asked participants for their prior probability estimates about the likely outcomes in the ambiguous events. Ambiguity aversion was observed in the vast majority of vignettes, but at different magnitudes. It was predicted by gain/loss direction but not by the prior probability estimates (with the inter- esting exception of the classic Ellsberg ‘urn’ scenario). Our results suggest that ambiguity aversion occurs in a wide variety of qualitative contexts, but to different degrees, and may not be generally driven by unfavourable prior probability estimates of ambiguous events. Corresponding Author: Joshua P. White ([email protected]) AMBIGUITY AVERSION IN QUALITATIVE CONTEXTS: A VIGNETTE STUDY 2 Introduction The world is replete with the unknown, yet people generally prefer some types of ‘unknown’ to others. Here, an important distinction exists between risk and uncertainty. As defined by Knight (1921), risk is a measurable lack of certainty that can be represented by numerical probabilities (e.g., “there is a 50% chance that it will rain tomorrow”), while ambiguity is an unmeasurable lack of certainty (e.g., “there is an unknown probability that it will rain tomorrow”).
    [Show full text]
  • A Task-Based Taxonomy of Cognitive Biases for Information Visualization
    A Task-based Taxonomy of Cognitive Biases for Information Visualization Evanthia Dimara, Steven Franconeri, Catherine Plaisant, Anastasia Bezerianos, and Pierre Dragicevic Three kinds of limitations The Computer The Display 2 Three kinds of limitations The Computer The Display The Human 3 Three kinds of limitations: humans • Human vision ️ has limitations • Human reasoning 易 has limitations The Human 4 ️Perceptual bias Magnitude estimation 5 ️Perceptual bias Magnitude estimation Color perception 6 易 Cognitive bias Behaviors when humans consistently behave irrationally Pohl’s criteria distilled: • Are predictable and consistent • People are unaware they’re doing them • Are not misunderstandings 7 Ambiguity effect, Anchoring or focalism, Anthropocentric thinking, Anthropomorphism or personification, Attentional bias, Attribute substitution, Automation bias, Availability heuristic, Availability cascade, Backfire effect, Bandwagon effect, Base rate fallacy or Base rate neglect, Belief bias, Ben Franklin effect, Berkson's paradox, Bias blind spot, Choice-supportive bias, Clustering illusion, Compassion fade, Confirmation bias, Congruence bias, Conjunction fallacy, Conservatism (belief revision), Continued influence effect, Contrast effect, Courtesy bias, Curse of knowledge, Declinism, Decoy effect, Default effect, Denomination effect, Disposition effect, Distinction bias, Dread aversion, Dunning–Kruger effect, Duration neglect, Empathy gap, End-of-history illusion, Endowment effect, Exaggerated expectation, Experimenter's or expectation bias,
    [Show full text]
  • MITIGATING COGNITIVE BIASES in RISK IDENTIFICATION: Practitioner Checklist for the AEROSPACE SECTOR
    MITIGATING COGNITIVE BIASES IN RISK IDENTIFICATION: Practitioner Checklist for the AEROSPACE SECTOR Debra L. Emmons, Thomas A. Mazzuchi, Shahram Sarkani, and Curtis E. Larsen This research contributes an operational checklist for mitigating cogni- tive biases in the aerospace sector risk management process. The Risk Identification and Evaluation Bias Reduction Checklist includes steps for grounding the risk identification and evaluation activities in past project experiences through historical data, and emphasizes the importance of incorporating multiple methods and perspectives to guard against optimism and a singular project instantiation-focused view. The authors developed a survey to elicit subject matter expert judgment on the value of the check- list to support its use in government and industry as a risk management tool. The survey also provided insights on bias mitigation strategies and lessons learned. This checklist addresses the deficiency in the literature in providing operational steps for the practitioner to recognize and implement strategies for bias reduction in risk management in the aerospace sector. DOI: https://doi.org/10.22594/dau.16-770.25.01 Keywords: Risk Management, Optimism Bias, Planning Fallacy, Cognitive Bias Reduction Mitigating Cognitive Biases in Risk Identification http://www.dau.mil January 2018 This article and its accompanying research contribute an operational FIGURE 1. RESEARCH APPROACH Risk Identification and Evaluation Bias Reduction Checklist for cognitive bias mitigation in risk management for the aerospace sector. The checklist Cognitive Biases & Bias described herein offers a practical and implementable project management Enabling framework to help reduce biases in the aerospace sector and redress the Conditions cognitive limitations in the risk identification and analysis process.
    [Show full text]
  • A Neural Network Framework for Cognitive Bias
    fpsyg-09-01561 August 31, 2018 Time: 17:34 # 1 HYPOTHESIS AND THEORY published: 03 September 2018 doi: 10.3389/fpsyg.2018.01561 A Neural Network Framework for Cognitive Bias Johan E. Korteling*, Anne-Marie Brouwer and Alexander Toet* TNO Human Factors, Soesterberg, Netherlands Human decision-making shows systematic simplifications and deviations from the tenets of rationality (‘heuristics’) that may lead to suboptimal decisional outcomes (‘cognitive biases’). There are currently three prevailing theoretical perspectives on the origin of heuristics and cognitive biases: a cognitive-psychological, an ecological and an evolutionary perspective. However, these perspectives are mainly descriptive and none of them provides an overall explanatory framework for the underlying mechanisms of cognitive biases. To enhance our understanding of cognitive heuristics and biases we propose a neural network framework for cognitive biases, which explains why our brain systematically tends to default to heuristic (‘Type 1’) decision making. We argue that many cognitive biases arise from intrinsic brain mechanisms that are fundamental for the working of biological neural networks. To substantiate our viewpoint, Edited by: we discern and explain four basic neural network principles: (1) Association, (2) Eldad Yechiam, Technion – Israel Institute Compatibility, (3) Retainment, and (4) Focus. These principles are inherent to (all) neural of Technology, Israel networks which were originally optimized to perform concrete biological, perceptual, Reviewed by: and motor functions. They form the basis for our inclinations to associate and combine Amos Schurr, (unrelated) information, to prioritize information that is compatible with our present Ben-Gurion University of the Negev, Israel state (such as knowledge, opinions, and expectations), to retain given information Edward J.
    [Show full text]
  • Communication Science to the Public
    David M. Berube North Carolina State University ▪ HOW WE COMMUNICATE. In The Age of American Unreason, Jacoby posited that it trickled down from the top, fueled by faux-populist politicians striving to make themselves sound approachable rather than smart. (Jacoby, 2008). EX: The average length of a sound bite by a presidential candidate in 1968 was 42.3 seconds. Two decades later, it was 9.8 seconds. Today, it’s just a touch over seven seconds and well on its way to being supplanted by 140/280- character Twitter bursts. ▪ DATA FRAMING. ▪ When asked if they truly believe what scientists tell them, NEW ANTI- only 36 percent of respondents said yes. Just 12 percent expressed strong confidence in the press to accurately INTELLECTUALISM: report scientific findings. ▪ ROLE OF THE PUBLIC. A study by two Princeton University researchers, Martin TRENDS Gilens and Benjamin Page, released Fall 2014, tracked 1,800 U.S. policy changes between 1981 and 2002, and compared the outcome with the expressed preferences of median- income Americans, the affluent, business interests and powerful lobbies. They concluded that average citizens “have little or no independent influence” on policy in the U.S., while the rich and their hired mouthpieces routinely get their way. “The majority does not rule,” they wrote. ▪ Anti-intellectualism and suspicion (trends). ▪ Trump world – outsiders/insiders. ▪ Erasing/re-writing history – damnatio memoriae. ▪ False news. ▪ Infoxication (CC) and infobesity. ▪ Aggregators and managed reality. ▪ Affirmation and confirmation bias. ▪ Negotiating reality. ▪ New tribalism is mostly ideational not political. ▪ Unspoken – guns, birth control, sexual harassment, race… “The amount of technical information is doubling every two years.
    [Show full text]
  • Safe-To-Fail Probe Has…
    Liz Keogh [email protected] If a project has no risks, don’t do it. @lunivore The Innovaon Cycle Spoilers Differentiators Commodities Build on Cynefin Complex Complicated sense, probe, analyze, sense, respond respond Obvious Chaotic sense, act, categorize, sense, respond respond With thanks to David Snowden and Cognitive Edge EsBmang Complexity 5. Nobody has ever done it before 4. Someone outside the org has done it before (probably a compeBtor) 3. Someone in the company has done it before 2. Someone in the team has done it before 1. We all know how to do it. Esmang Complexity 5 4 3 Analyze Probe (Break it down) (Try it out) 2 1 Fractal beauty Feature Scenario Goal Capability Story Feature Scenario Vision Story Goal Code Capability Feature Code Code Scenario Goal A Real ProjectWhoops, Don’t need forgot this… Can’t remember Feature what this Scenario was for… Goal Capability Story Feature Scenario Vision Story Goal Code Capability Feature Code Code Scenario Goal Oops, didn’t know about Look what I that… found! A Real ProjectWhoops, Don’t need forgot this… Can’t remember Um Feature what this Scenario was for… Goal Oh! Capability Hmm! Story FeatureOoh, look! Scenario Vision Story GoalThat’s Code funny! Capability Feature Code Er… Code Scenario Dammit! Oops! Oh F… InteresBng! Goal Sh..! Oops, didn’t know about Look what I that… found! We are uncovering be^er ways of developing so_ware by doing it Feature Scenario Goal Capability Story Feature Scenario Vision Story Goal Code Capability Feature Code Code Scenario Goal We’re discovering how to
    [Show full text]
  • Ilidigital Master Anton 2.Indd
    services are developed to be used by humans. Thus, understanding humans understanding Thus, humans. by used be to developed are services obvious than others but certainly not less complex. Most products bioengineering, and as shown in this magazine. Psychology mightbusiness world. beBe it more the comparison to relationships, game elements, or There are many non-business flieds which can betransfered to the COGNTIVE COGNTIVE is key to a succesfully develop a product orservice. is keytoasuccesfullydevelopproduct BIASES by ANTON KOGER The Power of Power The //PsychologistatILI.DIGITAL WE EDIT AND REINFORCE SOME WE DISCARD SPECIFICS TO WE REDUCE EVENTS AND LISTS WE STORE MEMORY DIFFERENTLY BASED WE NOTICE THINGS ALREADY PRIMED BIZARRE, FUNNY, OR VISUALLY WE NOTICE WHEN WE ARE DRAWN TO DETAILS THAT WE NOTICE FLAWS IN OTHERS WE FAVOR SIMPLE-LOOKING OPTIONS MEMORIES AFTER THE FACT FORM GENERALITIES TO THEIR KEY ELEMENTS ON HOW THEY WERE EXPERIENCED IN MEMORY OR REPEATED OFTEN STRIKING THINGS STICK OUT MORE SOMETHING HAS CHANGED CONFIRM OUR OWN EXISTING BELIEFS MORE EASILY THAN IN OURSELVES AND COMPLETE INFORMATION way we see situations but also the way we situationsbutalsotheway wesee way the biasesnotonlychange Furthermore, overload. cognitive avoid attention, ore situations, guide help todesign massively can This in. take people information of kind explainhowandwhat ofperception egory First,biasesinthecat andappraisal. ory, self,mem perception, into fourcategories: roughly bedivided Cognitive biasescan within thesesituations. forusers interaction andeasy in anatural situationswhichresults sible toimprove itpos and adaptingtothesebiasesmakes ingiven situations.Reacting ways certain act sively helpstounderstandwhypeople mas into consideration biases ing cognitive Tak humanbehavior. topredict likely less or andmore relevant illusionsare cognitive In each situation different every havior day.
    [Show full text]
  • Cognitive Biases in Software Engineering: a Systematic Mapping Study
    Cognitive Biases in Software Engineering: A Systematic Mapping Study Rahul Mohanani, Iflaah Salman, Burak Turhan, Member, IEEE, Pilar Rodriguez and Paul Ralph Abstract—One source of software project challenges and failures is the systematic errors introduced by human cognitive biases. Although extensively explored in cognitive psychology, investigations concerning cognitive biases have only recently gained popularity in software engineering research. This paper therefore systematically maps, aggregates and synthesizes the literature on cognitive biases in software engineering to generate a comprehensive body of knowledge, understand state of the art research and provide guidelines for future research and practise. Focusing on bias antecedents, effects and mitigation techniques, we identified 65 articles (published between 1990 and 2016), which investigate 37 cognitive biases. Despite strong and increasing interest, the results reveal a scarcity of research on mitigation techniques and poor theoretical foundations in understanding and interpreting cognitive biases. Although bias-related research has generated many new insights in the software engineering community, specific bias mitigation techniques are still needed for software professionals to overcome the deleterious effects of cognitive biases on their work. Index Terms—Antecedents of cognitive bias. cognitive bias. debiasing, effects of cognitive bias. software engineering, systematic mapping. 1 INTRODUCTION OGNITIVE biases are systematic deviations from op- knowledge. No analogous review of SE research exists. The timal reasoning [1], [2]. In other words, they are re- purpose of this study is therefore as follows: curring errors in thinking, or patterns of bad judgment Purpose: to review, summarize and synthesize the current observable in different people and contexts. A well-known state of software engineering research involving cognitive example is confirmation bias—the tendency to pay more at- biases.
    [Show full text]
  • When Do Employees Perceive Their Skills to Be Firm-Specific?
    r Academy of Management Journal 2016, Vol. 59, No. 3, 766–790. http://dx.doi.org/10.5465/amj.2014.0286 MICRO-FOUNDATIONS OF FIRM-SPECIFIC HUMAN CAPITAL: WHEN DO EMPLOYEES PERCEIVE THEIR SKILLS TO BE FIRM-SPECIFIC? JOSEPH RAFFIEE University of Southern California RUSSELL COFF University of Wisconsin-Madison Drawing on human capital theory, strategy scholars have emphasized firm-specific human capital as a source of sustained competitive advantage. In this study, we begin to unpack the micro-foundations of firm-specific human capital by theoretically and empirically exploring when employees perceive their skills to be firm-specific. We first develop theoretical arguments and hypotheses based on the extant strategy literature, which implicitly assumes information efficiency and unbiased perceptions of firm- specificity. We then relax these assumptions and develop alternative hypotheses rooted in the cognitive psychology literature, which highlights biases in human judg- ment. We test our hypotheses using two data sources from Korea and the United States. Surprisingly, our results support the hypotheses based on cognitive bias—a stark contrast to expectations embedded within the strategy literature. Specifically, we find organizational commitment and, to some extent, tenure are negatively related to employee perceptions of the firm-specificity. We also find that employer-provided on- the-job training is unrelated to perceived firm-specificity. These results suggest that firm-specific human capital, as perceived by employees, may drive behavior in ways unanticipated by existing theory—for example, with respect to investments in skills or turnover decisions. This, in turn, may challenge the assumed relationship between firm-specific human capital and sustained competitive advantage.
    [Show full text]
  • Infographic I.10
    The Digital Health Revolution: Leaving No One Behind The global AI in healthcare market is growing fast, with an expected increase from $4.9 billion in 2020 to $45.2 billion by 2026. There are new solutions introduced every day that address all areas: from clinical care and diagnosis, to remote patient monitoring to EHR support, and beyond. But, AI is still relatively new to the industry, and it can be difficult to determine which solutions can actually make a difference in care delivery and business operations. 59 Jan 2021 % of Americans believe returning Jan-June 2019 to pre-coronavirus life poses a risk to health and well being. 11 41 % % ...expect it will take at least 6 The pandemic has greatly increased the 65 months before things get number of US adults reporting depression % back to normal (updated April and/or anxiety.5 2021).4 Up to of consumers now interested in telehealth going forward. $250B 76 57% of providers view telehealth more of current US healthcare spend % favorably than they did before COVID-19.7 could potentially be virtualized.6 The dramatic increase in of Medicare primary care visits the conducted through 90% $3.5T telehealth has shown longevity, with rates in annual U.S. health expenditures are for people with chronic and mental health conditions. since April 2020 0.1 43.5 leveling off % % Most of these can be prevented by simple around 30%.8 lifestyle changes and regular health screenings9 Feb. 2020 Apr. 2020 OCCAM’S RAZOR • CONJUNCTION FALLACY • DELMORE EFFECT • LAW OF TRIVIALITY • COGNITIVE FLUENCY • BELIEF BIAS • INFORMATION BIAS Digital health ecosystems are transforming• AMBIGUITY BIAS • STATUS medicineQUO BIAS • SOCIAL COMPARISONfrom BIASa rea• DECOYctive EFFECT • REACTANCEdiscipline, • REVERSE PSYCHOLOGY • SYSTEM JUSTIFICATION • BACKFIRE EFFECT • ENDOWMENT EFFECT • PROCESSING DIFFICULTY EFFECT • PSEUDOCERTAINTY EFFECT • DISPOSITION becoming precise, preventive,EFFECT • ZERO-RISK personalized, BIAS • UNIT BIAS • IKEA EFFECT and • LOSS AVERSION participatory.
    [Show full text]
  • The Psychology of Competition: a Social Comparison Perspective
    Notre Dame Law School NDLScholarship Journal Articles Publications 11-2013 The Psychology of Competition: A Social Comparison Perspective Stephen M. Garcia Avishalom Tor Notre Dame Law School, [email protected] Tyrone M. Schiff Follow this and additional works at: https://scholarship.law.nd.edu/law_faculty_scholarship Part of the Behavior and Behavior Mechanisms Commons, and the Law and Society Commons Recommended Citation Stephen M. Garcia, Avishalom Tor & Tyrone M. Schiff, The Psychology of Competition: A Social Comparison Perspective, 8 Persp on Psych Sci 634 (2013). Available at: https://scholarship.law.nd.edu/law_faculty_scholarship/941 This Article is brought to you for free and open access by the Publications at NDLScholarship. It has been accepted for inclusion in Journal Articles by an authorized administrator of NDLScholarship. For more information, please contact [email protected]. PPSXXX10.1177/1745691613504114Garcia et al.Psychology of Competition 504114research-article2013 Perspectives on Psychological Science XX(X) 1 –17 The Psychology of Competition: © The Author(s) 2013 Reprints and permissions: sagepub.com/journalsPermissions.nav A Social Comparison Perspective DOI: 10.1177/1745691613504114 pps.sagepub.com Stephen M. Garcia1, Avishalom Tor2, and Tyrone M. Schiff1 1University of Michigan and 2University of Notre Dame Abstract Social comparison—the tendency to self-evaluate by comparing ourselves to others—is an important source of competitive behavior. We propose a new model that distinguishes between individual and situational factors that increase social comparison and thus lead to a range of competitive attitudes and behavior. Individual factors are those that vary from person to person: the relevance of the performance dimension, the similarity of rivals, and their relationship closeness to the individual, as well as the various individual differences variables relating to social comparison more generally.
    [Show full text]
  • John Collins, President, Forensic Foundations Group
    On Bias in Forensic Science National Commission on Forensic Science – May 12, 2014 56-year-old Vatsala Thakkar was a doctor in India but took a job as a convenience store cashier to help pay family expenses. She was stabbed to death outside her store trying to thwart a theft in November 2008. Bloody Footwear Impression Bloody Tire Impression What was the threat? 1. We failed to ask ourselves if this was a footwear impression. 2. The appearance of the impression combined with the investigator’s interpretation created prejudice. The accuracy of our analysis became threatened by our prejudice. Types of Cognitive Bias Available at: http://en.wikipedia.org/wiki/List_of_cognitive_biases | Accessed on April 14, 2014 Anchoring or focalism Hindsight bias Pseudocertainty effect Illusory superiority Levels-of-processing effect Attentional bias Hostile media effect Reactance Ingroup bias List-length effect Availability heuristic Hot-hand fallacy Reactive devaluation Just-world phenomenon Misinformation effect Availability cascade Hyperbolic discounting Recency illusion Moral luck Modality effect Backfire effect Identifiable victim effect Restraint bias Naive cynicism Mood-congruent memory bias Bandwagon effect Illusion of control Rhyme as reason effect Naïve realism Next-in-line effect Base rate fallacy or base rate neglect Illusion of validity Risk compensation / Peltzman effect Outgroup homogeneity bias Part-list cueing effect Belief bias Illusory correlation Selective perception Projection bias Peak-end rule Bias blind spot Impact bias Semmelweis
    [Show full text]