Testing Eccentricity Pumping Mechanisms to Model Eccentric Long-Period Sdb Binaries with MESA?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Utilization of Halo Orbit§ in Advanced Lunar Operation§
NASA TECHNICAL NOTE NASA TN 0-6365 VI *o M *o d a THE UTILIZATION OF HALO ORBIT§ IN ADVANCED LUNAR OPERATION§ by Robert W. Fmqcbar Godddrd Spctce Flight Center P Greenbelt, Md. 20771 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. JULY 1971 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TN D-6365 5. Report Date Jul;v 1971. 6. Performing Organization Code 8. Performing Organization Report No, G-1025 10. Work Unit No. Goddard Space Flight Center 11. Contract or Grant No. Greenbelt, Maryland 20 771 13. Type of Report and Period Covered 2. Sponsoring Agency Name and Address Technical Note J National Aeronautics and Space Administration Washington, D. C. 20546 14. Sponsoring Agency Code 5. Supplementary Notes 6. Abstract Flight mechanics and control problems associated with the stationing of space- craft in halo orbits about the translunar libration point are discussed in some detail. Practical procedures for the implementation of the control techniques are described, and it is shown that these procedures can be carried out with very small AV costs. The possibility of using a relay satellite in.a halo orbit to obtain a continuous com- munications link between the earth and the far side of the moon is also discussed. Several advantages of this type of lunar far-side data link over more conventional relay-satellite systems are cited. It is shown that, with a halo relay satellite, it would be possible to continuously control an unmanned lunar roving vehicle on the moon's far side. Backside tracking of lunar orbiters could also be realized. -
Appendix a Orbits
Appendix A Orbits As discussed in the Introduction, a good ¯rst approximation for satellite motion is obtained by assuming the spacecraft is a point mass or spherical body moving in the gravitational ¯eld of a spherical planet. This leads to the classical two-body problem. Since we use the term body to refer to a spacecraft of ¯nite size (as in rigid body), it may be more appropriate to call this the two-particle problem, but I will use the term two-body problem in its classical sense. The basic elements of orbital dynamics are captured in Kepler's three laws which he published in the 17th century. His laws were for the orbital motion of the planets about the Sun, but are also applicable to the motion of satellites about planets. The three laws are: 1. The orbit of each planet is an ellipse with the Sun at one focus. 2. The line joining the planet to the Sun sweeps out equal areas in equal times. 3. The square of the period of a planet is proportional to the cube of its mean distance to the sun. The ¯rst law applies to most spacecraft, but it is also possible for spacecraft to travel in parabolic and hyperbolic orbits, in which case the period is in¯nite and the 3rd law does not apply. However, the 2nd law applies to all two-body motion. Newton's 2nd law and his law of universal gravitation provide the tools for generalizing Kepler's laws to non-elliptical orbits, as well as for proving Kepler's laws. -
Elliptical Orbits
1 Ellipse-geometry 1.1 Parameterization • Functional characterization:(a: semi major axis, b ≤ a: semi minor axis) x2 y 2 b p + = 1 ⇐⇒ y(x) = · ± a2 − x2 (1) a b a • Parameterization in cartesian coordinates, which follows directly from Eq. (1): x a · cos t = with 0 ≤ t < 2π (2) y b · sin t – The origin (0, 0) is the center of the ellipse and the auxilliary circle with radius a. √ – The focal points are located at (±a · e, 0) with the eccentricity e = a2 − b2/a. • Parameterization in polar coordinates:(p: parameter, 0 ≤ < 1: eccentricity) p r(ϕ) = (3) 1 + e cos ϕ – The origin (0, 0) is the right focal point of the ellipse. – The major axis is given by 2a = r(0) − r(π), thus a = p/(1 − e2), the center is therefore at − pe/(1 − e2), 0. – ϕ = 0 corresponds to the periapsis (the point closest to the focal point; which is also called perigee/perihelion/periastron in case of an orbit around the Earth/sun/star). The relation between t and ϕ of the parameterizations in Eqs. (2) and (3) is the following: t r1 − e ϕ tan = · tan (4) 2 1 + e 2 1.2 Area of an elliptic sector As an ellipse is a circle with radius a scaled by a factor b/a in y-direction (Eq. 1), the area of an elliptic sector PFS (Fig. ??) is just this fraction of the area PFQ in the auxiliary circle. b t 2 1 APFS = · · πa − · ae · a sin t a 2π 2 (5) 1 = (t − e sin t) · a b 2 The area of the full ellipse (t = 2π) is then, of course, Aellipse = π a b (6) Figure 1: Ellipse and auxilliary circle. -
Habitability of Planets on Eccentric Orbits: Limits of the Mean Flux Approximation
A&A 591, A106 (2016) Astronomy DOI: 10.1051/0004-6361/201628073 & c ESO 2016 Astrophysics Habitability of planets on eccentric orbits: Limits of the mean flux approximation Emeline Bolmont1, Anne-Sophie Libert1, Jeremy Leconte2; 3; 4, and Franck Selsis5; 6 1 NaXys, Department of Mathematics, University of Namur, 8 Rempart de la Vierge, 5000 Namur, Belgium e-mail: [email protected] 2 Canadian Institute for Theoretical Astrophysics, 60st St George Street, University of Toronto, Toronto, ON, M5S3H8, Canada 3 Banting Fellow 4 Center for Planetary Sciences, Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada 5 Univ. Bordeaux, LAB, UMR 5804, 33270 Floirac, France 6 CNRS, LAB, UMR 5804, 33270 Floirac, France Received 4 January 2016 / Accepted 28 April 2016 ABSTRACT Unlike the Earth, which has a small orbital eccentricity, some exoplanets discovered in the insolation habitable zone (HZ) have high orbital eccentricities (e.g., up to an eccentricity of ∼0.97 for HD 20782 b). This raises the question of whether these planets have surface conditions favorable to liquid water. In order to assess the habitability of an eccentric planet, the mean flux approximation is often used. It states that a planet on an eccentric orbit is called habitable if it receives on average a flux compatible with the presence of surface liquid water. However, because the planets experience important insolation variations over one orbit and even spend some time outside the HZ for high eccentricities, the question of their habitability might not be as straightforward. We performed a set of simulations using the global climate model LMDZ to explore the limits of the mean flux approximation when varying the luminosity of the host star and the eccentricity of the planet. -
1961Apj. . .133. .6575 PHYSICAL and ORBITAL BEHAVIOR OF
.6575 PHYSICAL AND ORBITAL BEHAVIOR OF COMETS* .133. Roy E. Squires University of California, Davis, California, and the Aerojet-General Corporation, Sacramento, California 1961ApJ. AND DaVid B. Beard University of California, Davis, California Received August 11, I960; revised October 14, 1960 ABSTRACT As a comet approaches perihelion and the surface facing the sun is warmed, there is evaporation of the surface material in the solar direction The effect of this unidirectional rapid mass loss on the orbits of the parabolic comets has been investigated, and the resulting corrections to the observed aphelion distances, a, and eccentricities have been calculated. Comet surface temperature has been calculated as a function of solar distance, and estimates have been made of the masses and radii of cometary nuclei. It was found that parabolic comets with perihelia of 1 a u. may experience an apparent shift in 1/a of as much as +0.0005 au-1 and that the apparent shift in 1/a is positive for every comet, thereby increas- ing the apparent orbital eccentricity over the true eccentricity in all cases. For a comet with a perihelion of 1 a u , the correction to the observed eccentricity may be as much as —0.0005. The comet surface tem- perature at 1 a.u. is roughly 180° K, and representative values for the masses and radii of cometary nuclei are 6 X 10" gm and 300 meters. I. INTRODUCTION Since most comets are observed to move in nearly parabolic orbits, questions concern- ing their origin and whether or not they are permanent members of the solar system are not clearly resolved. -
Orbital Stability Zones About Asteroids
ICARUS 92, 118-131 (1991) Orbital Stability Zones about Asteroids DOUGLAS P. HAMILTON AND JOSEPH A. BURNS Cornell University, Ithaca, New York, 14853-6801 Received October 5, 1990; revised March 1, 1991 exploration program should be remedied when the Galileo We have numerically investigated a three-body problem con- spacecraft, launched in October 1989, encounters the as- sisting of the Sun, an asteroid, and an infinitesimal particle initially teroid 951 Gaspra on October 29, 1991. It is expected placed about the asteroid. We assume that the asteroid has the that the asteroid's surroundings will be almost devoid of following properties: a circular heliocentric orbit at R -- 2.55 AU, material and therefore benign since, in the analogous case an asteroid/Sun mass ratio of/~ -- 5 x 10-12, and a spherical of the satellites of the giant planets, significant debris has shape with radius R A -- 100 km; these values are close to those of never been detected. The analogy is imperfect, however, the minor planet 29 Amphitrite. In order to describe the zone in and so the possibility that interplanetary debris may be which circum-asteroidal debris could be stably trapped, we pay particular attention to the orbits of particles that are on the verge enhanced in the gravitational well of the asteroid must be of escape. We consider particles to be stable or trapped if they considered. If this is the case, the danger of collision with remain in the asteroid's vicinity for at least 5 asteroid orbits about orbiting debris may increase as the asteroid is approached. -
Orbital Inclination and Eccentricity Oscillations in Our Solar
Long term orbital inclination and eccentricity oscillations of the planets in our solar system Abstract The orbits of the planets in our solar system are not in the same plane, therefore natural torques stemming from Newton’s gravitational forces exist to pull them all back to the same plane. This causes the inclinations of the planet orbits to oscillate with potentially long periods and very small damping, because the friction in space is very small. Orbital inclination changes are known for some planets in terms of current rates of change, but the oscillation periods are not well published. They can however be predicted with proper dynamic simulations of the solar system. A three-dimensional dynamic simulation was developed for our solar system capable of handling 12 objects, where all objects affect all other objects. Each object was considered to be a point mass which proved to be an adequate approximation for this study. Initial orbital radii, eccentricities and speeds were set according to known values. The validity of the simulation was demonstrated in terms of short term characteristics such as sidereal periods of planets as well as long term characteristics such as the orbital inclination and eccentricity oscillation periods of Jupiter and Saturn. A significantly more accurate result, than given on approximate analytical grounds in a well-known solar system dynamics textbook, was found for the latter period. Empirical formulas were developed from the simulation results for both these periods for three-object solar type systems. They are very accurate for the Sun, Jupiter and Saturn as well as for some other comparable systems. -
Kepler's Equation—C.E. Mungan, Fall 2004 a Satellite Is Orbiting a Body
Kepler’s Equation—C.E. Mungan, Fall 2004 A satellite is orbiting a body on an ellipse. Denote the position of the satellite relative to the body by plane polar coordinates (r,) . Find the time t that it requires the satellite to move from periapsis (position of closest approach) to angular position . Express your answer in terms of the eccentricity e of the orbit and the period T for a full revolution. According to Kepler’s second law, the ratio of the shaded area A to the total area ab of the ellipse (with semi-major axis a and semi-minor axis b) is the respective ratio of transit times, A t = . (1) ab T But we can divide the shaded area into differential triangles, of base r and height rd , so that A = 1 r2d (2) 2 0 where the polar equation of a Keplerian orbit is c r = (3) 1+ ecos with c the semilatus rectum (distance vertically from the origin on the diagram above to the ellipse). It is not hard to show from the geometrical properties of an ellipse that b = a 1 e2 and c = a(1 e2 ) . (4) Substituting (3) into (2), and then (2) and (4) into (1) gives T (1 e2 )3/2 t = M where M d . (5) 2 2 0 (1 + ecos) In the literature, M is called the mean anomaly. This is an integral solution to the problem. It turns out however that this integral can be evaluated analytically using the following clever change of variables, e + cos cos E = . -
Exoplanet Orbital Eccentricity: Multiplicity Relation and the Solar System
Exoplanet orbital eccentricity: Multiplicity relation and the Solar System Mary Anne Limbacha,b and Edwin L. Turnera,c,1 Departments of aAstrophysical Sciences and bMechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544; and cThe Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa 227-8568, Japan Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved November 11, 2014 (received for review April 10, 2014) The known population of exoplanets exhibits a much wider range of The dataset is discussed in the next section. We then show the orbital eccentricities than Solar System planets and has a much higher trend in eccentricity with multiplicity and comment on possible average eccentricity. These facts have been widely interpreted to sources of error and bias. Next we measure the mean, median, indicate that the Solar System is an atypical member of the overall and probability density distribution of eccentricities for various population of planetary systems. We report here on a strong anti- multiplicities and fit them to a simple power-law model for correlation of orbital eccentricity with multiplicity (number of planets multiplicities greater than two. This fit is used to make a rough in the system) among cataloged radial velocity (RV) systems. The estimate of the number of higher-multiplicity systems likely to be mean, median, and rough distribution of eccentricities of Solar System contaminating the one- and two-planet system samples due to as planets fits an extrapolation of this anticorrelation to the eight-planet yet undiscovered members under plausible, but far from certain, case rather precisely despite the fact that no more than two Solar assumptions. -
2. Orbital Mechanics MAE 342 2016
2/12/20 Orbital Mechanics Space System Design, MAE 342, Princeton University Robert Stengel Conic section orbits Equations of motion Momentum and energy Kepler’s Equation Position and velocity in orbit Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Orbits 101 Satellites Escape and Capture (Comets, Meteorites) 2 2 1 2/12/20 Two-Body Orbits are Conic Sections 3 3 Classical Orbital Elements Dimension and Time a : Semi-major axis e : Eccentricity t p : Time of perigee passage Orientation Ω :Longitude of the Ascending/Descending Node i : Inclination of the Orbital Plane ω: Argument of Perigee 4 4 2 2/12/20 Orientation of an Elliptical Orbit First Point of Aries 5 5 Orbits 102 (2-Body Problem) • e.g., – Sun and Earth or – Earth and Moon or – Earth and Satellite • Circular orbit: radius and velocity are constant • Low Earth orbit: 17,000 mph = 24,000 ft/s = 7.3 km/s • Super-circular velocities – Earth to Moon: 24,550 mph = 36,000 ft/s = 11.1 km/s – Escape: 25,000 mph = 36,600 ft/s = 11.3 km/s • Near escape velocity, small changes have huge influence on apogee 6 6 3 2/12/20 Newton’s 2nd Law § Particle of fixed mass (also called a point mass) acted upon by a force changes velocity with § acceleration proportional to and in direction of force § Inertial reference frame § Ratio of force to acceleration is the mass of the particle: F = m a d dv(t) ⎣⎡mv(t)⎦⎤ = m = ma(t) = F ⎡ ⎤ dt dt vx (t) ⎡ f ⎤ ⎢ ⎥ x ⎡ ⎤ d ⎢ ⎥ fx f ⎢ ⎥ m ⎢ vy (t) ⎥ = ⎢ y ⎥ F = fy = force vector dt -
Earth-Moon Libration Stationkeeping: Theory, Modeling, and Operations
IAA-AAS-DyCoSS1-05-10 EARTH-MOON LIBRATION STATIONKEEPING: THEORY, MODELING, AND OPERATIONS David C. Folta*, Mark Woodard * & Tom Pavlak§, Amanda Haapala§, Kathleen Howell‡ Abstract Collinear Earth-Moon libration points have emerged as locations with immediate applications. These libration point orbits are inherently unstable and must be controlled at a rapid frequency which constrains operations and maneuver locations. Stationkeeping is challenging due to short time scales of divergence, effects of large orbital eccentricity of the secondary body, and third-body perturbations. Using the Acceleration Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission orbit as our platform (hypothesis), we contrast and compare promising stationkeeping strategies including Optimal Continuation and Mode Analysis that achieved consistent and reasonable operational stationkeeping costs. Background on the fundamental structure and the dynamical models to achieve these demonstrated results are discussed along with their mathematical development. INTRODUCTION Earth-Moon collinear libration points have emerged as locations with immediate applications. To fully understand the selection of Earth-Moon (EM) libration orbit orientations and amplitudes as well as the inherent problems of stationkeeping, this paper offers the following: the originating theory of EM libration orbit evolution, the use of Poincaré maps to define and select orbit characteristics, the required modeling of the libration point orbits, the -
Synopsis of Euler's Paper E105
1 Synopsis of Euler’s paper E105 -- Memoire sur la plus grande equation des planetes (Memoir on the Maximum value of an Equation of the Planets) Compiled by Thomas J Osler and Jasen Andrew Scaramazza Mathematics Department Rowan University Glassboro, NJ 08028 [email protected] Preface The following summary of E 105 was constructed by abbreviating the collection of Notes. Thus, there is considerable repetition in these two items. We hope that the reader can profit by reading this synopsis before tackling Euler’s paper itself. I. Planetary Motion as viewed from the earth vs the sun ` Euler discusses the fact that planets observed from the earth exhibit a very irregular motion. In general, they move from west to east along the ecliptic. At times however, the motion slows to a stop and the planet even appears to reverse direction and move from east to west. We call this retrograde motion. After some time the planet stops again and resumes its west to east journey. However, if we observe the planet from the stand point of an observer on the sun, this retrograde motion will not occur, and only a west to east path of the planet is seen. II. The aphelion and the perihelion From the sun, (point O in figure 1) the planet (point P ) is seen to move on an elliptical orbit with the sun at one focus. When the planet is farthest from the sun, we say it is at the “aphelion” (point A ), and at the perihelion when it is closest. The time for the planet to move from aphelion to perihelion and back is called the period.