The Occurrence of the Endemic Tiger Beetle Cicindela (Ifasina) Waterhousei in Bopath Ella, Ratnapura

Total Page:16

File Type:pdf, Size:1020Kb

The Occurrence of the Endemic Tiger Beetle Cicindela (Ifasina) Waterhousei in Bopath Ella, Ratnapura J.Natn.Sci.Foundation Sri Lanka 2011 39 (2): 163-168 SHORT COMMUNICATION The occurrence of the endemic tiger beetle Cicindela (Ifasina) waterhousei in Bopath Ella, Ratnapura Chandima Dangalle 1* , Nirmalie Pallewatta 1 and Alfried Vogler 2 1 Department of Zoology, Faculty of Science, University of Colombo, Colombo 03. 2 Department of Entomology, The Natural History Museum, London SW7 5BD, United Kingdom. Revised: 04 January 2011 ; Accepted: 21 January 2011 Abstract: The occurrence of the endemic tiger beetle Cicindela species are found in the Oriental region of the world in (Ifasina) waterhousei from Bopath Ella, Ratnapura is recorded countries such as Malaysia, Indonesia, Japan and China for the first time. The study reveals a population of 276 beetles (Pearson, 1988). Fifty-six species have been recorded from the sandy bank habitat of Bopath Ella. A site description from Sri Lanka of which thirty-five species are said to be is given stating the abiotic environmental factors of climate and endemic to the island (Cassola & Pearson, 2000). soil. Morphology of the species is described using diagnostic features of the genus, and in comparison with reference specimens at the Department of National Museums, Colombo Cicindela (Ifasina) waterhousei Horn is endemic and the type specimen at the British Natural History Museum, to Sri Lanka and has been recorded along watercourses London. According to the findings of the study, at present, within dark, moist forests of Labugama (Colombo the species is recorded only from Bopath Ella and is absent District, Western Province), Avissawella (Colombo from its previously recorded locations at Labugama, Kitulgala, District, Western Province), Kitulgala (Kegalle District, Karawanella and Avissawella. The habitat conditions in Bopath Sabaragamuwa Province) and Karawanella (Kegalle Ella with shady, riverine areas, temperatures ranging from 32 District, Sabaragamuwa Province) (Naviaux, 1984; to 35 ºC and yellow brown sandy moist soil are considered as Acciavatti & Pearson, 1989). The subgenus Ifasina is the suitable for the occurrence of C. waterhousei . The presence largest with seven species in Sri Lanka, of which five of other tiger beetle species, Cicindela (Ifasina) willeyi and are endemic. The paper reports the occurrence of one of Cicindela (Ifasina) labioaenea , in the previously recorded the species; Cicindela waterhousei from a site previously locations of Cicindela waterhousei , that may compete for food, thermal resources, oviposition sites and larval resources, not recorded, and its absence from previously recorded is likely to have caused C. waterhousei to become locally locations including Labugama, Avissawella, Kitulgala displaced from its previous locations. and Karawanella. Keywords: Cicindela (Ifasina) waterhousei , conservation, METHODS AND MATERIALS displacement, environmental factors, habitat suitability. A country-wide study in Sri Lanka was carried out in INTRODUCTION Bopath Ella in 2003-2007 with regard to the habitat preferences and occurrence of tiger beetles. The study Tiger beetles (Coleoptera: Cicindelidae) are a group also included localities where the beetles have been of predatory insects that have a worldwide distribution recorded previously. Bopath Ella (6º48΄06N, 80º22΄04E) (Pearson, 1988). A total of 2,559 species have been is a well known waterfall located in the Ratnapura described globally from a range of habitats such as District in the Sabaragamuwa Province of Southwestern river edges, open beaches, sand dunes, forests and Sri Lanka (Figure 1). grasslands (Pearson & Cassola, 2005). Most species are habitat specialists being restricted to one or two habitat Six visits were made to four sections of the study types due to the requirements of both adults and larvae site for surveying adult tiger beetles. These sections are: (Barraclough et al ., 1999). The majority of tiger beetle Section A, which falls to a depth of 30 m; Section B, * Corresponding author ( [email protected] ) 164 Chandima Dangalle et al. which is about 150 m from section A; Section C, left Previous localities from where Cicindela waterhousei river bank along the Kuru Ganga, which is a tributary has been recorded, Labugama (sites near the Labugama of the Kalu Ganga and Section D, which is a wide right reservoir, river banks of Wak Oya and Heen Ela, Waga), river bank site in the Kuru Ganga. Section A, B, C and D Avissawella (river banks of Asvathu Oya and Ranwala were thoroughly observed and searched for the presence Ferry, Avissawella), Kitulgala (river banks of the Kelani of tiger beetles and the sections where beetles were River near Kitulgala) and Karawanella (river banks of found were subjected to detailed studies. Stretches of the Seethawaka River and the Maha Oya, Dehiowita) land of 100 – 150 m were selected in five sandy banks were also surveyed and subjected to detailed studies. of the sections from where beetles were examined for 3 The tiger beetle species occurring in these localities hours, between 11 a.m. to 2 p.m. on each day of the 6 d were recorded. The habitat variables of climate and soil, visits. Specific habitats and their immediate surroundings required by tiger beetles (Eusebi et al. , 1989; Morgan et were searched. Tiger beetles encountered were rapidly al. , 2000; Brust et al. , 2005) were measured and recorded counted using a tally counter and a sample was collected for all localities investigated using standard methods. using a standard insect net. The temperature, solar radiation, relative Taxonomic keys of the Cicindela of the Indian humidity and wind speed of the habitats were recorded subcontinent by Acciavatti & Pearson (1989) and using a portable integrated weather station (Health descriptions of Horn (1904) and Fowler (1912) were used EnviroMonitor, USA). to identify the specimens, and confirmed by comparisons with reference specimens at the Department of National Soil variables of the habitat such as the soil group Museums, Colombo and type specimen at the British based on the Soil Map of Sri Lanka; soil type based Natural History Museum, London. on the “soil textural triangle”; soil colour based on the Figure 1: Location of Bopath Ella, Ratnapura District June 2011 Journal of the National Science Foundation of Sri Lanka 39 (2) salinity meterwerealsomeasured. & Belavadi (1986) and soil salinity using a hand-held soil moisture based on the method used by Ganeshaiah thermometer; soil pH using a portable soil Munsell pH soil colour meter; chart; soil temperature using a soil Occurrence ofendemictigerbeetleatRatnapura Occurrence Journal oftheNational ScienceFoundationofSriLanka Table 1: Climate and soil parameters of present and past localities of Cicindela waterhousei (August 2003 - August 2004) Recorded Species Temp. Solar Relative Wind Soil Soil colour Soil Soil Soil pH Soil localities occurring (ºC) radiation humidity speed type temp. moisture salinity currently (w/m 2) (%) (ms -1 ) (ºC) (%) (ppt) Bopath Ella, 34.2 ± 105.4 ± 65.3 ± 0 ± 0 sand dark 31.5 ± 3.83 ± 6.1 ± 2.6 0 ± 0 39 Ratnapura C. waterhousei 2.49 12.92 6.85 yellowish 1.26 0.97 (2) (current) June 2011 brown Labugama 36.4 ± 195.6 ± 59.7 ± 0 ± 0 sand strong 33.1 ± 4.85 ± 5.9 ± 0.87 0 ± 0 (previous) C. labioaenea 1.65 16.67 3.16 brown 1.46 0.86 of dorsal and ventral body features surfaces, such elytral as maculae, body length; mandible length; two-way colour (SPSS ANOVA 13.0 package).Morphological waterhousei Cicindela of localities the of values parameter soil and climate The Avissawella 33.1 ± 214.1 ± 66.4 ± 1.2 ± sand yellowish 31.8 ± 3.20 ± 6.4 ± 1.4 0 ± 0 (previous) C. labioaenea 2.14 19.84 4.56 0.85 brown 1.93 1.06 Kitulgala 35.0 ± 178.0 ± 53.8 ± 1.34 ± sand dark 31.8 ± 5.12 ± 5.8 ± 1.3 0 ± 0 (previous) C. labioaenea 2.76 6.78 2.17 0.67 and brown 1.06 1.26 mud Karawanella 34.1 ± 232.6 ± 60.7 ± 0 ± 0 sand dark 30.6 ± 2.89 ± 6.6 ± 0.28 0 ± 0 using statistically compared were (previous) C. willeyi 1.47 16.15 3.79 yellowish 1.65 0.83 brown Significant differences (p < 0.05) were not found between the habitat parameters of the different localities. 165 166 Chandima Dangalle et al. Conspicuous eyes Large conical pronotum First ovate elytral spot Second ovate elytral spot Third circular elytral spot Figure 2: Cicindela ( Ifasina ) waterhousei adult (× 10) mandibles, labrum and legs; pattern of elytral markings; dot that was in line with the three spots); mandibles the shape of the labrum and the number of labral setae; brown in colour, left mandible 1.72 ± 0.38 mm in length distribution of setae and pits on body were recorded for (n = 15); labrum brown in colour and conical in shape identification and confirmation of the species. with 10 labral setae; white setae on ventral surface of body and legs; shallow blue-green pits on the basal half of RESULTS the dorsal surface of elytra; legs blue-green (Figure 2). Preliminary reconnaissance visits to the waterfall area C. waterhousei was not found in previously revealed that tiger beetles are absent in sections A, B recorded localities in Labugama, Avissawella, Kitulgala and C but present in exposed sandy banks in the shallow and Karawanella. Two other species of tiger beetles parts of section D. Here, 276 tiger beetles of the species were encountered in these locations. Cicindela (Ifasina) C. waterhousei were encountered on a sandy bank, 600 m 2 labioaenea was found at Heen Ela, Waga in Labugama; in extent and at 16.46 m elevation. This sandy bank was Asvathu Oya, Avissawella; Seethawaka River bank near situated away from the waterfall adjacent to a part of the Karawanella and Kelani River banks near Kitulgala. Kuru Ganga that flows slowly (0.5 ms -1 ). The vegetation Cicindela (Ifasina) willeyi was found at Maha Oya, in the immediate surroundings consisted of large trees Dehiowita in Karawanella.
Recommended publications
  • Northeastern Beach Tiger Beetle (Cicindela Dorsalis Dorsalis)
    Northeastern Beach Tiger Beetle (Cicindela dorsalis dorsalis) 5-Year Review: Summary and Evaluation u.s. Fish and Wildlife Service Virginia Field Office Gloucester, Virginia February 2009 5-YEAR REVIEW Species reviewed: Northeastern beach tiger beetle (Cicindela dorsalis dorsalis) TABLE OF CONTENTS 1.0 GENERAL INFORMATION ...................................................................................................... 1 1.1 Reviewers........................................................................................................................ 1 1.2 Methodology .................................................................................................................. 1 1.3 Background ..................................................................................................................... 1 2.0 REVIEW ANALYSIS 2.1 Application of 1996 Distinct Population Segment (DPS) Policy ................................... 2 2.2 Recovery Criteria ............................................................................................................ 2 2.3 Updated Information and Current Species Status ........................................................... 5 2.3.1 Biology and habitat .............................................................................................. 5 2.3.2 Five-factor analysis .............................................................................................. 10 2.4 Synthesis .........................................................................................................................13
    [Show full text]
  • Ants As Prey for the Endemic and Endangered Spanish Tiger Beetle Cephalota Dulcinea (Coleoptera: Carabidae) Carlo Polidori A*, Paula C
    Annales de la Société entomologique de France (N.S.), 2020 https://doi.org/10.1080/00379271.2020.1791252 Ants as prey for the endemic and endangered Spanish tiger beetle Cephalota dulcinea (Coleoptera: Carabidae) Carlo Polidori a*, Paula C. Rodríguez-Flores b,c & Mario García-París b aInstituto de Ciencias Ambientales (ICAM), Universidad de Castilla-La Mancha, Avenida Carlos III, S/n, 45071, Toledo, Spain; bDepartamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, 28006, Spain; cCentre d’Estudis Avançats de Blanes (CEAB-CSIC), C. d’Accés Cala Sant Francesc, 14, 17300, Blanes, Spain (Accepté le 29 juin 2020) Summary. Among the insects inhabiting endorheic, temporary and highly saline small lakes of central Spain during dry periods, tiger beetles (Coleoptera: Carabidae: Cicindelinae) form particularly rich assemblages including unique endemic species. Cephalota dulcinea López, De la Rosa & Baena, 2006 is an endemic, regionally protected species that occurs only in saline marshes in Castilla-La Mancha (Central Spain). Here, we report that C. dulcinea suffers potential risks associated with counter-attacks by ants (Hymenoptera: Formicidae), while using them as prey at one of these marshes. Through mark–recapture methods, we estimated the population size of C. dulcinea at the study marsh as of 1352 individuals, with a sex ratio slightly biased towards males. Evident signs of ant defensive attack by the seed-harvesting ant Messor barbarus (Forel, 1905) were detected in 14% of marked individuals, sometimes with cut ant heads still grasped with their mandibles to the beetle body parts. Ant injuries have been more frequently recorded at the end of adult C.
    [Show full text]
  • Federal Register / Vol. 61, No. 42 / Friday, March 1, 1996 / Proposed
    8014 Federal Register / Vol. 61, No. 42 / Friday, March 1, 1996 / Proposed Rules under CERCLA are appropriate at this FOR FURTHER INFORMATION CONTACT: is currently known only from Santa time. Consequently, U.S EPA proposed Leslie K. Shapiro, Mass Media Bureau, Cruz County, California. The five known to delete the site from the NPL. (202) 418±2180. populations may be threatened by the EPA, with concurrence from the State SUPPLEMENTARY INFORMATION: This is a following factors: habitat fragmentation of Minnesota, has determined that all synopsis of the Commission's Notice of and destruction due to urban appropriate Fund-financed responses Proposed Rule Making, MM Docket No. development, habitat degradation due to under CERCLA at the Kummer Sanitary 96±19, adopted February 6, 1996, and invasion of non-native vegetation, and Landfill Superfund Site have been released February 20, 1996. The full text vulnerability to stochastic local completed, and no further CERCLA of this Commission decision is available extirpations. However, the Service finds response is appropriate in order to for inspection and copying during that the information presented in the provide protection of human health and normal business hours in the FCC petition, in addition to information in the environment. Therefore, EPA Reference Center (Room 239), 1919 M the Service's files, does not provide proposes to delete the site from the NPL. Street, NW., Washington, DC. The conclusive data on biological vulnerability and threats to the species Dated: February 20, 1996. complete text of this decision may also be purchased from the Commission's and/or its habitat. Available information Valdas V.
    [Show full text]
  • Proposed Endangered Status for the Ohlone Tiger Beetle
    6952 Federal Register / Vol. 65, No. 29 / Friday, February 11, 2000 / Proposed Rules For further information, please confirmation from the system that we oviposition (egg laying) (Pearson 1988). contact: Chris Murphy, Satellite Policy have received your e-mail message, It is not known at this time how many Branch, (202) 418±2373, or Howard contact us directly by calling our eggs the Ohlone tiger beetle female lays, Griboff, Satellite Policy Branch, at (202) Carlsbad Fish and Wildlife Office at but other species of Cicindela are 418±0657. phone number 805/644±1766. known to lay between 1 and 14 eggs per (3) You may hand-deliver comments female (mean range 3.7 to 7.7), List of Subjects in 47 CFR Part 25 to our Ventura Fish and Wildlife Office, depending on the species (Kaulbars and Satellites. 2493 Portola Road, Suite B, Ventura, Freitag 1993). After the larva emerges Federal Communications Commission. California 93003. from the egg and becomes hardened, it Anna M. Gomez, FOR FURTHER INFORMATION CONTACT: enlarges the chamber that contained the Deputy Chief, International Bureau. Colleen Sculley, invertebrate biologist, egg into a tunnel (Pearson 1988). Before pupation (transformation process from [FR Doc. 00±3332 Filed 2±10±00; 8:45 am] Ventura Fish and Wildlife Office, at the larva to adult), the third instar larva will BILLING CODE 6712±01±P above address (telephone 805/644±1766; facsimile 805/644±3958). plug the burrow entrance and dig a SUPPLEMENTARY INFORMATION: chamber for pupation. After pupation, the adult tiger beetle will dig out of the DEPARTMENT OF THE INTERIOR Background soil and emerge.
    [Show full text]
  • Recovery Plan for Northeastern Beach Tiger Beetle
    Northeastern Beach Tiger Beetle, (Cincindela dorsalisdorsal/s Say) t1rtmow RECOVERY PLAN 4.- U.S. Fish and Wildlife Service SFAVI ? Hadley, Massachusetts September 1994 C'AZ7 r4S \01\ Cover illustration by Katherine Brown-Wing copyright 1993 NORTHEASTERN BEACH TIGER BEETLE (Cicindela dorsalis dorsalis Say) RECOVERY PLAN Prepared by: James M. Hill and C. Barry Knisley Department of Biology Randolph-Macon College Ashland, Virginia in cooperation with the Chesapeake Bay Field Office U.S. Fish and Wildlife Service and members of the Tiger Beetle Recovery Planning-Group Approved: . ILL Regi Director, Region Five U.S. Fish and Wildlife Service Date: 9 29- ~' TIGER BEETLE RECOVERY PLANNING GROUP James Hill Philip Nothnagle Route 1 Box 2746A RFD 1, Box 459 Reedville, VA Windsor, VT 05089 Judy Jacobs Steve Roble U.S. Fish and Wildlife Service VA Natural Heritage Program Annapolis Field Office Main Street Station 177 Admiral Cochrane Drive 1500 East Main Street Annapolis, MD 21401 Richmond, VA 23219 C. Barry Knisley Tim Simmons Biology Department The Nature Conservancy Massachusetts Randolph-Macon College Field Office Ashland, VA 23005 79 Milk Street Suite 300 Boston, MA 02109 Laurie MacIvor The Nature Conservancy Washington Monument State Park 6620 Monument Road Middletown, MD 21769 EXECUTIVE SUMMARY NORTHEASTERN BEACH TIGER BEETLE RECOVERY PLAN Current Status: This tiger beetle occurred historically "in great swarms" on beaches along the Atlantic Coast, from Cape Cod to central New Jersey, and along Chesapeake Bay beaches in Maryland and Virginia. Currently, only two small populations remain on the Atlantic Coast. The subspecies occurs at over 50 sites within the Chesapeake Bay region.
    [Show full text]
  • The Tiger Beetles (Coleoptera, Cicindelidae) of the Southern Levant and Adjacent Territories: from Cybertaxonomy to Conservation Biology
    A peer-reviewed open-access journal ZooKeys 734: 43–103 The(2018) tiger beetles( Coleoptera, Cicindelidae) of the southern Levant... 43 doi: 10.3897/zookeys.734.21989 MONOGRAPH http://zookeys.pensoft.net Launched to accelerate biodiversity research The tiger beetles (Coleoptera, Cicindelidae) of the southern Levant and adjacent territories: from cybertaxonomy to conservation biology Thorsten Assmann1, Estève Boutaud1, Jörn Buse2, Jörg Gebert3, Claudia Drees4,5, Ariel-Leib-Leonid Friedman4, Fares Khoury6, Tamar Marcus1, Eylon Orbach7, Ittai Renan4, Constantin Schmidt8, Pascale Zumstein1 1 Institute of Ecology, Leuphana University Lüneburg, Universitätsallee 1, D-21335 Lüneburg, Germany 2 Ecosystem Monitoring, Research and Wildlife Conservation (SB 23 Invertebrates and Biodiversity), Black Forest National Park, Kniebisstraße 67, D-72250 Freudenstadt, Germany 3 Karl-Liebknecht-Straße 73, D-01109 Dresden. Germany 4 Steinhardt Museum of Natural History, Tel Aviv University, Ramat-Aviv, Tel Aviv, IL-69978, Israel 5 Biocentre Grindel, Universität Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany 6 Department of Biology and Biotechnology, American University of Madaba, P.O.Box 2882, Amman, JO-11821, Jordan 7 Remez St. 49, IL-36044 Qiryat Tiv’on, Israel 8 Deichstr. 13, D-21354 Bleckede, Germany Corresponding author: Thorsten Assmann ([email protected]) Academic editor: B. Guéorguiev | Received 1 November 2017 | Accepted 15 January 2018 | Published 5 February 2018 http://zoobank.org/7C3C687B-64BB-42A5-B9E4-EC588BCD52D5 Citation: Assmann T, Boutaud E, Buse J, Gebert J, Drees C, Friedman A-L-L, Khoury F, Marcus T, Orbach E, Renan I, Schmidt C, Zumstein P (2018) The tiger beetles (Coleoptera, Cicindelidae) of the southern Levant and adjacent territories: from cybertaxonomy to conservation biology.
    [Show full text]
  • Beetle (Cicindela Albissima)
    AMENDMENT TO THE 2009 CONSERVATION AGREEMENT AND STRATEGY FOR THE CORAL PINK SAND DUNES TIGER BEETLE (CICINDELA ALBISSIMA) March 2013 Prepared by the Conservation Committee for the Coral Pink Sand Dunes Tiger Beetle BACKGROUND Initially formalized in 1997 (Conservation Committee 1997, entire), and revised in 2009 (Conservation Committee 2009, entire) , the Conservation Agreement for the Coral Pink Sand Dunes Tiger Beetle (CCA) is a partnership for the development and implementation of conservation measures to protect the tiger beetle and its habitat. The purpose of the partnership is to ensure the long-term persistence of the Coral Pink Sand Dunes tiger beetle within its historic range and provide a framework for future conservation efforts. The Utah Department of Natural Resources, Division of Parks and Recreation, Bureau of Land Management (BLM), U.S. Fish and Wildlife Service (USFWS), and Kane County, Utah, are signatories to these agreements and have implemented conservation actions to benefit the Coral Pink Sand Dunes (CPSD) tiger beetle and its habitat, monitored their effectiveness, and adapted strategies as new information became available. Among other actions, coordination under the CCA resulted in the establishment of two Conservation Areas that protect the Coral Pink Sand Dunes tiger beetle from off-road vehicle (ORV) use—Conservation Areas A and B (77 FR 60208). This amendment to the 2009 CCA outlines several new conservation actions that will be enacted to address the threats that were identified in the USFWS October 2, 2012 proposed rule (77 FR 60208). This amendment evaluated the most recent tiger beetle survey information (Knisley and Gowan 2013) and concluded that modifications to the boundaries of the Conservation Areas are needed to ensure continued protection of the tiger beetle from ongoing threats (see below description of threats).
    [Show full text]
  • Patterns of Rdna Chromosomal Localization in Palearctic Cephalota and Cylindera (Coleoptera: Carabidae: Cicindelini) with Different Numbers of X-Chromosomes
    COMPARATIVE A peer-reviewed open-access journal CompCytoGen 5(1): 47–59 Patterns(2011) of rDNA chromosomal localization in Cicindelini 47 doi: 10.3897/compcytogen.v5i1.962 RESEARCH ARTICLE Cytogenetics www.pensoft.net/journals/compcytogen International Journal of Plant & Animal Cytogenetic, Karyosystematics, and Molecular Systematics Patterns of rDNA chromosomal localization in Palearctic Cephalota and Cylindera (Coleoptera: Carabidae: Cicindelini) with different numbers of X-chromosomes Sonia J. R. Proença1, Artur R. M. Serrano1, José Serrano2, José Galián2 1 Centro de Biologia Ambiental /Departamento de Biologia Animal/, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2 - 3º Piso, 1700 Lisboa, Portugal 2 Departamento de Zoología y Antropología Física, Campus de Espinardo, Universidad de Murcia, 30100 Murcia , Spain Corresponding author: José Galián ([email protected]) Academic editor: Robert Angus | Received 27 January 2011 | Accepted 15 March 2011 | Published 5 May 2011 Citation: Proença SJR, Serrano ARM, Serrano J, Galián J (2011) Patterns of rDNA chromosomal localization in Palearctic Cephalota and Cylindera (Coleoptera: Carabidae: Cicindelini) with different numbers of X-chromosomes. Comparative Cytogenetics 5(1): 47–59. doi: 10.3897/compcytogen.v5i1.962 Abstract The ribosomal clusters of six Paleartic taxa belonging to the tiger beetle genera Cephalota Dokhtourow, 1883 and Cylindera Westwood, 1831, with multiple sex chromosomes (XXY, XXXY and XXXXY) have been localised on mitotic and meiotic cells by fluorescence in situ hybridization (FISH), using a PCR- amplified 18S rDNA fragment as a probe. Four patterns of rDNA localization in these tiger beetles were found: 1. Two clusters located in one autosomal pair; 2. Two clusters located in one autosomal pair and one in an X chromosome; 3.
    [Show full text]
  • This Work Is Licensed Under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License
    This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. THE TIGER BEETLES OF ALBERTA (COLEOPTERA: CARABIDAE, CICINDELINI)' Gerald J. Hilchie Department of Entomology University of Alberta Edmonton, Alberta T6G 2E3. Quaestiones Entomologicae 21:319-347 1985 ABSTRACT In Alberta there are 19 species of tiger beetles {Cicindela). These are found in a wide variety of habitats from sand dunes and riverbanks to construction sites. Each species has a unique distribution resulting from complex interactions of adult site selection, life history, competition, predation and historical factors. Post-pleistocene dispersal of tiger beetles into Alberta came predominantly from the south with a few species entering Alberta from the north and west. INTRODUCTION Wallis (1961) recognized 26 species of Cicindela in Canada, of which 19 occur in Alberta. Most species of tiger beetle in North America are polytypic but, in Alberta most are represented by a single subspecies. Two species are represented each by two subspecies and two others hybridize and might better be described as a single species with distinct subspecies. When a single subspecies is present in the province morphs normally attributed to other subspecies may also be present, in which case the most common morph (over 80% of a population) is used for subspecies designation. Tiger beetles have always been popular with collectors. Bright colours and quick flight make these beetles a sporting and delightful challenge to collect.
    [Show full text]
  • Population Size and Mobility of Cicindela Maritima Dejean, 1822 (Coleoptera: Carabidae) 1-6 ©Gesellschaft Für Angewandte Carabidologie E.V
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Angewandte Carabidologie Jahr/Year: 2012 Band/Volume: 9 Autor(en)/Author(s): Irmler Ulrich Artikel/Article: Population size and mobility of Cicindela maritima Dejean, 1822 (Coleoptera: Carabidae) 1-6 ©Gesellschaft für Angewandte Carabidologie e.V. download www.laufkaefer.de Population size and mobility of Cicindela maritima Dejean, 1822 (Coleoptera: Carabidae)1 Ulrich Irmler 1 Dedicated to Prof. Gerd Müller-Motzfeld (†) in remembrance of many interesting talks and excursions Abstract: In 2008, 2009, and 2010 the Dune Tiger Beetle (Cicindela maritima Dejean, 1822) was inve- stigated on a 110 m long beach north of the city of List on the barrier island of Sylt, northern Germany. Population size was determined using the mark-and-recatch method. Ten marked specimens were observed over periods of 0.5 to 1.5 hours and travel distances measured. Site population size was calculated to be 17 specimens in 2008, 12 – 13 in 2009, and 26 in 2010. Daily activity observations indicated maximum diurnal activity at 11:30 hrs CEST (12:30 hrs CET). Mean travel distance per hour was 125 m, mean range covered per day was 54 m. It can be derived from these data that a population of 100 specimens requires a one-kilometer stretch of beach and dune environment that is closed to public access. 1 Introduction shape of the white spots of the elytra (Fig. 1). In Ger- many, C. maritima is rarely found outside a narrow The Dune tiger Beetle (Cicindela maritima Dejean, coastal strip of sandy beaches and primary dunes.
    [Show full text]
  • Tiger Beetle Fauna (Coleoptera: Carabidae, Cicindelinae) of Morocco: Distribution, Phenology and List of Taxa
    © Entomologica Fennica. 6 October 2015 Tiger beetle fauna (Coleoptera: Carabidae, Cicindelinae) of Morocco: distribution, phenology and list of taxa Radomir Jasku³a, Tomasz Rewicz & Kajetan Kwiatkowski Jasku³a, R., Rewicz, T. & Kwiatkowski, K. 2015: Tiger beetle fauna (Coleoptera: Carabidae, Cicindelinae) of Morocco: distribution, phenology and list of taxa. Entomol. Fennica 26: 132155. The diversity and distribution of Cicindelinae in Morocco, including new unpub- lished data, is summarized and discussed. In total 17 species are reported from the country. Cicindela campestris campestris is excluded from the Moroccan fauna while the occurrence of Myriochila mirei is doubtful and should be confirmed by new data. The area adjacent to the Mediterranean Sea and Atlantic Ocean coast- lines holds the highest species diversity, while mountainous regions are charac- terized by lower diversity but also by high level of species endemism. Grouped on the basis of their chorotypes, Moroccan Cicindelinae fall into six different groups: West Mediterranean (44% of Cicindelinae species), Maghreb endemics (22%), Mediterranean (11%), Saharian (11%), Mediterranean-Westturanian (6%) and Afrotropico-Indo-Mediterranean (6%). According to their phenology, the Moroccan tiger beetles can be divided into three groups: 1) spring active spe- cies, 2) spring-summer active species, and 3) summer active species. R. Jasku³a, Department of Invertebrate Zoology &Hydrobiology, University of £ód, Banacha 12/16, 90-237 £ód, Poland; E-mail: [email protected] T. Rewicz, Department of Invertebrate Zoology &Hydrobiology, University of £ód, Banacha 12/16, 90-237 £ód, Poland; E-mail: [email protected] K. Kwiatkowski, Department of Invertebrate Zoology &Hydrobiology, Univer - sity of £ód, Banacha 12/16, 90-237 £ód, Poland; E-mail: [email protected] Received 11 April 2015, accepted 18 June 2015 1.
    [Show full text]
  • Tigers in Texas
    Tigers in Texas Ross Winton Texas Master Naturalist Annual Meeting Invertebrate Biologist Rockwall, Texas Nongame & Rare Species Program October 18-20, 2019 Texas Parks & Wildlife Photo: Denver Museum of Nature & Science / Chris Grinter Tigers in Texas Texas Parks and Wildlife Mission To manage and conserve the natural and cultural resources of Texas and to provide hunting, fishing and outdoor recreation opportunities for the use and enjoyment of present and future generations. Nongame & Rare Species Program The Nongame and Rare Species Programs focus is Texas' rich diversity of nongame animals, plants, and natural communities. Our biologists collect, evaluate, and synthesize significant amounts of data to better inform conservation decisions and formulate management practices. By taking a proactive approach, we work to prevent the need for future threatened and endangered species listings and to recover listed species. Photo: Alliance Texas for America’sWildlife &Fish Tigers in Texas Coleoptera: Carabidae: Cicindelinae Predatory Ground Beetles Sight predators Larvae burrow and wait for prey Identification: Sickle-shaped mandibles with teeth 11-segmented antennae Eyes and head wider than the abdomen Long thin legs Tunnel-building behavior of larvae Very charismatic group that gains a great deal of attention from collectors Photo: Denver Museum of Nature & Science / Chris Grinter Tigers in Texas Collecting Methods: Net Pitfall Trap Debris Flipping Extraction from nightly burrows “Fishing” Observation Methods: Naked Eye Binoculars Digi-scoping
    [Show full text]