Contributions to the Herpetology of South-Asia (Nepal, India)

Total Page:16

File Type:pdf, Size:1020Kb

Contributions to the Herpetology of South-Asia (Nepal, India) I Veröffentlichungen ARCO Contributions to the Herpetology of South-Asia (Nepal, India) Herausgeber: Prof. Dr. H. Hermann Schleich/ ARCO-Nepal, München Online Version, 20 17 , unv erändert, ISBN 97 8 -3-947 497 - 0 1-0 Eds.: Schleich, H.H. & Kästle, W., Druck v ersion 1998 Schleich & Kästle (Ed.): Contributions to the Herpetology of S-Asia (Nepal, India) II Veröffentlichungen aus dem Fuhlrott-Museum, Bd. 4 III Veröffentlichungen aus dem Fuhlrott-Museum Herausgeber: Prof. Dr. H. Hermann Schleich Bd. 4: 1-322; Wuppertal, März 1998 Contributions to the Herpetology of South-Asia (Nepal, India) Ed.: Schleich, H.H. & Kästle, W. Schleich & Kästle (Ed.): Contributions to the Herpetology of S-Asia (Nepal, India) IV Veröffentlichungen ARCO, 2017 -online ISBN 978-3-947497-01-0 Veröffentlichungen aus dem Fuhlrott-Museum Wuppertal ISSN 1434-8276 ISBN 3-87429-404-8 Herausgeber: Prof. Dr. H. Hermann Schleich Copyright: Alle Rechte beim Herausgeber Für den Inhalt der Beiträge sind die Autoren allein verantwortlich Veröffentlichungen aus dem Fuhlrott-Museum, 1998, Bd. 4 V Contributions to the Herpetology of South-Asia (Nepal, India) Ed.: Schleich, H.H. & Kästle, W. CONTENTS page AMPHIBIANS Studies on Tylototriton verrucosus (Amphibia: Caudata) ton verruco sus from N Anders, C. C., Schleich, H. H. & Shah, K.B.: Contributions to the Biology of Tylototriton verrucosus Anderson 1871 from East Nepal (Amphibia: Caudata, Salamandridae) 1 Anders, C.C., El-Matbuli, M & Hoffmann, R.W.: Oxyurid Nematode Parasite of the Intestine of Tylototriton verrucosus Ander- son 1871 27 Haller-Probst, M.: Contributions to the Osteology of Tylototriton verruco- sus Anderson 1871 and T. shanjing Nussbaum et al. 1995 (Amphibia: Caudata, Salamandridae) 35 Miscellanea Batrachologica Schleich, H.H. & Anders, C.C.: Tomopterna maskeyi spec. nov. from Nepal (Amphibia, Anura) 57 Anders, C.C., Diener, A. & Schleich, H.H.: First record of Polypedates taeniatus (Boulenger, 1906) from Nepal (Amphibia, Anura: Rhacophoridae) 73 REPTILES Studies on the Biology of the Genus Sitana (Sauria: Agamidae) Schleich, H.H., Kästle, W. & Shah, K.B.: Description of Sitana sivalen- sis spec. nov., (Sauria: Agamidae) from South Nepal 87 Schleich, H.H. & Kästle, W.: SEM Studies on the Morphology of Sitana sivalensis spec.nov. and Sitana ponticeriana Cuvier 1829 101 Kästle, W.: Studies on the Ecology and Behaviour of Sitana sivalensis spec. nov. 121 Schleich, H.H. & Kästle, W.: Sitana fusca spec.nov., a further Species from the Sitana sivalensis - Complex 207 Anders, C.C. & Schleich, H.H.: Brief Notes on the Anatomy of the Female Urogenital Tract of Sitana sivalensis 227 Schleich & Kästle (Ed.): Contributions to the Herpetology of S-Asia (Nepal, India) VI Studies on the Systematics and Biology of the Genus Japalura (Sauria: Agamidae) Kästle, W. & Schleich, H.H.: Notes on Comparative Ethology and Taxonomy of the Genus Japalura 233 Kästle,W. & Schleich, H.H.: Contributions to the Biology of Japalura kumaonensis (Annandale, 1907) 247 MISCELLANEA HERPETOLOGICA Schleich, H.H.& Kästle, W.: Description of Gonydactylus nepalensis spec. nov. from the Inner Terai of Far West Nepal (Reptilia: Sauria: Gekkonidae) 269 Schleich, H.H. & Maskey, T.M.: Necessity for a Turtle Conservation in Nepal 281 Maskey, T.M., Kölle, P., Hoffmann, R.W., Anders, C.C. & Schleich, H.H.: Disastrous Impact of Intestinal Infection in captive bred Gharial Hatchlings 291 FOSSILS Patnaik, R. & Schleich, H. H.: Fossil Microreptiles from Pliocene Siwalik Sediments of India 295 Bajpai, S., Sahni, A. & Schleich, H.H.: Late Cretaceous Gekkonid Egg Shells from the Deccan Intertrappeans of Kutch (India) 301 Sahni, A., Singh, S., Gaffney, E. & Schleich, H.H.:Reptilia from the Intertrappean Beds of Bombay (India) 307 ARCO NEPAL e.V. ARCO Nepal e.V. - Society for Amphibian and Reptile Conservation of Nepal 321 Veröffentlichungen aus dem Fuhlrott-Museum, 1998, Bd. 4:1-26 1 Studies on Tylototriton verrucosus (Amphibia: Urodela) Contributions to the Biology of Tylototriton verrucosus Anderson, 1871 from East Nepal (Amphibia: Caudata, Salamandridae) Christiane C. Anders*, H. Hermann Schleich** & Karan B. Shah *** Key words: Zoology, morphology, anatomy; ecology, habitats; Tylototriton verrucosus; East-Nepal Abstract: Data on the biology of Tylototriton verrucosus from East Nepal are given and compared with other distributional records. Five different localities were sampled and analysed. Morphological and biometrical investigations were carried out on locally diffe- rent populations, and their colourations are described. The urogenital system of both sexes is described and illustrated, seasonal dynamics in the sex ratio are supposed. Sexual dimorphism and oophagy in this salamander species is reported. Food composition and stomach contents are analysed. Statements on research and conservation status are given. Introduction Regarding the quotations on the biology of Tylototriton verrucosus, there are many contradictions presented in the different publications. The breeding behaviour, the reproductive mode and the distribution (esp. Nepal) is discussed controversial, or is uncertain in the available literature. Furthermore the conservation status of T.verrucosus for Nepal is reported as unknown (Shah, 1995), whereas in India the newt is treated as an endangered species (Dasgupta, 1990). One of the causes for taxonomical confusions surely were the former description of two colour morphs, now recognized as different species. This concept was recognized and worked out by Nussbaum et al. (1995) with the designation of a new species for the orange-patterned form (now: Tylototriton shanjing Nussbaum et al. 1995) and restriction of T. verrucosus to the westernmost distributed brownish form. Further information concerning possible differencies in the behaviour between the two species, a detailed delimitation of the species range and a verification of the data for each locality record of T.verrucosus are still lacking. * Zoological State Collection, Münchhausenstr. 21, D-81247 Munich, Germany. ** Fuhlrott-Museum, Auer Schulstr. 20, D-42103-Wuppertal, Germany. *** Natural History Museum, Tribhuwan University, Kathmandu, Nepal. Schleich & Kästle (Ed.): Contributions to the Herpetology of S-Asia (Nepal, India) 2 The first notice for the occurence of Tylototriton verrucosus from Nepal was given by Soman (1966), and subsequent publications were only provided by Shresta (1981, 1984, 1989 & 1994). A most recent publication (Gruber, 1996) states that the record and description of T. verrucosus from Nepal is still lacking. Thus, numerous questions still exist particularly regarding the populations from Nepal, and their comparison with neighbouring populations from the adjacent Darjeeling region. Due to Nussbaum et al. (1995) the possibility should not be disregarded, that T. verrucosus contains more than one subspecies, because of the morphometric variation within that species. It is one of the aims of the present paper to report on all available informations we collected on the biology of T. verrucosus during field activities in May to June 1996 in East-Nepal. Historical review The original description by Anderson (1871) and repetitive summaries by Boulenger (1882,1890) and Smith (1924) were the few mentionable publications on Tylototriton verrucosus for nearly a century. Thorn (1968) provided a clear summary of the genus. Nussbaum & Brodie (1982) divided the genus into Tylototriton and Echinotriton. Zhao & Hu (1988) gave a new definition for Echinotriton as a subgenus, but later Zhao (1990) recognized the generic status of Echinotriton. Descriptions of the reproductive behaviour were given in Annandale (1907,1908), Shresta (1989,1994) and Scholz (1993) as well as in publications concerning animals from pet trade like Mudrack (1969, 1972), Rehberg (1986), Nietzke (1989), Menzer (1991) and Raaijmakers (1992). Information regarding parental care were mentioned by Dasgupta (1984) and Shresta (1989,1994). Observations on the larval stages of Tylototriton verrucosus were supplied by Boulenger (1920), Smith (1924), Shresta (1989) and Dasgupta (1988). Further data on general ethology were provided by Wongratana (1984), Brodie et al. (1984) and Shresta (1989). Habitats were described by Chaudhuri (1966), Shresta (1984) and Dasgupta (1990). Investigations concerning the status as an endangered form were made by Shresta (1989,1996a), Dasgupta & Dasgupta (1990) and Dasgupta (1990, 1993, 1994). Accounts of climatic conditions in the habitats, as well as a report on the accompanying flora and fauna, the description of larvae and some Protozoan blood parasites of Tylototriton verrucosus from Darjeeling (N. India) is presented with the Ph. Dissertation of Dasgupta (1994). Investigations on the ecology of populations from Darjeeling were made by Kuzmin et al. (1994). An important survey on the feeding ecology of adult T. verrucosus from Darjeeling was published by Dasgupta in 1996. Recently the species was treated as Pleurodeles verrucosus by Dutta (1992 &1997), following the publication of Dubois (1987), who stated the genus Pleurodeles for Tylototriton verrocosus. The genus Tylototriton in South-East Asia Distribution (fig. 1) and Taxa Tylototriton Anderson, 1871 Type species: Tylototriton verrucosus ANDERSON, 1871, by monotypy. According to the partitioning of the genus and the placement of two species (andersoni and chinhaiensis) in the genus Echinotriton gen. nov. by Nussbaum & Brodie,1982 and the taxonomic review of T. verrucosus with the description of the orange-patterned
Recommended publications
  • Cfreptiles & Amphibians
    WWW.IRCF.ORG TABLE OF CONTENTS IRCF REPTILES &IRCF AMPHIBIANS REPTILES • VOL &15, AMPHIBIANS NO 4 • DEC 2008 • 189 27(2):288–292 • AUG 2020 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES . Chasing BullsnakesAmphibians (Pituophis catenifer sayi) in Wisconsin: of the Melghat, On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 . The Shared History of TreeboasMaharashtra, (Corallus grenadensis) and Humans on Grenada: India A Hypothetical Excursion ............................................................................................................................Robert W. Henderson 198 RESEARCH ARTICLES Hayat A. Qureshi and Gajanan A. Wagh . Biodiversity Research Laboratory,The Texas Horned Department Lizard in of Central Zoology, and ShriWestern Shivaji Texas Science ....................... College, Emily Amravati, Henry, Jason Maharashtra–444603, Brewer, Krista Mougey, India and Gad (gaj [email protected]) 204 . The Knight Anole (Anolis equestris) in Florida .............................................Brian J. Camposano,Photographs Kenneth L. Krysko, by the Kevin authors. M. Enge, Ellen M. Donlan, and Michael Granatosky 212 CONSERVATION ALERT . World’s Mammals in Crisis ............................................................................................................................................................. 220 . More Than Mammals .....................................................................................................................................................................
    [Show full text]
  • Gliding Dragons and Flying Squirrels: Diversifying Versus Stabilizing Selection on Morphology Following the Evolution of an Innovation
    vol. 195, no. 2 the american naturalist february 2020 E-Article Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation Terry J. Ord,1,* Joan Garcia-Porta,1,† Marina Querejeta,2,‡ and David C. Collar3 1. Evolution and Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia; 2. Institute of Evolutionary Biology (CSIC–Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, Barcelona 08003, Spain; 3. Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606 Submitted August 1, 2018; Accepted July 16, 2019; Electronically published December 17, 2019 Online enhancements: supplemental material. Dryad data: https://doi.org/10.5061/dryad.t7g227h. fi abstract: Evolutionary innovations and ecological competition are eral de nitions of what represents an innovation have been factors often cited as drivers of adaptive diversification. Yet many offered (reviewed by Rabosky 2017), this classical descrip- innovations result in stabilizing rather than diversifying selection on tion arguably remains the most useful (Galis 2001; Stroud morphology, and morphological disparity among coexisting species and Losos 2016; Rabosky 2017). Hypothesized innovations can reflect competitive exclusion (species sorting) rather than sympat- have drawn considerable attention among ecologists and ric adaptive divergence (character displacement). We studied the in- evolutionary biologists because they can expand the range novation of gliding in dragons (Agamidae) and squirrels (Sciuridae) of ecological niches occupied within communities. In do- and its effect on subsequent body size diversification. We found that gliding either had no impact (squirrels) or resulted in strong stabilizing ing so, innovations are thought to be important engines of selection on body size (dragons).
    [Show full text]
  • Craig Hilton-Taylor IUCN Red List Programme, Cambridge, UK Email: [email protected]
    PROCEEDINGS OF A GLOBAL SYNTHESIS WORKSHOP ON 1 'BIODIVERSITY LOSS AND SPECIES EXTINCTIONS: MANAGING RISK IN A CHANGING WORLD' OPENING PLENARY The 2004 IUCN Red List of Threatened Species. A Global Species Assessment Craig Hilton-Taylor IUCN Red List Programme, Cambridge, UK Email: [email protected] Introduction The global community has recognized that the loss of biodiversity must be stemmed. In 2002, the World Summit on Sustainable Development re-affirmed the commitment of Parties to the Convention on Biological Diversity (CBD) to reduce the rate of biodiversity loss by 2010. Achieving this goal (itself only the first step towards halting, and eventually reversing, biodiversity loss) will require concerted and well-focused action, not just by Governments but also by a very wide range of organizations and individuals (Oteng-Yeboah, this Congress). As the world begins to respond to the current crisis of biodiversity loss, information on the overall status of biodiversity, the rate it is being lost, where it is being lost, and the causes of decline, is essential in order to design and implement effective conservation strategies and to communicate the scope and severity of the problem. The ability to monitor changes in the status of biodiversity is also essential for measuring our success or failure in halting biodiversity loss. However, providing this information is a large and complex task and requires multiple measures to assess the status and trends of the many aspects of biodiversity. For example, different measures may be necessary to assess genes, populations, species, and ecosystems. The IUCN Red List of Threatened Species™, hereafter referred to as the IUCN Red List, is one approach for assessing and monitoring the status of biodiversity and one which provides a key tool for monitoring progress towards the achievement of the 2010 goal.
    [Show full text]
  • From the Nu River Valley in Southern Hengduan Mountains, Yunnan, China
    Asian Herpetological Research 2017, 8(2): 86–95 ORIGINAL ARTICLE DOI: 10.16373/j.cnki.ahr.160053 A New Species of Japalura (Squamata, Agamidae) from the Nu River Valley in Southern Hengduan Mountains, Yunnan, China Dingqi RAO1*, Jens V. VINDUM2, Xiaohui MA1, Mingxia FU1 and Jeffery A. WILKINSON2* 1 Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China 2 Department of Herpetology, California Academy of Sciences, 55 Concourse Drive, Golden Gate Park, San Francisco, California 94118, USA Abstract A population of Japalura from Yunnan Province, China, previously assigned to Japalura splendida, is described as a new species. The new species has been recorded between 1 138–2 500 m in the Nu River drainage between the towns of Liuku and Binzhongluo, and on the lower western slopes of the Nushan and eastern slopes of the Goaligongshan. The new species can be distinguished from other species of Japalura, except J. dymondi, by the following combination of characters: exposed tympani, prominent dorso-lateral stripes, and small gular scales. It is very similar with but differs from J. dymondi by having smooth or feebly keeled dorsal head scales, three relatively enlarged spines on either side of the post-occiput area, strongly keeled and mucronate scales on occiput area and within the lateral stripes, back of arm and leg green, higher number of dorsal-ridge scales (DS) and fourth toe subdigital scales (T4S). A principal component analysis of body measurements of adult male specimens of the new species and J. dymondi showed principal component 1 loading highest for upper arm length, fourth toe length and snout to eye length and principal component 2 loading highest for head width, head length and fourth toe length.
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters David F
    Brigham Young University Science Bulletin, Biological Series Volume 12 | Number 3 Article 1 1-1971 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Department of Biology, Southern Connecticut State College, New Haven, Connecticut Wilmer W. Tanner Department of Zoology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Avery, David F. and Tanner, Wilmer W. (1971) "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters," Brigham Young University Science Bulletin, Biological Series: Vol. 12 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol12/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. S-^' Brigham Young University f?!AR12j97d Science Bulletin \ EVOLUTION OF THE IGUANINE LIZARDS (SAURIA, IGUANIDAE) AS DETERMINED BY OSTEOLOGICAL AND MYOLOGICAL CHARACTERS by David F. Avery and Wilmer W. Tanner BIOLOGICAL SERIES — VOLUME Xil, NUMBER 3 JANUARY 1971 Brigham Young University Science Bulletin
    [Show full text]
  • Amphibian Community Structure Along Elevation Gradients in Eastern Nepal Himalaya Janak R
    Khatiwada et al. BMC Ecol (2019) 19:19 https://doi.org/10.1186/s12898-019-0234-z BMC Ecology RESEARCH ARTICLE Open Access Amphibian community structure along elevation gradients in eastern Nepal Himalaya Janak R. Khatiwada1,2, Tian Zhao1* , Youhua Chen1, Bin Wang1, Feng Xie1, David C. Cannatella3 and Jianping Jiang1 Abstract Background: Species richness and composition pattern of amphibians along elevation gradients in eastern Nepal Himalaya are rarely investigated. This is a frst ever study in the Himalayan elevation gradient, the world’s highest mountain range and are highly sensitive to the efects of recent global changes. The aim of the present study was to assess amphibian community structure along elevation gradients and identify the potential drivers that regulate community structures. Amphibian assemblages were sampled within 3 months in both 2014 and 2015 (from May to July) using nocturnal time constrained and acoustic aids visual encounter surveys. In total, 79 transects between 78 and 4200 m asl were sampled within 2 years feld work. A combination of polynomial regression, generalized linear models, hierarchical partitioning and canonical correspondence analysis were used to determine the efects of eleva- tion and environmental variables on species richness, abundance, and composition of amphibian communities. Results: Species richness and abundance declined linearly with increasing elevation, which did not support the Mid- Domain Model. Among all the environmental variables, elevation, surface area and humidity were the best predictors of species richness, abundance and composition of amphibians. The majority of amphibian species had narrow eleva- tion ranges. There was no signifcant correlation between species range size and elevation gradients.
    [Show full text]
  • NHBSS 061 1G Hikida Fieldg
    Book Review N$7+IST. BULL. S,$0 SOC. 61(1): 41–51, 2015 A Field Guide to the Reptiles of Thailand by Tanya Chan-ard, John W. K. Parr and Jarujin Nabhitabhata. Oxford University Press, New York, 2015. 344 pp. paper. ISBN: 9780199736492. 7KDLUHSWLOHVZHUHÀUVWH[WHQVLYHO\VWXGLHGE\WZRJUHDWKHUSHWRORJLVWV0DOFROP$UWKXU 6PLWKDQG(GZDUG+DUULVRQ7D\ORU7KHLUFRQWULEXWLRQVZHUHSXEOLVKHGDV6MITH (1931, 1935, 1943) and TAYLOR 5HFHQWO\RWKHUERRNVDERXWUHSWLOHVDQGDPSKLELDQV LQ7KDLODQGZHUHSXEOLVKHG HJ&HAN-ARD ET AL., 1999: COX ET AL DVZHOODVPDQ\ SDSHUV+RZHYHUWKHVHERRNVZHUHWD[RQRPLFVWXGLHVDQGQRWJXLGHVIRURUGLQDU\SHRSOH7ZR DGGLWLRQDOÀHOGJXLGHERRNVRQUHSWLOHVRUDPSKLELDQVDQGUHSWLOHVKDYHDOVREHHQSXEOLVKHG 0ANTHEY & GROSSMANN, 1997; DAS EXWWKHVHERRNVFRYHURQO\DSDUWRIWKHIDXQD The book under review is very well prepared and will help us know Thai reptiles better. 2QHRIWKHDXWKRUV-DUXMLQ1DEKLWDEKDWDZDVP\ROGIULHQGIRUPHUO\WKH'LUHFWRURI1DWXUDO +LVWRU\0XVHXPWKH1DWLRQDO6FLHQFH0XVHXP7KDLODQG+HZDVDQH[FHOOHQWQDWXUDOLVW DQGKDGH[WHQVLYHNQRZOHGJHDERXW7KDLDQLPDOVHVSHFLDOO\DPSKLELDQVDQGUHSWLOHV,Q ZHYLVLWHG.KDR6RL'DR:LOGOLIH6DQFWXDU\WRVXUYH\KHUSHWRIDXQD+HDGYLVHGXV WRGLJTXLFNO\DURXQGWKHUH:HFROOHFWHGIRXUVSHFLPHQVRIDibamusZKLFKZHGHVFULEHG DVDQHZVSHFLHVDibamus somsaki +ONDA ET AL 1RZ,DPYHU\JODGWRNQRZWKDW WKLVERRNZDVSXEOLVKHGE\KLPDQGKLVFROOHDJXHV8QIRUWXQDWHO\KHSDVVHGDZD\LQ +LVXQWLPHO\GHDWKPD\KDYHGHOD\HGWKHSXEOLFDWLRQRIWKLVERRN7KHERRNLQFOXGHVQHDUO\ DOOQDWLYHUHSWLOHV PRUHWKDQVSHFLHV LQ7KDLODQGDQGPRVWSLFWXUHVZHUHGUDZQZLWK H[FHOOHQWGHWDLO,WLVDYHU\JRRGÀHOGJXLGHIRULGHQWLÀFDWLRQRI7KDLUHSWLOHVIRUVWXGHQWV
    [Show full text]
  • Zootaxa, a New Species of Japalura (Reptilia: Agamidae) from Northeast
    Zootaxa 2212: 41–61 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) A new species of Japalura (Reptilia: Agamidae) from northeast India with a discussion of the similar species Japalura sagittifera Smith, 1940 and Japalura planidorsata Jerdon, 1870 STEPHEN MAHONY Madras Crocodile Bank Trust, Post Bag 4, Mamallapuram, Tamil Nadu 603 104, India. E-mail: [email protected] Abstract A new species of the agamid genus Japalura is described, based on three specimens from Mizoram, northeast India. Japalura otai sp. nov. is most similar to J. planidorsata and J. sagittifera and can be distinguished from all congeners by the following combination of characters: adult size (SVL male 46.4 mm, female 52.2–58.7 mm), tail length/SVL ratio 160.5–187.5%, 10–11 supralabials, 9–12 infralabials, 45–47 middorsal scales, 17–20 lamellae under finger IV, 20–22 lamellae under toe IV, tympanum concealed, axillary fold present, nuchal crest, gular fold and gular pouch absent, enlarged keeled dorsal scales present, body shape subquadrangular in cross section. Japalura sagittifera is here redescribed, a lectotype and a paralectotype designated and photographs of the type specimens made available for the first time. All known localities for these three species are provided. The status of the genus Oriotiaris which was recently revalidated is discussed in detail and again synonymized within Japalura. The currently recognised polyphyletic Japalura is discussed in relation to morphological characteristics. Key words: Lizard, Draconinae, Myanmar, Mizoram, Oriotiaris, Japalura otai sp. nov., description, redescription Introduction The genus Japalura Gray 1853, currently consists of 26 species which range from north-western India in the west, to Japan and Taiwan, off the east coast of China, north to Shaanxi province in northern China and south to northern Vietnam.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Phenotypic Variation and the Behavioral Ecology of Lizards
    Phenotypic Variation and the Behavioral Ecology of Lizards The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40046431 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Phenotypic Variation and the Behavioral Ecology of Lizards A dissertation presented by Ambika Kamath to The Department of Organismic and Evolutionary Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology Harvard University Cambridge, Massachusetts March 2017 © 2017 Ambika Kamath All rights reserved. Dissertation Advisor: Professor Jonathan Losos Ambika Kamath Phenotypic Variation and the Behavioral Ecology of Lizards Abstract Behavioral ecology is the study of how animal behavior evolves in the context of ecology, thus melding, by definition, investigations of how social, ecological, and evolutionary forces shape phenotypic variation within and across species. Framed thus, it is apparent that behavioral ecology also aims to cut across temporal scales and levels of biological organization, seeking to explain the long-term evolutionary trajectory of populations and species by understanding short-term interactions at the within-population level. In this dissertation, I make the case that paying attention to individuals’ natural history— where and how individual organisms live and whom and what they interact with, in natural conditions—can open avenues into studying the behavioral ecology of previously understudied organisms, and more importantly, recast our understanding of taxa we think we know well.
    [Show full text]
  • Vol. 25 No. 1 March, 2000 H a M a D R Y a D V O L 25
    NO.1 25 M M A A H D A H O V D A Y C R R L 0 0 0 2 VOL. 25NO.1 MARCH, 2000 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% HAMADRYAD Vol. 25. No. 1. March 2000 Date of issue: 31 March 2000 ISSN 0972-205X Contents A. E. GREER & D. G. BROADLEY. Six characters of systematic importance in the scincid lizard genus Mabuya .............................. 1–12 U. MANTHEY & W. DENZER. Description of a new genus, Hypsicalotes gen. nov. (Sauria: Agamidae) from Mt. Kinabalu, North Borneo, with remarks on the generic identity of Gonocephalus schultzewestrumi Urban, 1999 ................13–20 K. VASUDEVAN & S. K. DUTTA. A new species of Rhacophorus (Anura: Rhacophoridae) from the Western Ghats, India .................21–28 O. S. G. PAUWELS, V. WALLACH, O.-A. LAOHAWAT, C. CHIMSUNCHART, P. DAVID & M. J. COX. Ethnozoology of the “ngoo-how-pak-pet” (Serpentes: Typhlopidae) in southern peninsular Thailand ................29–37 S. K. DUTTA & P. RAY. Microhyla sholigari, a new species of microhylid frog (Anura: Microhylidae) from Karnataka, India ....................38–44 Notes R. VYAS. Notes on distribution and breeding ecology of Geckoella collegalensis (Beddome, 1870) ..................................... 45–46 A. M. BAUER. On the identity of Lacerta tjitja Ljungh 1804, a gecko from Java .....46–49 M. F. AHMED & S. K. DUTTA. First record of Polypedates taeniatus (Boulenger, 1906) from Assam, north-eastern India ...................49–50 N. M. ISHWAR. Melanobatrachus indicus Beddome, 1878, resighted at the Anaimalai Hills, southern India .............................
    [Show full text]
  • Download Download
    HAMADRYAD Vol. 27. No. 2. August, 2003 Date of issue: 31 August, 2003 ISSN 0972-205X CONTENTS T. -M. LEONG,L.L.GRISMER &MUMPUNI. Preliminary checklists of the herpetofauna of the Anambas and Natuna Islands (South China Sea) ..................................................165–174 T.-M. LEONG & C-F. LIM. The tadpole of Rana miopus Boulenger, 1918 from Peninsular Malaysia ...............175–178 N. D. RATHNAYAKE,N.D.HERATH,K.K.HEWAMATHES &S.JAYALATH. The thermal behaviour, diurnal activity pattern and body temperature of Varanus salvator in central Sri Lanka .........................179–184 B. TRIPATHY,B.PANDAV &R.C.PANIGRAHY. Hatching success and orientation in Lepidochelys olivacea (Eschscholtz, 1829) at Rushikulya Rookery, Orissa, India ......................................185–192 L. QUYET &T.ZIEGLER. First record of the Chinese crocodile lizard from outside of China: report on a population of Shinisaurus crocodilurus Ahl, 1930 from north-eastern Vietnam ..................193–199 O. S. G. PAUWELS,V.MAMONEKENE,P.DUMONT,W.R.BRANCH,M.BURGER &S.LAVOUÉ. Diet records for Crocodylus cataphractus (Reptilia: Crocodylidae) at Lake Divangui, Ogooué-Maritime Province, south-western Gabon......................................................200–204 A. M. BAUER. On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803) ........................205–213 W. P. MCCORD,O.S.G.PAUWELS,R.BOUR,F.CHÉROT,J.IVERSON,P.C.H.PRITCHARD,K.THIRAKHUPT, W. KITIMASAK &T.BUNDHITWONGRUT. Chitra burmanica sensu Jaruthanin, 2002 (Testudines: Trionychidae): an unavailable name ............................................................214–216 V. GIRI,A.M.BAUER &N.CHATURVEDI. Notes on the distribution, natural history and variation of Hemidactylus giganteus Stoliczka, 1871 ................................................217–221 V. WALLACH.
    [Show full text]