Science • Analysis Indian Journal of Science, Volume 10, Number 24, May 14, 2014

Total Page:16

File Type:pdf, Size:1020Kb

Science • Analysis Indian Journal of Science, Volume 10, Number 24, May 14, 2014 IndianANALYSIS • ZOOLOGY Journal of Science • Analysis Indian Journal of Science, Volume 10, Number 24, May 14, 2014 49 77 Indian Journal of – EISSN 2319 30 ci e nce 77 S – ISSN 2319 Length-Weight Relationship and Condition Factor of Hill Stream Fish, Devario aequipinnatus (McClelland) Dey S1, Ramanujam SN2҉ 1. Research Scholar, Fish Biology Laboratory, Department of Zoology, North Eastern Hill, University, Shillong - 793022, India 2. Professor, Fish Biology Laboratory, Department of Zoology, North Eastern Hill University, Shillong - 793022, India ҉Corresponding author: Fish Biology Laboratory, Department of Zoology, School of Life, Sciences, North Eastern Hill University, Shillong - 793022, India, e-mail: [email protected] Publication History Received: 05 March 2014 Accepted: 28 April 2014 Published: 14 May 2014 Citation Dey S, Ramanujam SN. Length-Weight Relationship and Condition Factor of Hill Stream Fish, Devario aequipinnatus (McClelland). Indian Journal of Science, 2014, 10(24), 47-52 ABSTRACT Length-weight relationship (LWR) and condition factor (K) in ornamental hill stream fish Devario aequipinnatus were investigated from Mamulu hill stream in Sohra, Meghalaya. The analysis of this fish species was based on 769 specimens (males 48% and females 52%) ranging in size from 4.7 cm to 11.2 cm and weight from 0.66 gm to 12.1 gm collected from March 2012 to February 2013. The value of the exponent ‘b’ in the LWR varied between 2.14 and 2.95. This shows that the species exhibit negative allometric growth pattern in their natural habitat. Studies on seasonal changes in K have shown that it is highest during monsoon with values of 0.954, 0.956 and 0.955 in male, female and pooled sexes (male and female) respectively. Males recorded least value of K in winter with 0.863, whereas female and pooled sexes in autumn with a value of 0.84 and 0.868 respectively. Monthly changes of K in both male and female showed its first peak in June indicating the beginning of the spawning season and least in September indicating the end of the spawning season. The present study will help to establish baseline data on LWR and K of D. aequipinnatus which may be utilized both in basic and applied research. Keywords: Length-weight, condition factor, Devario aequipinnatus, ornamental 47 Dey et al. Page Length-Weight Relationship and Condition Factor of Hill Stream Fish, Devario aequipinnatus (McClelland), Indian Journal of Science, 2014, 10(24), 47-52, www.discovery.org.in http://www.discovery.org.in/ijs.htm © 2014 Discovery Publication. All Rights Reserved 1. INTRODUCTION Devario aequipinnatus belongs to family Cyprinidae, is an active and brightly striped hill stream fish and has a great value as an ornamental fish in the global market. This fish is commonly called giant danio. It is a native of India and widely distributed in Asia, Nepal and Sri Lanka (Vishwanath, 2010). It inhabits hill streams up to an elevation of 300 Figure 1 m and does not grow more than 15 cm (Talwar and Jhingran, 1991). It Devario aequipinnatus is found in shaded, mid-hill clear waters with pebble or gravel substrates (Pethiyagoda, 1994) and occurs in schools at the surface in small high-gradient upland streams (Rainboth, 1996). It mainly feeds on exogenous insects (Rainboth, 1996) and also on worms and crustaceans (Mills and Vevers, 1989). This fish is not found in local markets, but popular in aquarium trade (Rainboth, 1996; Arunachalam et al., 2000). It has got 4 or 5 horizontal stripes, P, P+1, P-1, P-2 and P+2 present; four interstripes I+1, I-1, I+2 and I-2, P stripe broader and distinct than other stripes (Vishwanath et al., 2007). Many species that were formerly within the Danio genus, such as the giant danio, have now been reclassified as Devario (Fang, 2003). There are currently approximately 44 danionin species (Fang, 2001) distributed throughout South and Southeast Asia, their highest species diversity in north-eastern India, Bangladesh and Myanmar (Barman, 1991). Length-weight relationship is of great importance in fishery assessments (Goncalves et al., 1997). Length and weight measurements can give information on the stock composition, life span, mortality, growth and production (Bolger and Connoly, 1989; King, 1996; Moutopoulos and Stergiou, 2002). Pitcher and Hart (1982) reported length-weight relationship has both applied and basic uses. LWRs were originally used to provide information on the condition of fish and may help determine whether somatic growth is isometric (b=3) or allometric (negative allometric: b<3 or positive allometric: b>3) (Ricker, 1973; Spiegel, 1991). Condition factor refers to the well- being of a certain species and its degree of fatness, which depends on the weight of the fish sampled (Pauly, 1983; Fafioye and Oluajo, 2005). Different values of K of a fish indicate the state of sexual maturity, the degree of food sources availability, age and sex of some species (Williams, 2000) and the system of environment (Dhakal and Subba, 2003). The condition of a fish reflects recent physical and biological circumstances and fluctuates by interaction among feeding conditions, parasitic infections and physiological factors (Le Cren, Figure 2 1951). Map showing the study site (Mamulu hill stream, Sohra, Presently, very limited studies are available on the ecology of Meghalaya). freshwater fishes of Meghalaya in relation to the length-weight relationship and condition factor (Manorama and Ramanujam, 2011). There is no previous report on length-weight relationship and condition factor of D. aequipinnatus and the present study will thus further contribute to comprehensive baseline data on freshwater fishes of the region. 2. MATERIALS AND METHODS 2.1. Study site Mamulu hill stream in Sohra, Meghalaya was selected for the present study which is a fast flowing hill stream and natural habitat of D. aequipinnatus (Figure 1). The site of collection is located in the region of 25°15'47.61" N latitude and 91°42'45.72" E longitude at an altitude of 1292 msl (Figure 2). 2.2. Collection of fish and analysis A total of 769 specimens (males 48% and females 52%) ranging in size from 4.7 cm to 11.2 cm and weight from 0.66 48 gm to 12.1 gm were collected every month from March 2012 to February 2013. The data collected were analyzed Dey et al. Page Length-Weight Relationship and Condition Factor of Hill Stream Fish, Devario aequipinnatus (McClelland), Indian Journal of Science, 2014, 10(24), 47-52, www.discovery.org.in http://www.discovery.org.in/ijs.htm © 2014 Discovery Publication. All Rights Reserved Figure 3 Logarithmic relationship between length and weight of male (a) and female (b) D. aequipinnatus. under four seasons representing pre-monsoon (Mar.- May), monsoon (Jun.-Aug.), autumn (Sept.-Nov.) and winter (Dec.-Feb.). Collection of fish was done using cage net and other locally made traps. Collected samples were kept immediately in an ice box and brought to the laboratory for further examinations. Total length (cm) of individual fish was taken from the tip of the snout to the extended tip of the caudal fin using Vernier calipers. Body weight (gm) of each fish was taken to the nearest gram using a top Mark Electronic Balance after blot-drying excess water from the body surfaces. Sexes could be differentiated only in mature specimen. The sexes of the young specimens were determined by dissecting the gonads. 2.3. Length-weight relationship The relationship between the length and weight was estimated by using the equation W = aLb (Ricker, 1973), where, W= Total weight of fish (gm), L= Total length of fish (cm), a is the intercept in the y-axis, and Figure 4 the regression coefficient b is an exponent indicating Monthly condition factor male and female D. aequipinnatus isometric growth when close to three. The statistical significance level of r2 (determination coefficient) was estimated and the parameters a and b estimated by linear regression on the transformed equation, log W = log a + b log L. To test for significance differences in both slope and intercept, the analysis of covariance was followed. All statistical analysis was considered significant at P < 0.05. 2.4. Condition factor Condition factor was calculated using the equation given by Fulton (1904) as K = 100 (W/L3), where W is the body weight, and L is the total length. 3. RESULTS AND DISCUSSION 49 3.1. Length-weight relationship Dey et al. Page Length-Weight Relationship and Condition Factor of Hill Stream Fish, Devario aequipinnatus (McClelland), Indian Journal of Science, 2014, 10(24), 47-52, www.discovery.org.in http://www.discovery.org.in/ijs.htm © 2014 Discovery Publication. All Rights Reserved Table 1 Seasonal descriptive statistics and estimated parameters of the length-weight relationship for male, female and pooled sexes of D. aequipinnatus in the Mamulu hill stream, Sohra, Meghalaya From a total of 769 specimens of D. aequipinnatus collected during the study period, 48% were males and 52% were females. The LWR was calculated for different seasons to study the seasonal fluctuations on the relationship. Four seasons viz, pre-monsoon (Mar.-May), monsoon (Jun.-Aug.), autumn (Sept.-Nov.) and winter (Dec.-Feb.) were taken into consideration. The sample size, the minimum and maximum length, the parameters a and b of length weight 2 relationship, 95% confidence range for b, coefficient of determination (r ) and condition factor (K) are given in Table 1. The value of the exponent ‘b’ obtained for male, female and pooled sexes of the length-weight data varied between 2.14 and 2.95 in all the four seasons and was found to be lower compared to the cube law (b=3), indicating a negative allometric growth in their natural habitat, suggesting that they tend to become thinner as they grow larger, which may be a morphological adaptation for hill stream habitat of the fish as observed in P.
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Fish Diversity of the Vatrak Stream, Sabarmati River System, Rajasthan
    Rec. zool. Surv. India: Vol. 117(3)/ 214-220, 2017 ISSN (Online) : (Applied for) DOI: 10.26515/rzsi/v117/i3/2017/120965 ISSN (Print) : 0375-1511 Fish diversity of the Vatrak stream, Sabarmati River system, Rajasthan Harinder Singh Banyal* and Sanjeev Kumar Desert Regional Centre, Zoological Survey of India, Jodhpur – 342005, Rajasthan, India; [email protected] Abstract Five species of fishes belonging to order cypriniformes from Vatrak stream of Rajasthan has been described. Taxonomic detailsKeywords along: with ecology of the fish fauna and stream morphology are also discussed. Diversity, Fish, Rajasthan, stream morphology, Vatrak Introduction Sei joins from right. Sabarmati River originates from Aravalli hills near village Tepur in Udaipur district of Rajasthan, the biggest state in India is well known for its Rajasthan and flows for 371 km before finally merging diverse topography. The state of Rajasthan can be divided with the Arabian Sea. Thus the Basin of Sabarmati River into the following geographical regions viz.: western and encompasses states of Rajasthan and Gujarat covering north western region, well known for the Thar Desert; the an area of 21,674 Sq.km between 70°58’ to 73°51’ East eastern region famous for the Aravalli hills, whereas, the longitudes and 22°15’ to 24°47’ North latitudes. The southern part of the state with its stony landscape offers Vatrak stream basin is circumscribed by Aravalli hills typical sites for water resource development where most on the north and north-east, Rann of Kachchh on the of the man-made reservoirs are present. Mahi River basin west and Gulf of Khambhat on the south.
    [Show full text]
  • The AQUATIC DESIGN CENTRE
    The AQUATIC DESIGN CENTRE ltd 26 Zennor Road Trade Park, Balham, SW12 0PS Ph: 020 7580 6764 [email protected] PLEASE CALL TO CHECK AVAILABILITY ON DAY Complete Freshwater Livestock (2019) Livebearers Common Name In Stock Y/N Limia melanogaster Y Poecilia latipinna Dalmatian Molly Y Poecilia latipinna Silver Lyre Tail Molly Y Poecilia reticulata Male Guppy Asst Colours Y Poecilia reticulata Red Cap, Cobra, Elephant Ear Guppy Y Poecilia reticulata Female Guppy Y Poecilia sphenops Molly: Black, Canary, Silver, Marble. y Poecilia velifera Sailfin Molly Y Poecilia wingei Endler's Guppy Y Xiphophorus hellerii Swordtail: Pineapple,Red, Green, Black, Lyre Y Xiphophorus hellerii Kohaku Swordtail, Koi, HiFin Xiphophorus maculatus Platy: wagtail,blue,red, sunset, variatus Y Tetras Common Name Aphyocarax paraguayemsis White Tip Tetra Aphyocharax anisitsi Bloodfin Tetra Y Arnoldichthys spilopterus Red Eye Tetra Y Axelrodia riesei Ruby Tetra Bathyaethiops greeni Red Back Congo Tetra Y Boehlkea fredcochui Blue King Tetra Copella meinkeni Spotted Splashing Tetra Crenuchus spilurus Sailfin Characin y Gymnocorymbus ternetzi Black Widow Tetra Y Hasemania nana Silver Tipped Tetra y Hemigrammus erythrozonus Glowlight Tetra y Hemigrammus ocelifer Beacon Tetra y Hemigrammus pulcher Pretty Tetra y Hemigrammus rhodostomus Diamond Back Rummy Nose y Hemigrammus rhodostomus Rummy nose Tetra y Hemigrammus rubrostriatus Hemigrammus vorderwimkieri Platinum Tetra y Hyphessobrycon amandae Ember Tetra y Hyphessobrycon amapaensis Amapa Tetra Y Hyphessobrycon bentosi
    [Show full text]
  • Recycled Fish Sculpture (.PDF)
    Recycled Fish Sculpture Name:__________ Fish: are a paraphyletic group of organisms that consist of all gill-bearing aquatic vertebrate animals that lack limbs with digits. At 32,000 species, fish exhibit greater species diversity than any other group of vertebrates. Sculpture: is three-dimensional artwork created by shaping or combining hard materials—typically stone such as marble—or metal, glass, or wood. Softer ("plastic") materials can also be used, such as clay, textiles, plastics, polymers and softer metals. They may be assembled such as by welding or gluing or by firing, molded or cast. Researched Photo Source: Alaskan Rainbow STEP ONE: CHOOSE one fish from the attached Fish Names list. Trout STEP TWO: RESEARCH on-line and complete the attached K/U Fish Research Sheet. STEP THREE: DRAW 3 conceptual sketches with colour pencil crayons of possible visual images that represent your researched fish. STEP FOUR: Once your fish designs are approved by the teacher, DRAW a representational outline of your fish on the 18 x24 and then add VALUE and COLOUR . CONSIDER: Individual shapes and forms for the various parts you will cut out of recycled pop aluminum cans (such as individual scales, gills, fins etc.) STEP FIVE: CUT OUT using scissors the various individual sections of your chosen fish from recycled pop aluminum cans. OVERLAY them on top of your 18 x 24 Representational Outline 18 x 24 Drawing representational drawing to judge the shape and size of each piece. STEP SIX: Once you have cut out all your shapes and forms, GLUE the various pieces together with a glue gun.
    [Show full text]
  • Teleostei: Cyprinidae)
    1 Ichthyological Exploration of Freshwaters/IEF-1143/pp. 1-18 Published 22 September 2020 LSID: http://zoobank.org/urn:lsid:zoobank.org:pub:6635A59D-1098-46F6-817D-87817AD2AF0F DOI: http://doi.org/10.23788/IEF-1143 Devario pullatus and D. subviridis, two new species of minnows from Laos (Teleostei: Cyprinidae) Maurice Kottelat Devario pullatus, new species, is described from the Nam Ngiep watershed, Mekong drainage. It is distinguished from all other species of the genus by its unique colour pattern in adults, consisting only in a dark brown stripe P from gill opening to end of caudal peduncle, widest on middle of flank, narrowest at beginning of caudal peduncle, widening again until caudal-fin base. Devario subviridis, new species, is described from the edge of Nakai Plateau, in Xe Bangfai watershed, Mekong drainage. It is distinguished from all other species of the genus by its unique colour pattern in adults, consisting in a dark brown stripe P from gill opening to end of caudal peduncle, contin- ued on median caudal-fin rays, wider and less contrasted in anterior part of flank, and, within it an irregular row of short, narrow, vermiculated yellowish lines. Devario cf. quangbinhensis is reported from Laos for the first time. Introduction Material and methods Cyprinid fishes of the genus Devario typically oc- Measurements and counts follow Kottelat (2001) cur in moderate to swift flowing water of small and Kottelat & Freyhof (2007). The last 2 branched streams with clear and cool water. The genus is dorsal and anal-fin rays articulating on a single 1 known throughout South and mainland Southeast pterygiophore are noted as “1 /2”.
    [Show full text]
  • The Effects Induced Hyperglycemia on Adrenal Cortex Function in the Giant Danio Devario Aequipinnatus Embryos
    Journal of Diabetes, Metabolic Disorders & Control Research Article Open Access The effects induced hyperglycemia on adrenal cortex function in the giant Danio Devario Aequipinnatus embryos Abstract Volume 4 Issue 4 - 2017 Purpose: The purpose of this study was to induce hyperglycemic experiment in Giant Da- Manickam Raja, Anbarasu Jayanthi, nio embryos in relation to effects of hyperglycemia on adrenal cortex function and steroi- dogenesis. Mathiyalagan Kavitha, Pachiappan Perumal Department of Biotechnology, Periyar University, India Methods: The wild specimens of Devario aequipinnatus fishes collected from the Cauvery river at Stanley Reservoir were induced for breeding without the use of any hormones and Correspondence: Pachiappan Perumal, Department of the matured embryos were obtained. The embryos of Giant Danio were induced for hyper- Biotechnology, Periyar University, Periyar Palkalai Nagar, Salem- glycemic stress, by immersing them in 0.0%, 0.3%, 0.6%, 0.9%, 1.2%, 1.5%, and 1.8% 636 011, Tamil Nadu, India, Tel +91 427 234 5766, Ext. 225, Fax glucose solution, at 24h, 48h and 72h. +91 427 234 5124, Email [email protected] Result: The Giant Danio exposed to glucose solution appear to experience acute stress as Received: December 25, 2016 | Published: July 21, 2017 indicated by the significant elevation in serum glucose and serum cortisol. The ranges of average cortisol level for all embryo samples exposed for 24h, 48h and 72h in stock aquaria were: 1.2-6.4µg/dL, 0.8 to 7.6µg/dL and 0.8-9.6µg/dL respectively. Conclusion: The results showed positive correlation between the %glucose solution and the cortisol level, as well as the incubation time and the cortisol level as reported previously in other model systems.
    [Show full text]
  • On the Status of Devario Assamensis Barman, 1984 (Pisces: Cyprinidae) with Comments on Distribution of Devarid Regina Fowler, 1934
    ISSN 0375-1511 Rec. zool. Sum India: 112(Part-2) : 53-55, 2012 ON THE STATUS OF DEVARIO ASSAMENSIS BARMAN, 1984 (PISCES: CYPRINIDAE) WITH COMMENTS ON DISTRIBUTION OF DEVARID REGINA FOWLER, 1934 R.P. BARMAN* AND 5.5. MISHRA Zoological Survey of India, FPS Building, Kolkata - 700 053 *[email protected] Past two decades have witnessed sea-change in 14.xi.1939, Dr. S.L. Hora; FF 1862, 1 ex. (paratype), the systematics of the Danionin fishes 60 mm, other details as of Holotype. (Cypriniformes: Cyprinidae), especially by the discovery of several species in Myanmar region. Many Danionin species have been moved into different genera, in some cases repeatedly; similarly some species have been synonymised with other species and even in some cases later unsynonymised, all of which has caused a lot of confusion. In the same process, Danio assamensis, described from Assam by Barman (1984), has been redescribed by Tilak and Jain (1987), but relegated to synonymy of Danio regina Fowler by Talwar and Jhingran (1991) without discussion or assigning any reason. Menon (1999) and Jayaram (1999) followed the same synonymy. This resulted in report of Danio regina from Assam, India (Kapoor et aI, 2002) and even record of it from West Bengal Fig. 1. Head region showing (A) preorbital spine and (Patra and Datta, 2010). Kullander (2001) (B) supraorbital spine, and lateral view of Devario considered the former a valid species and now it assamensis (Barman) (Holotype). is placed under genus Devario Heckel. Diagnosis: D ii, 12; A ii, 16-17; P 12; LL 36; Ltr This paper is planed to provide diagnosis of 71J2/21h; predorsal scales 16; scales around caudal Devario assamensis (Barman) and to distinguish it peduncle 14; barbels 2 pairs, short.
    [Show full text]
  • The Effects of Lateral Line Ablation and Regeneration in Schooling Giant Danios Prasong J
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb175166. doi:10.1242/jeb.175166 RESEARCH ARTICLE The effects of lateral line ablation and regeneration in schooling giant danios Prasong J. Mekdara*, Margot A. B. Schwalbe, Laura L. Coughlin and Eric D. Tytell ABSTRACT 2014). In particular, most fishes and other aquatic amphibians seem Fish use multiple sensory systems, including vision and their lateral line to rely on the lateral line system, along with the visual system, for system, to maintain position and speed within a school. Although schooling behavior (Pitcher et al., 1976; Partridge and Pitcher, previous studies have shown that ablating the lateral line alters 1980; Mogdans and Bleckmann, 2012; Coombs et al., 2014). schooling behavior, no one has examined how the behavior recovers Many species of fish school during some stages in their lives as the sensory system regenerates. We studied how schooling (Shaw, 1960, 1976). They benefit from schooling in many ways: it behavior changes in giant danios, Devario aequipinnatus,whentheir helps them detect and avoid predators, it increases foraging and lateral line system is chemically ablated and after the sensory hair cells spawning opportunities, and it reduces the energetic cost of regenerate. We found that fish could school normally immediately after swimming (Partridge and Pitcher, 1980; Bleckmann, 1986; Inada chemical ablation, but that they had trouble schooling 1–2 weeks after and Kawachi, 2002; Killen et al., 2012; Chicoli et al., 2014; Marras the chemical treatment, when the hair cells had fully regenerated. We et al., 2015; Chivers et al., 2016; Daghooghi and Borazjani, 2016).
    [Show full text]
  • Morphometric Variation Studies on Cypriniformes Fish of Devario Aequipinnatus from Selected Rivers/Streams of the Southern Western Ghats, Tamil Nadu, India
    International Research Journal of Environment Sciences________________________________ ISSN 2319–1414 Vol. 4(10), 77-86, October (2015) Int. Res. J. Environment Sci. Morphometric variation studies on Cypriniformes fish of Devario aequipinnatus from selected rivers/streams of the Southern Western Ghats, Tamil Nadu, India Edwinthangam P., Sabaridasan A., Palanikani R., Divya Sapphire M and Soranam R.* Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627 412 Tamil Nadu, INDIA Available online at: www.isca.in, www.isca.me Received 19 th August 2015, revised 24 th September 2015, accepted 17 th October 2015 Abstract The morphometric variations were investigated on cypriniformes fish of Devario aequipinnatus from selected rivers of the Southern Western Ghats, Tamil Nadu. It was evaluated and compared with individual species and compared same in each study area. The samples were collected on both the rainy and summer from five sites as the selected rivers of Kalakkad Mudanthurai Tiger Reserve (KMTR) region (Kallar, Karaiyar, Manimuthar, Ramanathi) and other one at Kalikesam, Kanyakumari district). Their collected fish samples of morphometric characters are differentiated by various standard analyses of difference were carried out to examine the implication of morphometric variations among populations. The species wise and population wise descriptive statistics viz., minimum, maximum, mean, standard deviation; the coefficient of variation (CV) of all morphometric traits, the multivariate coefficient of variation (CVp) and the Principle Component Analysis were carried out. The detected phenotypical divergence between Devario aequipinnatus specimens revealed the fact of existing of five morphologically separated stocks within the samples may imply as a possibility a relationship among the extent of phenotypic heterogeneity and the geographic distance, shows limited combine into one among the populations.
    [Show full text]
  • Red List of Bangladesh 2015
    Red List of Bangladesh Volume 1: Summary Chief National Technical Expert Mohammad Ali Reza Khan Technical Coordinator Mohammad Shahad Mahabub Chowdhury IUCN, International Union for Conservation of Nature Bangladesh Country Office 2015 i The designation of geographical entitles in this book and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, International Union for Conservation of Nature concerning the legal status of any country, territory, administration, or concerning the delimitation of its frontiers or boundaries. The biodiversity database and views expressed in this publication are not necessarily reflect those of IUCN, Bangladesh Forest Department and The World Bank. This publication has been made possible because of the funding received from The World Bank through Bangladesh Forest Department to implement the subproject entitled ‘Updating Species Red List of Bangladesh’ under the ‘Strengthening Regional Cooperation for Wildlife Protection (SRCWP)’ Project. Published by: IUCN Bangladesh Country Office Copyright: © 2015 Bangladesh Forest Department and IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holders, provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holders. Citation: Of this volume IUCN Bangladesh. 2015. Red List of Bangladesh Volume 1: Summary. IUCN, International Union for Conservation of Nature, Bangladesh Country Office, Dhaka, Bangladesh, pp. xvi+122. ISBN: 978-984-34-0733-7 Publication Assistant: Sheikh Asaduzzaman Design and Printed by: Progressive Printers Pvt.
    [Show full text]
  • Observations on Fish Scales
    OBSERVATIONS ON FISH SCALES By T. D. A. Cockerell University of Colorado, Boulder, Colorado OBSERVATIONS ON FISH SCALES. By T. D. A. COCKERELL, University of Colorado, Bo~,lder, Colo • .;t. INTRODUCTION, In a paper on "The Scales of Freshwater Fishes" (Biological Bulletin of the Marine Biological Laboratory at Woods Hole, Mass., vol. xx, May, 19II) I have given an account of the recent work on teleostean fish scales and have discussed some of the problems presented by the scales of freshwater fishes. Until recently it has been impos­ sible to do much with the scales of marine fishes, owing to the difficulty of obtaining adequate materials. For the same reason very little was done on the spiny-rayed freshwater groups, the Percidre, Centrarchidre, etc. During the summer of 1911, however, I was enabled to continue the work in the laboratory of the Bureau of Fisheries at Woods Hole, where the director, Dr. F. B. Sumner, afforded me every possible facility and put at my disposal a large series of fishes representing many families. I have also been very greatly indebted to the Bureau of lfisheries, through Dr. Hugh M. Smith and Dr. B. W. Evermann, for numerous and important specimens from the collections at Washington. At the National Museum Mr. B. A. Bean and Mr. A. C. Weed gave me much help and supplied scales of some important genera, while other very valuable materials were secured from the Museum of Comparative Zoology, through the kindness of Dr. S. Garman. As in former years, I have been indebted to Dr. Boulenger for some of the rarest forms.
    [Show full text]
  • Danio Rerio) Ecological Risk Screening Summary
    Zebra Danio (Danio rerio) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, January 2016 Revised, March 2018 Web Version, 7/5/2018 Photo: Pogrebnoj-Alexandroff. Licensed under Creative Commons (CC BY-SA 3.0). Available: https://commons.wikimedia.org/wiki/File:Danio_rerio_lab_left.JPG. (March 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Asia: Pakistan, India, Bangladesh, Nepal and Myanmar [Menon 1999]. Reported from Bhutan [Petr 1999].” From Nico et al (2018): “Tropical Asia. Pakistan, India, Bangladesh, and Nepal (Talwar and Jhingran 1991). Also reported from Myanmar (Menon 1999) and Bhutan (Petr 1999).” 1 Status in the United States From Nico et al. (2018): “This species was reported from the Westminster flood control channel near a fish farm in Westminster, Orange County, California, in 1968 (St. Amant and Hoover 1969; Courtenay et al. 1984, 1991). Specimens ranging from 2-4 cm were captured in the Thames River drainage in Connecticut in 1985 (Whitworth 1996). It was recorded from Lake Worth Drainage District canal L-15 adjacent to fish farm in Palm Beach County, Florida, in the early 1970s (Courtenay and Robins 1973; Courtenay et al. 1974). Specimens also were taken from two sites adjacent to fish farms in Hillsborough County, including a ditch in Gibsonton, and from a site in Adamsville (Courtenay and Hensley 1979; museum specimen). The species was locally established in McCauley Spring in Sandoval County, New Mexico (Sublette et al. 1990; M. Hatch, personal communication).” “Extirpated in New Mexico by 2003 (S. Platania, pers.comm); reported from California, Connecticut, and Florida.” From Lever (1996): “Naturalized in Wyoming.
    [Show full text]