From the Nu River Valley in Southern Hengduan Mountains, Yunnan, China

Total Page:16

File Type:pdf, Size:1020Kb

From the Nu River Valley in Southern Hengduan Mountains, Yunnan, China Asian Herpetological Research 2017, 8(2): 86–95 ORIGINAL ARTICLE DOI: 10.16373/j.cnki.ahr.160053 A New Species of Japalura (Squamata, Agamidae) from the Nu River Valley in Southern Hengduan Mountains, Yunnan, China Dingqi RAO1*, Jens V. VINDUM2, Xiaohui MA1, Mingxia FU1 and Jeffery A. WILKINSON2* 1 Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China 2 Department of Herpetology, California Academy of Sciences, 55 Concourse Drive, Golden Gate Park, San Francisco, California 94118, USA Abstract A population of Japalura from Yunnan Province, China, previously assigned to Japalura splendida, is described as a new species. The new species has been recorded between 1 138–2 500 m in the Nu River drainage between the towns of Liuku and Binzhongluo, and on the lower western slopes of the Nushan and eastern slopes of the Goaligongshan. The new species can be distinguished from other species of Japalura, except J. dymondi, by the following combination of characters: exposed tympani, prominent dorso-lateral stripes, and small gular scales. It is very similar with but differs from J. dymondi by having smooth or feebly keeled dorsal head scales, three relatively enlarged spines on either side of the post-occiput area, strongly keeled and mucronate scales on occiput area and within the lateral stripes, back of arm and leg green, higher number of dorsal-ridge scales (DS) and fourth toe subdigital scales (T4S). A principal component analysis of body measurements of adult male specimens of the new species and J. dymondi showed principal component 1 loading highest for upper arm length, fourth toe length and snout to eye length and principal component 2 loading highest for head width, head length and fourth toe length. Keywords Agamidae, Japalura sp. nov., Goaligongshan Mountain, Nujiang River Valley, Hengduan Mountains, Yunnan, China 1. Introduction et al., 1999). New collections made along the Nu River Valley (Figure 1) by D. Q. RAO and D. T. YANG, Of the 32 known species of Japalura, 18 occur in as well as subsequent collections made by the China continental China (Wang et al., 2015; Wang et al., 2016). Natural History Project (a collaborative project between Of these, ten (J. dymondi, J. flaviceps, J. laeviventris, the Kunming Institute of Zoology (KIZ), the Kunming J. iadina, J. vela, J. yulongensis, J. brevicauda, Institute of Botany (KIB) and the California Academy J.szechwanensis, J. splendida, J. varcoae, and J. of Sciences (CAS)) and the NSF-funded Gaoligongshan yunnanensis) occur in Yunnan Province of southwestern Project (also a collaborative project between KIZ, KIB, China. Meanwhile, the populations of Japalura within and CAS) revealed that the lizards formerly thought to be the Nu (Salween) River Valley drainage system, between J. splendida represent a new species. the towns of Liuku, Liushu County, and Bingzhongluo, Gongshan County, Yunnan Province, have peviously 2. Materials and Methods been assigned to J. splendida (Yang et al., 1983, Zhao * Corresponding authors: Prof. Dingqi RAO, from Kunming Institute Specimens were hand collected from the Nu River Valley of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China, in 1973, 1997, 2000, 2002, 2004 and 2005. They were with his research mainly focusing on herpetology; Dr. Jeffery A. subsequently euthanized, fixed in 10% buffered formalin WILKINSON, from California Academy of Sciences, San Francisco, California, USA, with his research mainly focusing on systematics of and transferred to 70% ethanol. Latitude, longitude and Asian reptiles and amphibians. elevation were recorded for specimens collected between E-mail: [email protected] (Dingqi RAO); JWilkinson@calacademy. org (Jeffery A. WILKINSON) 2000–2005 using a Garmin 12 GPS receiver (datum WGS Received: 31 August 2016 Accepted: 12 December 2016 84). No. 2 Dingqi RAO et al. Description of a New Species of Japalura Lizard 87 The following measurements were obtained for Table 1 Loadings for the first two principal component axes for 18 specimens of the new species and Japalura dymondi: male Japalura slowinskii sp. nov. and 20 male J. dymondi. snout-vent length (SVL), distance from tip of snout to Eigenvectors Variable anterior edge of vent; head length (HL), distance from Compoent1 Compoent2 tip of snout to rear border of right angle of the jaw; head SVL 0.17066 0.31689 width (HW), widest point in the temporal region, anterior HL 0.1865 0.45849 HW 0.14983 0.46952 to the tympanum; interorbtal distance (IOD), distance IOD 0.18751 0.30542 between outer edges of superciliary series; snout to eye SEL 0.34883 0.2715 length (SEL), distance from tip of snout to anterior margin UAL 0.32532 0.03411 of eye; upper arm length (UAL), distance from axilla to LAL 0.43406 –0.2698 elbow; lower arm length (LAL), distance from elbow HandL 0.3375 –0.22821 to the posterior edge of palm of right hand; hand length ULL 0.26205 0.05713 LLL 0.24312 –0.02333 (HandL), distance from the posterior edge of palm of FootL 0.30515 –0.17752 right hand to end of fourth finger (to base of claw); upper 4thToeL 0.35742 –0.37492 leg length (ULL), distance from groin to knee; lower leg length (LLL), distance from knee to heel; foot length (FL = FootL), distance from heel to distal end of fourth toe (to base of claw); fourth toe length (4thToeL), distance from the juncture of the third and fourth toes to the base of the claw on the right foot; tail length (TailL), distance from tail tip to posterior border of vent (“+” indicates an incomplete tail); right hind limb length (HLL); tibia length (TibiaL), distance from the base of heel to knee on left leg. Data for the following meristic characters were recorded: supralabials (SupL = SL), number of enlarged scale bordering left margin of upper lip (not including rostral scale); infralabials (InfL = IL), number of enlarged scales boraering the left margin of lower lip (not including mental scale); dorsal crest scales (DC), enlarged mid- dorsal crest scales from just posterior to occiput to above the anterior margin of the vent; dorsal-ridge scales (DS), including DC; number of fourth toe subdigital scales (4thToeSL = T4S), including distal most scale on claw base. Measurements, except for TailL, were made with digital calipers with a 0.1 mm precision and rounded to the nearest 0.1 mm. Tail length was measured using a measuring tape with a precision of 1 mm. Scale counts and observations of external morphology were made using a dissecting microscope. Principal components analysis (PCA) was applied to Figure 1 Map of western Yunnan Province, China, illustrating the distribution of Japalura slowinskii sp. nov. Star represents the type 9 specimen measurements (SVL, HL, HW, HLL, TailL, locality. number 1 represent the Nujiang River, number 2 represent TibiaL, 4thToe, SupL, and InfL) of 18 adult male Japalura Lancang River, number 3 represent Jinsha River. from the Nu Valley and 20 adult male J. dymondi from the Yangtse River Valley, Da-Yao County, Yunnan Province groups. Museum codes follow Leviton et al. (1985). The (Table 1). All measurements were log-transformed. codes JBS and GLGS are followed by the field numbers Statistical analyses were performed using Stata/SE 8.2 for Joseph B. SLOWINSKI and the Goaligongshan for Linux. A MANOVA and discriminant analysis was project, respectively. JBS and GLGS specimens will be performed to test for significant differences between the deposited in the collections of CAS and KIZ. 88 Asian Herpetological Research Vol. 8 3. Results Japalura slowinskii sp. nov. Holotype KIZ2000R0608 (JBS16231) (Figures 2–5), adult male, from a small village S of Fugong (County), along Nu River, 26º48'44.0"N, 98º53'10.7"E, ca.1138m elevation, Nujiang Prefecture, Yunnan Province, collected by D.Q. RAO and Joseph B. SLOWINSKI on 14 July, 2000. Paratypes All from China, Yunnan Province, Nujiang Prefecture, KIZ-JBS 04233, 04235, 04237, 16133- 34, 16137, 16254, CAS214971-73, 214989-215003, 215053, data as for holotype, except CAS214971-73 were collected on July 2000; CAS 214906 from a small village N of Gongshan (County) on E bank of Nu River, 27º48'21.4"N, 98º41'03.9"E, ca.1509m elevation, Nujiang Prefecture, Yunnan Province, collected by D.Q. RAO and Joseph B. SLOWINSKI on 8 July, 2000; CAS 214951- 52, 214954 from Fugong along Nu River, 26º54'31.9"N, 98º51'59.8"E, ca.1206m elevation, Nujiang Prefecture, Figure 2 Japalura slowinskii sp. nov. (above) and Japalura Yunnan Province, collected by D. Q. RAO and Joseph B. dymondi (below) in life. SLOWINSKI on 11 and 12 July, 2000 respectively; CAS 215053 from near town of Luzhang, on eastern slope of Gaoligongshan, 25º56'47.2"N, 98º46'10.2"E, ca.2139m elevation, Nujiang Prefecture, Yunnan Province, collected by D.Q. RAO and Joseph B. SLOWINSKI on 22 July, 2000; CAS 228178 from along Fugong-Liuku road, E side of Nu River, 26º50'42.9"N, 98º52'42.9"E, ca.1231m elevation, Nujiang Prefecture, Yunnan Province, collected by D. Q. RAO and J. A. WILKINSON and J. V. VINDUM, on 10 October, 2002. Diagnosis A large species of Japalura with a robust head and body compressed dorso-ventrally; SVL = 89.6±5.44 mm (n = 18; Male); SVL = 83.9±6.71 mm (n = 7; Female); smooth or feebly keeled dorsal head scales; exposed tympani; a transverse gular fold; a distinct oblique fold anterior to shoulder extending dorsally from transverse gular fold and continuing posteriorly beyond shoulder; dorsal scales heterogeneous, larger scales strongly keeled; a broken dorso-lateral row of enlarged and strongly keeled scales separated from dorsal crest scales by one large or two smaller scales, and separated from each other by one or two small scales; tail in adult males slightly swollen posterior to base; dorsum of males black with a Figure 3 Dorsal view of Japalura slowinskii sp.
Recommended publications
  • Zootaxa, a New Species of Japalura (Reptilia: Agamidae) from Northeast
    Zootaxa 2212: 41–61 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) A new species of Japalura (Reptilia: Agamidae) from northeast India with a discussion of the similar species Japalura sagittifera Smith, 1940 and Japalura planidorsata Jerdon, 1870 STEPHEN MAHONY Madras Crocodile Bank Trust, Post Bag 4, Mamallapuram, Tamil Nadu 603 104, India. E-mail: [email protected] Abstract A new species of the agamid genus Japalura is described, based on three specimens from Mizoram, northeast India. Japalura otai sp. nov. is most similar to J. planidorsata and J. sagittifera and can be distinguished from all congeners by the following combination of characters: adult size (SVL male 46.4 mm, female 52.2–58.7 mm), tail length/SVL ratio 160.5–187.5%, 10–11 supralabials, 9–12 infralabials, 45–47 middorsal scales, 17–20 lamellae under finger IV, 20–22 lamellae under toe IV, tympanum concealed, axillary fold present, nuchal crest, gular fold and gular pouch absent, enlarged keeled dorsal scales present, body shape subquadrangular in cross section. Japalura sagittifera is here redescribed, a lectotype and a paralectotype designated and photographs of the type specimens made available for the first time. All known localities for these three species are provided. The status of the genus Oriotiaris which was recently revalidated is discussed in detail and again synonymized within Japalura. The currently recognised polyphyletic Japalura is discussed in relation to morphological characteristics. Key words: Lizard, Draconinae, Myanmar, Mizoram, Oriotiaris, Japalura otai sp. nov., description, redescription Introduction The genus Japalura Gray 1853, currently consists of 26 species which range from north-western India in the west, to Japan and Taiwan, off the east coast of China, north to Shaanxi province in northern China and south to northern Vietnam.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • The Distribution of Reptiles and Amphibians in the Annapurna-Dhaulagiri Region (Nepal)
    THE DISTRIBUTION OF REPTILES AND AMPHIBIANS IN THE ANNAPURNA-DHAULAGIRI REGION (NEPAL) by LURLY M.R. NANHOE and PAUL E. OUBOTER L.M.R. Nanhoe & P.E. Ouboter: The distribution of reptiles and amphibians in the Annapurna-Dhaulagiri region (Nepal). Zool. Verh. Leiden 240, 12-viii-1987: 1-105, figs. 1-16, tables 1-5, app. I-II. — ISSN 0024-1652. Key words: reptiles; amphibians; keys; Annapurna region; Dhaulagiri region; Nepal; altitudinal distribution; zoogeography. The reptiles and amphibians of the Annapurna-Dhaulagiri region in Nepal are keyed and described. Their distribution is recorded, based on both personal observations and literature data. The ecology of the species is discussed. The zoogeography and the altitudinal distribution are analysed. All in all 32 species-group taxa of reptiles and 21 species-group taxa of amphibians are treated. L.M.R. Nanhoe & P.E. Ouboter, c/o Rijksmuseum van Natuurlijke Historie Raamsteeg 2, Postbus 9517, 2300 RA Leiden, The Netherlands. CONTENTS Introduction 5 Study area 7 Climate and vegetation 9 Material and methods 12 Reptilia 13 Sauria 13 Gekkonidae 13 Hemidactylus brookii 14 Hemidactylus flaviviridis 14 Hemidactylus garnotii 15 Agamidae 15 Agama tuberculata 16 Calotes versicolor 18 Japalura major 19 Japalura tricarinata 20 Phrynocephalus theobaldi 22 Scincidae 24 Scincella capitanea 25 Scincella ladacensis ladacensis 26 3 4 ZOOLOGISCHE VERHANDELINGEN 240 (1987) Scincella ladacensis himalayana 27 2g Scincella sikimmensis ^ Sphenomorphus maculatus ^ Serpentes ^ Colubridae ^ Amphiesma platyceps ^
    [Show full text]
  • Discovered in Historical Collections: Two New Japalura Species (Squamata: Sauria: Agamidae) from Yulong Snow Mountains, Lijiang Prefecture, Yunnan, PR China
    Zootaxa 3200: 27–48 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Discovered in historical collections: Two new Japalura species (Squamata: Sauria: Agamidae) from Yulong Snow Mountains, Lijiang Prefecture, Yunnan, PR China ULRICH MANTHEY1, WOLFGANG DENZER2, HOU MIAN3 & WANG XIAOHE4 1Society for Southeast Asian Herpetology, Kindelbergweg 15, D-12249 Berlin, Germany. E-mail: [email protected] 2Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, GB-Oxford, OX1 3QZ, UK. E-mail: [email protected] 3College of Continuing Education, Sichuan Normal University, CN-Chengdu, 610068, China. E-mail: [email protected] 4Chengdu Institute of Biology, Chinese Academy of Sciences, CN-Chengdu, 610041, China. E-mail: [email protected] Abstract Several specimens from historical collections made in Yunnan (PR China) were found to be inconsistent with hitherto known species of Japalura. Two species are described as new: Japalura brevicauda spec. nov. and Japalura yulongensis spec. nov. Diagnostic features for the new species are compiled and a key to closely related species is produced. The geo- graphical distribution of these species is outlined and discussed. Key words: Agamidae, Japalura, taxonomy, Yunnan, China, Japalura brevicauda spec. nov., Japalura yulongensis spec. nov., Japalura flaviceps, Japalura batangensis, Japalura zhaoermii Introduction Currently the genus Japalura (sensu lato) comprises 26 recognized species (Manthey 2010). J. kaulbacki Smith, 1937 was transferred into the genus Pseudocalotes (Mahony 2010) and revalidation of the genus Oriotiaris by Käs- tle & Schleich (1998) for Japalura species with a naked tympanum has been questioned by several authors (e.g.
    [Show full text]
  • On the Occurrences of Japalura Kumaonensis and Japalura Tricarinata (Reptilia: Sauria: Draconinae) in China
    Herpetologica, 74(2), 2018, 181–190 Ó 2018 by The Herpetologists’ League, Inc. On the Occurrences of Japalura kumaonensis and Japalura tricarinata (Reptilia: Sauria: Draconinae) in China 1,2 3,4 5 6 7 3,4 1 KAI WANG ,KE JIANG ,V.DEEPAK ,DAS ABHIJIT ,MIAN HOU ,JING CHE , AND CAMERON D. SILER 1 Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, OK 73072, USA 3 Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Menglun, Yunnan 666303, China 5 Center for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka 560012, India 6 Wildlife Institute of India, Chandrabani, Dehradun 248002, India 7 Academy of Continuing Education, Sichuan Normal University, Chengdu, Sichuan 610068, China ABSTRACT: Although the recognized distribution of Japalura kumaonensis is restricted largely to western Himalaya, a single, isolated outlier population was reported in eastern Himalaya at the China-Nepal border in southeastern Tibet, China in Zhangmu, Nyalam County. Interestingly, subsequent studies have recognized another morphologically similar species, J. tricarinata, from the same locality in Tibet based on photographic evidence only. Despite these reports, no studies have examined the referred specimens for either record to confirm their taxonomic identifications with robust comparisons to congener species. Here, we examine the referred specimen of the record of J. kumaonensis from southeastern Tibet, China; recently collected specimens from the same locality in southeastern Tibet; type specimens; and topotypic specimens of both J. kumaonensis and J. tricarinata, to clarify the taxonomic identity of the focal population from southeastern Tibet, China.
    [Show full text]
  • Notes on Some Dietary Items of Eutropis Longicaudata
    Herpetology Notes, volume 5: 453-456 (2012) (published online on 7 October 2012) Notes on some dietary items of Eutropis longicaudata (Hallowell, 1857), Japalura polygonata xanthostoma Ota, 1991, Plestiodon elegans (Boulenger, 1887), and Sphenomorphus indicus (Gray, 1853) from Taiwan Gerrut Norval 1,*, Shao-Chang Huang 2, Jean-Jay Mao 3, and Stephen R. Goldberg 4 An understanding of the natural history and ecology of length (SVL) and tail length (TL) were measured to the reptile and amphibian species is essential for successful nearest mm with a transparent plastic ruler; and the tail conservation and management programs (Bury, 2006). A was scored as complete or broken. The E. longicaudata crucial part of the natural history of an animal is its diet, were weighed (body mass) to the nearest 0.1g with a because not only does it reveal the source of the animal’s digital scale, but since the specimens from northern energy for growth, maintenance, and/or reproduction Taiwan were partially dissected and not intact, their (Dunham, Grant and Overall, 1989; Zug et al., 2001), it body masses were not recorded. All the lizards were also indicates part of the ecological roles of the animal. dissected by making a mid-ventral incision, and the Since there may be temporal and spatial variations stomach was removed and slit longitudinally, after in the diet of a species (e.g. Lahti and Beck, 2008; which the stomach content was removed. The stomach Rodríguez et al., 2008; Goodyear and Pianka, 2011), contents were spread in a petri dish and examined under there is a need for dietary descriptions from different a dissection microscope, and all the prey items were localities.
    [Show full text]
  • An Updated and Annotated List of Indian Lizards (Reptilia: Sauria) Based on a Review of Distribution Records and Checklists of Indian Reptiles
    JoTT REVIEW 2(3): 725-738 An updated and annotated list of Indian lizards (Reptilia: Sauria) based on a review of distribution records and checklists of Indian reptiles P. Dilip Venugopal Department of Entomology, University of Maryland, 4124 Plant Sciences Building, College Park, MD 20742-4454, USA Email: [email protected] Date of publication (online): 26 March 2010 Abstract: Over the past two decades many checklists of reptiles of India and adjacent Date of publication (print): 26 March 2010 countries have been published. These publications have furthered the growth of ISSN 0974-7907 (online) | 0974-7893 (print) knowledge on systematics, distribution and biogeography of Indian reptiles, and the field Editor: Aaron Bauer of herpetology in India in general. However, the reporting format of most such checklists of Indian reptiles does not provide a basis for direct verification of the information presented. Manuscript details: As a result, mistakes in the inclusion and omission of species have been perpetuated Ms # o2083 and the exact number of reptile species reported from India still remains unclear. A Received 21 October 2008 Final received 31 December 2009 verification of the current listings based on distributional records and review of published Finally accepted 14 February 2010 checklists revealed that 199 species of lizards (Reptilia: Sauria) are currently validly reported on the basis of distributional records within the boundaries of India. Seventeen Citation: Venugopal, P.D. (2010). An updated other lizard species have erroneously been included in earlier checklists of Indian reptiles. and annotated list of Indian lizards (Reptilia: Omissions of species by these checklists have been even more numerous than Souria) based on a review of distribution records and checklists of Indian reptiles.
    [Show full text]
  • Reptilia: Agamidae: Diploderma) from the D
    ZOOLOGICAL RESEARCH A new species of Mountain Dragon (Reptilia: Agamidae: Diploderma) from the D. dymondi complex in southern Sichuan Province, China DEAR EDITOR, (Boulenger, 1906). Based on this diagnosis, all populations of Diploderma in Southwest China with exposed tympana were Despite continuous studies on the cryptic diversity of the identified historically as D. dymondi, and the species was Diploderma flaviceps complex in Southwest China for the past recorded to have a wide distribution in Southwest China, decade, little attention has been given to other widespread including along the Nu River (=Salween) Basin in congeners in China. Combining both morphological and northwestern Yunnan Province (Wu, 1992; Yang & Rao, 2008; phylogenetic data, we describe a new species of Diploderma Zhao et al., 1999), the lower Jinsha River Basin in northern from populations identified previously as D. dymondi in the Yunnan Province and southern Sichuan Province (Boulenger, lower Yalong River Basin in southern Sichuan Province. The 1906; Deng & Jiang, 1998; Zhao et al., 1999; Zhao, 2003), the new species is morphologically most similar to D. dymondi central parts of the Yunnan-Guizhou Plateau (Boulenger, and D. varcoae, but it can be differentiated by a considerable 1906), and the Yalong River Basin in Sichuan Province (Deng genetic divergence and a suite of morphological characters, & Jiang, 1998; Zhao et al., 1999; Zhao, 2003; Figure 1). including having taller nuchal crest scales, smaller tympana, However, later taxonomic works revealed distinct species and a distinct oral coloration. Additionally, we discuss other among the populations identified previously as D. dymondi, putative species complexes within the genus Diploderma in including D.
    [Show full text]
  • A New Subspecies of the Agamid Lizard, Japalura Polygonata (Hallowell, 1861) (Reptilia: Squamata), from Yonagunijima Island of the Yaeyama Group, Ryukyu Archipelago
    Current Herpetology 22 (2): 61-71, December 2003 (C) 2003 by The Herpetological Society of Japan A New Subspecies of the Agamid Lizard, Japalura polygonata (Hallowell, 1861) (Reptilia: Squamata), from Yonagunijima Island of the Yaeyama Group, Ryukyu Archipelago HIDETOSHI OTA Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213. JAPAN Abstract: Japalura polygonata, occurring in the East Asian islands, is currently divided into three subspecies-J. p. polygonata from the Amami and Okinawa Groups of the central Ryukyus, J. p. ishigakiensis from the Miyako and Yaeyama Groups of the southern Ryukyus, and J. p. xanthostoma from northern Taiwan. A new subspecies is described for this species from Yonagunijima Island of the Yaeyama Group. This subspecies differs from other conspecific subspecies in having distinctly enlarged and irregularly arranged scales on the dorsolateral surface of the body. In other subspecies, the degree of enlargement of such scales is smaller, and they usually form somewhat regular rows in a transverse direction on the flanks, and in a longitu- dinal direction in the paravertebral region. Males of the present subspecies differ from those of other subspecies in having a series of large white spots against a dark grayish tan on the dorsolateral surface of the body, whereas the females are characterized by brilliant green dorsal coloration. Key words: Japalura polygonata; New subspecies; Reptilia; Geographic variation; Yonagunijima Island; Ryukyu Archipelago INTRODUCTION graphic range of the genus (and actually of the family Agamidae as well), being distributed in The agamid genus Japalura consists of 24 northern Taiwan and most islands of the species and two subspecies distributed from Ryukyus south of the Tokara Group.
    [Show full text]
  • Contributions to the Herpetology of South-Asia (Nepal, India)
    I Veröffentlichungen ARCO Contributions to the Herpetology of South-Asia (Nepal, India) Herausgeber: Prof. Dr. H. Hermann Schleich/ ARCO-Nepal, München Online Version, 20 17 , unv erändert, ISBN 97 8 -3-947 497 - 0 1-0 Eds.: Schleich, H.H. & Kästle, W., Druck v ersion 1998 Schleich & Kästle (Ed.): Contributions to the Herpetology of S-Asia (Nepal, India) II Veröffentlichungen aus dem Fuhlrott-Museum, Bd. 4 III Veröffentlichungen aus dem Fuhlrott-Museum Herausgeber: Prof. Dr. H. Hermann Schleich Bd. 4: 1-322; Wuppertal, März 1998 Contributions to the Herpetology of South-Asia (Nepal, India) Ed.: Schleich, H.H. & Kästle, W. Schleich & Kästle (Ed.): Contributions to the Herpetology of S-Asia (Nepal, India) IV Veröffentlichungen ARCO, 2017 -online ISBN 978-3-947497-01-0 Veröffentlichungen aus dem Fuhlrott-Museum Wuppertal ISSN 1434-8276 ISBN 3-87429-404-8 Herausgeber: Prof. Dr. H. Hermann Schleich Copyright: Alle Rechte beim Herausgeber Für den Inhalt der Beiträge sind die Autoren allein verantwortlich Veröffentlichungen aus dem Fuhlrott-Museum, 1998, Bd. 4 V Contributions to the Herpetology of South-Asia (Nepal, India) Ed.: Schleich, H.H. & Kästle, W. CONTENTS page AMPHIBIANS Studies on Tylototriton verrucosus (Amphibia: Caudata) ton verruco sus from N Anders, C. C., Schleich, H. H. & Shah, K.B.: Contributions to the Biology of Tylototriton verrucosus Anderson 1871 from East Nepal (Amphibia: Caudata, Salamandridae) 1 Anders, C.C., El-Matbuli, M & Hoffmann, R.W.: Oxyurid Nematode Parasite of the Intestine of Tylototriton verrucosus Ander- son 1871 27 Haller-Probst, M.: Contributions to the Osteology of Tylototriton verruco- sus Anderson 1871 and T. shanjing Nussbaum et al.
    [Show full text]
  • Updated Checklist of Indian Reptiles R
    Updated Checklist of Indian Reptiles R. Aengals, V.M. Sathish Kumar & Muhamed Jafer Palot* Southern Regional Centre, Zoological Survey of India, Chennai-600 028 *Western Ghat Regional Centre, Zoological Survey of India, Calicut-673 006 Corresponding author: [email protected] INTRODUCTION Reptiles are cold-blooded animals found in almost all the parts of the world, except the very cold regions. In India, all the three living orders of reptiles have their representatives - Crocodylia (crocodiles), Testudines (turtles and tortoises) and Squamata (lizards and snakes). The diversified climate, varying vegetation and different types of soil in the country form a wide range of biotopes that support a highly diversified reptilian fauna. The Western Ghats, Eastern Himalaya, and the Andaman and Nicobar Islands are endowed with varied and unique reptilian fauna. The monumental works on Indian reptiles are, ‘The Reptiles of British India’ by Gunther (1864), ‘Fauna of British India - ‘Reptilia and Batrachia’ by Boulenger (1890) and Smith (1931, 1935, 1943). The work of Smith stood the test of time and forms the standard work on the subject. Further contributions were made by Tiwari & Biswas (1973), Sharma (1977, 1978, 1981, 1998, 2002, 2007), Murthy (1985, 1994, 2010), Das (1991, 1994, 1996, 1997, 2003), Tikedar & Sharma (1992), Das & Bauer (2000), Das & Sengupta (2000), Daniel (2002), Whitaker and Captain (2004), Sharma (2007), Thrope et. al. (2007), Mukherjee and Bhupathy (2007), Gower and Winkler (2007), Manamendra-Arachchi et al. (2007), Das and Vijayakumar (2009), Giri (2008), Giri & Bauer (2008), Giri, et al. (2009a), Giri et al.(2009b), Zambre et al. (2009), Haralu (2010), Pook et al.(2009), Van Rooijen and Vogel (2009), Mahony (2009, 2010) and Venugopal (2010).
    [Show full text]
  • Sexual Size and Shape Dimorphism in an Agamid Lizard, Japalura
    Zoological Studies 48(3): 351-361 (2009) Sexual Size and Shape Dimorphism in an Agamid Lizard, Japalura swinhonis (Squamata: Lacertilia: Agamidae) Chi-Yun Kuo1,3,*, Yu-Teh Lin1,2, and Yao-Sung Lin1,2 1Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 106, Taiwan 2Department of Life Science, National Taiwan University, Taipei 106, Taiwan 3Biodiversity Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan (Accepted August 7, 2008) Chi-Yun Kuo, Yu-Teh Lin, and Yao-Sung Lin (2009) Sexual size and shape dimorphism in an agamid lizard, Japalura swinhonis (Squamata: Lacertilia: Agamidae). Zoological Studies 48(3): 351-361. Sexual dimorphism in size and shape is a widespread phenomenon in the animal kingdom. Sexual dimorphism in morphology can be explained in proximate (growth pattern/sampling effects) and ultimate (evolutionary payoffs) contexts. There are 3 mutually non-exclusive hypotheses for the evolution of sexual dimorphism: fecundity advantage, intersexual resource partitioning, and sexual selection, each of which can make specific predictions regarding a lizard’s morphology. In this study, we describe sexual dimorphism in size and shape in an agamid lizard, Japalura swinhonis, with discussions from both proximate and ultimate perspectives. The results showed that all body parts of males were larger than those of females. After the effect of body size was accounted for, males had proportionately longer and wider heads, and shorter limbs and body length. Sexual shape dimorphism can be proximately explained by different growth patterns between the 2 sexes. We found a correlation between morphology and perch habitat, but not between morphology and diet since the 2 sexes exhibited extensive dietary overlap.
    [Show full text]