Hypoxia Tolerance and Anaerobic Capacity in Danio and Devario
Total Page:16
File Type:pdf, Size:1020Kb
HYPOXIA TOLERANCE AND ANAEROBIC CAPACITY IN DANIO AND DEVARIO by Lili Yao B.Sc., Zhejiang University, 2008 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December, 2012 © Lili Yao, 2012 ABSTRACT It has been long suggested that hypoxia tolerant species should have a great capacity to generate energy through anaerobic pathways to maintain energy balance when oxygen is limited; however, this assertion has not been rigorously tested. In the present study, I characterized hypoxia tolerance in 12 groups representing 10 species from the genera Danio and Devario (with three strains of D. rerio) and examined whether there is a phylogenetically independent relationship between variation in hypoxia tolerance and anaerobic capacity as judged by enzyme activity and anaerobic substrate concentrations present in various tissues. Hypoxia tolerance was assessed using two measures: time to loss of equilibrium (LOE) and the oxygen tension that yields 50% LOE in a group of fish over 8 hr (TLE50). Time to LOE to low oxygen was very sensitive to changes in water PO2, with no LOE seen over 8 hr in some species at 16 torr (2.1 kPa) and complete LOE within 30 min at 8 torr (1.1 kPa). At 12 torr (1.6 kPa) however, there was significant variation in time to LOE among all the species investigated. In three species (Danio rerio, Danio albolineatus and Danio choprai) time to LOE at 12 torr showed the same pattern of hypoxia tolerance as TLE50. Despite the variation in hypoxia tolerance seen among the species under study, there was very little variation in the critical oxygen tension (Pcrit), which is the environmental PO2 at which fish transition from an oxyregulating strategy to an oxyconforming strategy. Routine M varied between the O2 species, but the variation was primarily explained by body size and not hypoxia tolerance. Anaerobic energy capacity was estimated by measuring maximal enzyme activities of pyruvate kinase (PK), lactate dehydrogenase (LDH) and creatine phosphokinase (CPK), and concentrations of glycogen and glucose in muscle, liver and brain, plus creatine ii phosphate (CrP) and ATP in muscle. Through comparative analysis, I showed that the variation in hypoxia tolerance seen among species was related to some aspects of anaerobic energy metabolism, but not in a consistent fashion, indicating that other factors contribute to describing the variation in hypoxia tolerance. iii TABLE OF CONTENTS ABSTRACT ................................................................................................................................... ii TABLE OF CONTENTS .................................................................................................................. iv LIST OF TABLES ........................................................................................................................ vi LIST OF FIGURES ...................................................................................................................... vii LIST OF ABBREVIATIONS ........................................................................................................ viii ACKNOWLEDGEMENTS ............................................................................................................... x CHAPTER ONE: INTRODUCTION ................................................................................................. 1 1.1 Causes of low oxygen in aquatic environments ...................................................... 1 1.2 Definition of aquatic hypoxia ............................................................................... 2 1.3 Oxygen and energy production ................................................................................ 3 1.4 Why hypoxia is bad for fish .................................................................................... 4 1.5 Strategies to enhance hypoxia survival .................................................................. 5 1.5.1 Enhancing oxygen extraction ................................................................... 5 1.5.2 Suppressing metabolic rate .......................................................................... 7 1.5.3 Upregulating anaerobic ATP production ..................................................... 7 1.6 Comparative analysis ................................................................................................ 8 1.7 Danio and Devario ................................................................................................. 10 1.8 Assessment of hypoxia tolerance and anaerobic capacity ...................................... 11 1.9 Thesis objective and hypothesis .............................................................................. 12 CHAPTER TWO: HYPOXIA TOLERANCE AND ANAEROBIC CAPACITY IN DANIO AND DEVARIO .......................................................................................................................... 13 2.1 Introduction ............................................................................................................... 13 2.2 Materials and methods .............................................................................................. 16 2.2.1 Experimental animals .................................................................................. 16 2.2.2 Experimental protocols ................................................................................ 17 2.2.3 Analytical procedures .................................................................................. 21 2.2.4 Phylogenetic analyses ............................................................................... 23 2.2.5 Statistical analyses ....................................................................................... 24 2.3 Results ....................................................................................................................... 25 2.3.1 Phylogenetic relationship .......................................................................... 25 2.3.2 Hypoxia tolerance and respirometry ............................................................ 25 2.3.3 Anaerobic capacity ..................................................................................... 26 iv 2.3.4 Scaling ......................................................................................................... 29 2.4 Discussion ............................................................................................................... 30 2.4.1 The model system ...................................................................................... 30 2.4.2 Hypoxia tolerance ..................................................................................... 32 2.4.3 Hypoxia tolerance and oxygen uptake ..................................................... 36 2.4.4 Hypoxia tolerance and anaerobic capacity ............................................... 38 2.4.5 Conclusion ................................................................................................. 43 CHAPTER THREE: GENERAL DISCUSSION................................................................................ 54 BIBLIOGRAPHY ......................................................................................................................... 60 v LIST OF TABLES Table 2.1 Maximal enzyme activities in 10 species of Danio and Devario …..……… 52 Table 2.2 Metabolite concentrations in 10 species of Danio and Devario ………..….. 53 vi LIST OF FIGURES Figure 2.1 Time to LOE at 12 torr (a), critical oxygen tension (Pcrit; b), and phylogeny (c) for the Danio spp. and Devario spp. used in this study ……………………………….. 45 Figure 2.2 Correlation between time to LOE at 12 torr and TLE50 …………………… 46 Figure 2.3 M curves in P trials for the Danio spp. and Devario spp. used in this O2 crit study ………………………………………………………………………………….… 47 Figure 2.4 Correlations between TLE50 (Conventional, non-PIC) among 3 species / time to LOE (Conventional, non-PIC) among 3 species / time to LOE (PIC) among 10 species and brain PK, brain LDH and brain CPK ……………………..………………….….… 48 Figure 2.5 Correlations between TLE50 (Conventional, non-PIC) among 3 species / time to LOE (Conventional, non-PIC) among 3 species / time to LOE (PIC) among 9 species and liver PK and liver LDH ………………………………………………………….… 49 Figure 2.6 Correlations between TLE50 (Conventional, non-PIC) among 3 species / time to LOE (Conventional, non-PIC) among 3 species / time to LOE (PIC) among 10 species and muscle PK and muscle ATP …………………………………………………….… 50 Figure 2.7 Correlation between fish whole-body mass and routine M for the Danio O2 spp. and Devario spp. used in this study except for Devario aequipinnatus …………... 51 vii LIST OF ABBREVIATIONS ADP adenosine diphosphate ANOVA analysis of variance ASR aquatic surface respiration ATP adenosine triphosphate °C degrees Celsius CO2 carbon dioxide CPK creatine phosphokinase CrP creatine phosphate cyt cytochrome EDTA ethylenediaminetetraacetic acid DNA deoxyribonucleic acid Hb hemoglobin Hb P50 partial pressure at 50% saturation of hemoglobin by oxygen HEPES hydroxyethyl piperazineethanesulfonic acid HK hexokinase hr hour LDH lactate dehydrogenase LOE loss of equilibrium min minute M oxygen consumption rate O2 mRNA messenger ribonucleic acid N nitrogen 2 NAD+ nicotinamide adenine dinucleotide O oxygen 2 PCR polymerase chain reaction P critical oxygen tension crit viii PFK phosphofructokinase PIC phylogenetically independent contrast PK