Univerzita Karlova V Praze Přírodovědecká Fakulta

Total Page:16

File Type:pdf, Size:1020Kb

Univerzita Karlova V Praze Přírodovědecká Fakulta Univerzita Karlova v Praze Přírodovědecká fakulta Studijní program: Biologie Studijní obor: Obecná biologie Diverzita, ekologie a ekofyziologie sněžných řas Diversity, ecology and ecophysiology of snow algae Bakalářská práce Lenka Mikešová Vedoucí práce: RNDr. Linda Nedbalová, Ph.D. Praha, 2013 Prohlášení: Prohlašuji, že jsem závěrečnou práci zpracovala samostatně a že jsem uvedla všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu. V Praze, 17. 5. 2013 Podpis Poděkování: Na tomto místě bych ráda velmi poděkovala své školitelce RNDr. Lindě Nedbalové, Ph.D. za spoustu cenných rad a trpělivé a přátelské vedení mé bakalářské práce. Poděkování patří i mé rodině za jejich nezbytnou podporu a pomoc během celého studia. Abstrakt Trvalá i dočasná sněhová pokrývka polárních a horských oblastí je velmi extrémním habitatem. Přesto existují organismy, které toto prostředí obývají. Mezi významné zástupce kryosestonu patří zelené řasy z řádu Chlamydomonadales (Chlorophyta), které jsou známé z polárních a horských oblastí celého světa. Tyto organizmy, které obsadily sněžné prostředí pravděpodobně až sekundárně, dokázaly vyvinout různé ekofyziologické adaptace nezbytné k úspěšnému přežití v extrémních podmínkách. Nízké teploty a vysoká intenzita záření jsou hlavními faktory, kterým musí přítomné organizmy čelit. Mezi nejdůležitější mechanismy přežití patří přizpůsobení životních cyklů (například střídání odolných stádií a pohyblivých vegetativních stádií), syntéza a akumulace ochranných sekundárních karotenoidů, změna ve složení mastných kyselin membrán a u některých druhů snížení teplotního optima růstu. Právě tyto adaptace jsou v současnosti spolu se studiem diverzity hlavním předmětem výzkumu sněžných řas. Klíčová slova: Chlamydomonas, Chloromonas, sně žné řasy, živiny, životní cykly, psychrofilní, astaxanthin, polynenasycené mastné kyseliny Abstract Permanent and temporary snow cover in polar and mountain areas is a very extreme habitat. However, there are organisms that inhabit this environment. Green algae of the order Chlamydomonadales (Chlorophyta) belong among the important representatives of cryoseston, which are known from polar and mountain regions around the world. These organisms, which occupied the snow environment probably secondarily, developed different ecophysiological adaptations required for the successful survival in extreme conditions. Low temperatures and high levels of radiation are the main extreme factors that organisms must cope with. The most important survival mechanisms include the adaptation of life cycles (such as of the shifts between resistant stages and moving vegetative stages), accumulation of secondary carotenoids, changes in fatty acid composition of membranes and lowering of growth temperature optima in some species. These adaptations together with the study of diversity represent at present the main subjects of research of snow algae. Key words: Chlamydomonas, Chloromonas, snow algae, nutrients, life cycles, psychrophiles, astaxanthin, polyunsaturated fatty acids Obsah 1. Úvod......................................................................................................................... 2 2. Diverzita................................................................................................................... 3 2.1 Zelené řasy s bičíkatými stádii v životním cyklu (Chlamydomonadales)........ 3 2.2 Vývoj taxonomického postavení sněžných řas z řádu Chlamydomonadales ... 6 2.3 Zelené řasy bez bičíkatých stádií v životním cyklu.......................................... 9 2.4 Ostatní druhy fotoautotrofních mikroorganizmů............................................ 11 2.5 Rozšíření sněžných řas rodů Chlamydomonas a Chloromonas...................... 11 3. Ekologie ................................................................................................................. 13 3.1 Fyzikální vlastnosti sněhu .............................................................................. 13 3.2 Chemické vlastnosti sněhu ............................................................................. 14 3.3 Životní cykly sněžných řas............................................................................. 16 3.4 Interakce s ostatními mikroorganizmy ........................................................... 19 4. Ekofyziologie......................................................................................................... 21 4.1 Teplotní optima růstu...................................................................................... 21 4.2 Sekundární karotenoidy.................................................................................. 23 4.3 Složení mastných kyselin ............................................................................... 27 4.4 Fotosyntéza..................................................................................................... 30 5. Závěr ..................................................................................................................... 34 6. Seznam literatury .................................................................................................. 36 1 1. Úvod Fotoautotrofní mikroorganizmy (prokaryotní i eukaryotní) často najdeme v prostředí s trvale či periodicky se vyskytujícími extrémními hodnotami základních ekologických faktorů, jako je teplota, pH, tlak, salinita či záření (Seckbach 2007). Příkladem habitatu s extrémními podmínkami pro život je sněhová pokrývka, která zaujímá rozsáhlé plochy polárních a horských oblastí. Pro organismy, které nejsou na chlad adaptovány, mohou mít nízké teploty či dokonce teploty pod bodem mrazu za následek řadu letálních poškození buněk. Jedním z nich je zmrazení intracelulární vody, jelikož ledové krystaly mohou roztrhat buněčné struktury. Kvůli absenci vody v kapalném skupenství dochází často k zastavení metabolických procesů (Rothschild a Mancinelli 2001). Ve sněhu dochází ke střídání procesů vymrzání a tání a často bývá velmi chudý na obsah živin (Remias a kol. 2005). Oblasti se sněhovou pokrývkou bývají vystaveny vysoké intenzitě UV a viditelného záření, která může vést k poškození fotosyntetického aparátu a nukleových kyselin (přímo nebo prostřednictvím volných kyslíkových radikálů) (Rothschild a Mancinelli 2001). I přes velmi nehostinné podmínky existují mikroorganizmy, které se na prostředí sněhu specializovaly (Gomes a Steiner 2004). Jedná se především o řasy, které byly nalezeny ve sněhových polích celého světa (Kol 1968). Za tzv. „pravé“ sněžné řasy jsou považovány druhy, které se rozmnožují ve velmi specifickém prostředí, jakým je kapalná voda v tající sněhové pokrývce. Za příznivých podmínek tvoří nápadné barevné sněhy, které jsou významným fenoménem horských a polárních oblastí. Patří mezi ně především zelení bičíkovci z řádu Chlamydomonadales(Chlorophyta) (Stibal a Elster 2005). Sněžné řasy jsou ve svém prostředí významnými primárními producenty, kteří se podílí na koloběhu uhlíku (Williams a kol. 2003). Tyto extremofilní organismy představují unikátní modelovou skupinu pro studium adaptací na nízké teploty. Díky rychlému růstu v nízkých teplotách a produkci cenných organických látek mají také značný biotechnologický potenciál v oblastech enzymologie, molekulární biologie, medicíny, zpracování odpadu či v potravinářství (Hoham a Duval 2001). Bakalářská práce je shrnutím současných znalostí o taxonomickém složení a diverzitě sněžných řas, jejich ekologii a ekofyziologických přizpůsobeních, bez kterých by tyto organizmy nemohly obsadit unikátní habitat sněhové pokrývky. 2 2. Diverzita Barevný sníh byl známý již před mnoha staletími, avšak příčiny tohoto nápadného jevu zůstávaly dlouho neznámé. Nejprve se usuzovalo, že červené zbarvení sněhu je anorganického původu (Kol 1957). V roce 1819 Francis Bauer zkoumal vzorky červeného sněhu z oblasti Baffinova zálivu. Pod mikroskopem pozoroval stovky tmavě červených globulí, které nejprve přirovnával k pylovým zrnům a poté k houbovým organizmům. Pozorovaný organizmus nazval Uredo nivalis (Bauer 1819). Profesor N. Wille jako jeden z prvních vědců pozoroval červený sníh pod mikroskopem přímo na ledovci v Norsku. Zjistil, že původcem nápadného zbarvení jsou mikroorganizmy, konkrétně řasy. Popsal tak celosvětově rozšířený druh Chlamydomonas nivalis (Bauer) Wille, který může tvořit obrovskou biomasu a způsobovat výrazné červené nárosty (Kol 1957). Kol (1968) popsala vegetativní buňky Chlamydomonas nivalis jako elipsovité s centrálním pyrenoidem a dvěma kontraktilními vakuolami. Kulovité cysty mají tenkou zdrsnělou buněčnou stěnu a obsahují velké množství sekundárního karotenoidu astaxanthinu. Na základě těchto cyst s minimem determinačních znaků přítomných v č erveném sněhu bývá druh Chlamydomonas nivalis dodnes ze sněhu popisován. Je proto pravděpodobné, že se nejedná o jeden druh (ačkoliv v současnosti taxonomicky uznávaný), ale o komplex několika různých druhů (viz kapitola 2.2.). Na území bývalého Československa byly cysty Chlamydomonas nivalis poprvé nalezeny roku 1976 v Schustlerově zahrádce v Krkonoších (Fott a kol. 1978). Méně nápadný zelený sníh poprvé pozoroval již v 18. století profesor J.A. Czirbesz v Tatrách. Jako původci tohoto zbarvení bylo popsáno několik vláknitých řas z rodu Raphidonema, např. R. tatrae (Kol) Hind.nebo R. nivale Lagerh., která může způsobovat též růžové zbarvení (Kol 1957). 2.1. Zelené řasy s bičíkatými stádii v životním cyklu (Chlamydomonadales) Řasy tvořící barevné sněhy patří nejčastěji
Recommended publications
  • Variation in Snow Algae Blooms in the Coast Range of British Columbia
    ORIGINAL RESEARCH published: 15 April 2020 doi: 10.3389/fmicb.2020.00569 Variation in Snow Algae Blooms in the Coast Range of British Columbia Casey B. Engstrom, Kurt M. Yakimovich and Lynne M. Quarmby* Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada Snow algae blooms cover vast areas of summer snowfields worldwide, reducing albedo and increasing snow melt. Despite their global prevalence, little is known about the algae species that comprise these blooms. We used 18S and rbcL metabarcoding and light microscopy to characterize algae species composition in 31 snow algae blooms in the Coast Range of British Columbia, Canada. This study is the first to thoroughly document regional variation between blooms. We found all blooms were dominated by the genera Sanguina, Chloromonas, and Chlainomonas. There was considerable variation between blooms, most notably species assemblages above treeline were distinct from forested sites. In contrast to previous studies, the snow algae genus Chlainomonas was abundant and widespread in snow algae blooms. We found few taxa using traditional 18S metabarcoding, but the high taxonomic resolution of rbcL revealed Edited by: substantial diversity, including OTUs that likely represent unnamed species of snow algae. David Anthony Pearce, These three cross-referenced datasets (rbcL, 18S, and microscopy) reveal that alpine Northumbria University, United Kingdom snow algae blooms are more diverse than previously thought, with different species of Reviewed by: algae dominating different elevations. Stefanie Lutz, Keywords: snow, algae, microbiome, amplicon, rbcL, 18S, alpine, metabarcoding Agroscope, Switzerland Hanzhi Lin, University of Maryland Center for Environmental Science (UMCES), 1. INTRODUCTION United States *Correspondence: Each summer, vast areas of snow surface are colored red by snow algae blooms in polar and Lynne M.
    [Show full text]
  • The Symbiotic Green Algae, Oophila (Chlamydomonadales
    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 12-16-2016 The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Schultz University of Connecticut - Storrs, [email protected] Recommended Citation Schultz, Nikolaus, "The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History" (2016). Master's Theses. 1035. https://opencommons.uconn.edu/gs_theses/1035 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. The Symbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Eduard Schultz B.A., Trinity College, 2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Connecticut 2016 Copyright by Nikolaus Eduard Schultz 2016 ii ACKNOWLEDGEMENTS This thesis was made possible through the guidance, teachings and support of numerous individuals in my life. First and foremost, Louise Lewis deserves recognition for her tremendous efforts in making this work possible. She has performed pioneering work on this algal system and is one of the preeminent phycologists of our time. She has spent hundreds of hours of her time mentoring and teaching me invaluable skills. For this and so much more, I am very appreciative and humbled to have worked with her. Thank you Louise! To my committee members, Kurt Schwenk and David Wagner, thank you for your mentorship and guidance.
    [Show full text]
  • Evaluating Amplicon High–Throughput Sequencing Data of Microalgae Living in Melting Snow: Improvements and Limitations
    Fottea, Olomouc, 19(2): 115–131, 2019 115 DOI: 10.5507/fot.2019.003 Evaluating amplicon high–throughput sequencing data of microalgae living in melting snow: improvements and limitations Stefanie Lutz1*, Lenka Procházková2*, Liane G. Benning1, 3,4, Linda Nedbalová2,5 & Daniel Remias6 1GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; *Corresponding author e–mail: [email protected]; current address: Agroscope, Müller-Thurgau-Strasse 29, 8820 Wädenswil, Switzerland 2 Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic; *Corresponding author e–mail: [email protected] 3 School of Earth & Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK 4 Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany 5 The Czech Academy of Sciences, Institute of Botany, Dukelská 135, 379 82 Třeboň, Czech Republic 6 University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria Abstract: Melting snowfields are dominated by closely related green algae. Although microscopy–based classifi- cation are evaluable distinction tools, they can be challenging and may not reveal the diversity. High–throughput sequencing (HTS) allows for a comprehensive community evaluation but has been rarely used in such ecosystems. We found that assigning taxonomy to DNA sequences strongly depends on the quality of the reference databases. Furthermore, for an accurate identification, a combination of manual inspection of automated assignments, and oligotyping of the abundant 18S OTUs and ITS2 secondary structure analyses were needed. The use of one marker can be misleading because of low variability (18S) or the scarcity of references (ITS2).
    [Show full text]
  • Ecophysiology, Secondary Pigments and Ultrastructure of Chlainomonas Sp
    FEMS Microbiology Ecology Advance Access published February 15, 2016 Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared to Chlamydomonas nivalis forming red snow Running title: “Chlainomonas red snow” Research Article Keywords: astaxanthin, cryoflora, snow algae, spores, ultrastructure Thematic Issue “Polar and Alpine Microbiology” Remias Daniel1, Pichrtová Martina2, Pangratz Marion3, Lütz Cornelius4, Holzinger Andreas4* 1University of Applied Sciences Upper Austria, Wels, Austria; 2Charles University in Prague, Faculty of Science, Department of Botany, Prague, Czech Downloaded from Republic; 3University of Innsbruck, Institute of Pharmacy/Pharmacognosy, Austria; 4University of Innsbruck, Institute of Botany, Austria *Corresponding author: [email protected], Institute of Botany, Sternwartestr. 15, A-6020 Innsbruck. Telephone: +4351250751028, Fax: +4351250751099 http://femsec.oxfordjournals.org/ Abstract Red snow is a well-known phenomenon caused by microalgae thriving in alpine and Polar Regions during the melting season. Ecology and biodiversity of these organisms, which are adapted to low temperatures, high irradiance or freeze-thaw-events is still poorly understood. We compare two different snow by guest on March 1, 2016 habitats containing two different green algal genera in the European Alps, either blooming in seasonal rock-based snowfields (Chlamydomonas nivalis) or dominating waterlogged snow bedded over ice (Chlainomonas sp.). Despite morphological similarities of the red spores found at the snow surface, we investigate the differences in intracellular organization by light- and transmission electron microscopy and secondary pigments by chromatographic analysis in combination with mass spectrometry. Spores of Chlainomonas sp. show clear differences to Chlamydomonas nivalis in cell wall arrangement and plastid organization. Active photosynthesis at ambient temperatures indicates a high physiologic activity, despite no cell divisions are present.
    [Show full text]
  • Of New Zealand Alpine Algae for the Production of Secondary
    ISOLATION, CHARACTERISTATION AND SCREENING OF NEW ZEALAND ALPINE ALGAE FOR THE PRODUCTION OF SECONDARY METABOLITES IN PHOTOBIOREACTORS A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in Chemical and Process Engineering University of Canterbury By KISHORE GOPALAKRISHNAN Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand 2015 i DEDICATED TO MY BELOVED FATHER MR GOPALAKRISHNAN SUBRAMANIAN. ii ABSTRACT This inter-disciplinary thesis is concerned with the production of polyunsaturated fatty acids (PUFAs) from newly isolated and identified alpine microalgae, and the optimization of the temperature, photon flux density (PFD), and carbon dioxide (CO2) concentration for their mass production in an airlift photobioreactor (AL-PBR). Thirteen strains of microalgae were isolated from the alpine zone in Canyon Creek, Canterbury, New Zealand. Ten species were characterized by traditional means, including ultrastructure, and subjected to phylogenetic analysis to determine their relationships with other strains. Because alpine algae are exposed to extreme conditions, and such as those that favor the production of secondary metabolites, it was hypothesized that alpine strains could be a productive source of PUFAs. Fatty acid (FA) profiles were generated from seven of the characterized strains and three of the uncharacterized strains. Some taxa from Canyon Creek were already identified from other alpine and polar zones, as well as non-alpine zones. The strains included relatives of species from deserts, one newly published taxon, and two probable new species that await formal naming. All ten distinct species identified were chlorophyte green algae, with three belonging to the class Trebouxiophyceae and seven to the class Chlorophyceae.
    [Show full text]
  • Ecophysiology of Chloromonas Hindakii Sp. Nov. (Chlorophyceae), Causing Orange Snow Blooms at Different Light Conditions
    microorganisms Article Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), Causing Orange Snow Blooms at Different Light Conditions Lenka Procházková 1,* , Daniel Remias 2 , Tomáš Rezankaˇ 3 and Linda Nedbalová 1 1 Department of Ecology, Faculty of Science, Charles University, Viniˇcná 7, 12844 Prague, Czech Republic 2 School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria 3 The Czech Academy of Sciences, Institute of Microbiology, Vídeˇnská 1083, 142 20 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +420-221-95-1809 Received: 20 August 2019; Accepted: 2 October 2019; Published: 10 October 2019 Abstract: Slowly melting snowfields in mountain and polar regions are habitats of snow algae. Orange blooms were sampled in three European mountain ranges. The cysts within the blooms morphologically resembled those of Chloromonas nivalis (Chlorophyceae). Molecular and morphological traits of field and cultured material showed that they represent a new species, Chloromonas hindakii sp. nov. The performance of photosystem II was evaluated by fluorometry. For the first time for a snow alga, cyst stages collected in a wide altitudinal gradient and the laboratory strain were compared. The results showed that cysts were well adapted to medium and high irradiance. Cysts from high light conditions became photoinhibited at three times higher irradiances 2 1 (600 µmol photons m− s− ) than those from low light conditions, or likewise compared to cultured flagellates. Therefore, the physiologic light preferences reflected the conditions in the original habitat. A high content of polyunsaturated fatty acids (about 60% of total lipids) and the accumulation of the carotenoid astaxanthin was observed.
    [Show full text]
  • Bipolar Dispersal of Red-Snow Algae
    ARTICLE DOI: 10.1038/s41467-018-05521-w OPEN Bipolar dispersal of red-snow algae Takahiro Segawa 1,2, Ryo Matsuzaki3, Nozomu Takeuchi 4, Ayumi Akiyoshi2, Francisco Navarro 5, Shin Sugiyama6, Takahiro Yonezawa7,8 & Hiroshi Mori 9 Red-snow algae are red-pigmented unicellular algae that appear seasonally on the surface of thawing snow worldwide. Here, we analyse the distribution patterns of snow algae sampled from glaciers and snow patches in the Arctic and Antarctica based on nuclear ITS2 sequences, which evolve rapidly. The number of phylotypes is limited in both polar 1234567890():,; regions, and most are specific to either the Arctic or Antarctica. However, the bipolar phy- lotypes account for the largest share (37.3%) of all sequences, suggesting that red-algal blooms in polar regions may comprise mainly cosmopolitan phylotypes but also include endemic organisms, which are distributed either in the Arctic or Antarctica. 1 Center for Life Science Research, University of Yamanashi, 409-3898 1000 Shimokato, Chuo, Yamanashi, Japan. 2 National Institute of Polar Research, 10-3 Midori-cho, Tachikawa, Tokyo, Japan. 3 Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, Japan. 4 Department of Earth Sciences, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan. 5 Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense, 30, 28040 Madrid, Spain. 6 Institute of Low Temperature Science, Hokkaido University, Nishi8, Kita19, Sapporo, Japan. 7 Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa, Japan.
    [Show full text]
  • Evaluation of Green Microalgae Biodiversity in the Alpine Ecosystem Adeline Stewart
    Evaluation of green microalgae biodiversity in the alpine ecosystem Adeline Stewart To cite this version: Adeline Stewart. Evaluation of green microalgae biodiversity in the alpine ecosystem. Vegetal Biology. Université Grenoble Alpes [2020-..], 2021. English. NNT : 2021GRALV012. tel-03261557 HAL Id: tel-03261557 https://tel.archives-ouvertes.fr/tel-03261557 Submitted on 15 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES Spécialité : Biologie Végétale Arrêté ministériel : 25 mai 2016 Présentée par Adeline STEWART Thèse dirigée par Eric MARECHAL, DR1, CNRS, et codirigée par Eric COISSAC, MCF, UGA et par Jean-Gabriel VALAY, PR, UGA préparée au sein du Laboratoire d’Ecologie Alpine et au Laboratoire de Physiologie Cellulaire et Végétale avec le soutien de l’unité mixte de service Lautaret dans l'École Doctorale de Chimie Sciences du Vivant Evaluation de la biodiversité des microalgues vertes dans l'écosystème alpin Thèse soutenue publiquement le 3 Mars 2021, devant le jury
    [Show full text]
  • The Taxonomy, Phylogeny, Biogeography and Ecology Of
    FEMS Microbiology Ecology, 95, 2019, fiz064 doi: 10.1093/femsec/fiz064 Advance Access Publication Date: 10 May 2019 Research Article RESEARCH ARTICLE Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow Lenka Prochazkov´ a´ 1,*,†, Thomas Leya2,HedaKrˇ´ızkovˇ a´ 1 and Linda Nedbalova´ 1,3 1Charles University, Faculty of Science, Department of Ecology, Vinicnˇ a´ 7, 128 44 Prague 2, Czech Republic, 2Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Extremophile Research & Biobank CCCryo, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany and 3The Czech Academy of Sciences, Institute of Botany, Dukelska´ 135, Treboˇ n,ˇ 379 82, Czech Republic ∗Corresponding author: Charles University, Faculty of Science, Department of Ecology, Vinicnˇ a´ 7, 128 44, Prague 2, Czech Republic. Tel: +420 221951809; E-mail: [email protected] One sentence summary: Red and orange spherical cysts causing snow colouration across several continents were investigated with regards to their geographic distribution, ecology, ultrastructure and phylogeny; the cosmopolitan distribution of a new independent lineage Sanguina within the Chlamydomonadales was molecularly confirmed. †Lenka Prochazkov´ a,´ http://orcid.org/0000-0003-3995-6483 ABSTRACT Melting snowfields in polar and alpine regions often exhibit a red and orange colouration caused by microalgae. The diversity of these organisms is still poorly understood. We applied a polyphasic approach using three molecular markers and light and electron microscopy to investigate spherical cysts sampled from alpine mountains in Europe, North America and South America as well as from both polar regions.
    [Show full text]
  • A Taxonomic Reassessment of Chlamydomonas Meslinii (Volvocales, Chlorophyceae) with a Description of Paludistella Gen.Nov
    Phytotaxa 432 (1): 065–080 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.432.1.6 A taxonomic reassessment of Chlamydomonas meslinii (Volvocales, Chlorophyceae) with a description of Paludistella gen.nov. HANI SUSANTI1,6, MASAKI YOSHIDA2, TAKESHI NAKAYAMA2, TAKASHI NAKADA3,4 & MAKOTO M. WATANABE5 1Life Science Innovation, School of Integrative and Global Major, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. 2Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan. 3Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. 4Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-8520, Japan. 5Algae Biomass Energy System Development and Research Center, University of Tsukuba. 6Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Bogor KM 46 Cibinong West Java, Indonesia. Corresponding author: [email protected] Abstract Chlamydomonas (Volvocales, Chlorophyceae) is a large polyphyletic genus that includes numerous species that should be classified into independent genera. The present study aimed to examine the authentic strain of Chlamydomonas meslinii and related strains based on morphological and molecular data. All the strains possessed an asteroid chloroplast with a central pyrenoid and hemispherical papilla; however, they were different based on cell and stigmata shapes. Molecular phylogenetic analyses based on 18S rDNA, atpB, and psaB indicated that the strains represented a distinct subclade in the clade Chloromonadinia. The secondary structure of ITS-2 supported the separation of the strains into four species.
    [Show full text]
  • Keynote and Oral Papers
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: https://www.tandfonline.com/loi/tejp20 Keynote and Oral Papers To cite this article: (2019) Keynote and Oral Papers, European Journal of Phycology, 54:sup1, 31-117, DOI: 10.1080/09670262.2019.1626627 To link to this article: https://doi.org/10.1080/09670262.2019.1626627 Published online: 20 Aug 2019. Submit your article to this journal Article views: 89 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tejp20 EUROPEAN JOURNAL OF PHYCOLOGY 2019, VOL. 54, NO. S1, 31–117 https://doi.org/10.1080/09670262.2019.1626627 Keynote and Oral Papers 1. Phylogeny in the ‘omics’ era: new approaches for the study of the evolution of algae and their organelles 1KN.1 those, CASH lineages have plastids related to red algae, but the mechanisms by which they were DIVERSIFICATION TRENDS IN THE ARCHAEPLASTIDA INFERRED FROM acquired remain unclear. Contrary to expectations CHLOROPLAST GENOME DATA of secondary endosymbiotic models, a sizable part of their plastid-targeted genes is not from the same Heroen Verbruggen ([email protected]) origin as the plastid itself. Scenarios as the ancestral cryptic serial endosymbioses or the shopping bag model University of Melbourne, Parkville, Victoria 3010, Australia provide a substantial interpretation of this gene mosaicism but are exclusively focusing on an endo- Thanks to high-throughput sequencing, it has symbiotic mechanism. Similarly, while the Rhodoplex become easier and cheaper than ever to generate hypothesis fits the single phylogenetic origin of com- genome-scale data for a broad array of non-model plex red plastids, it does not explain gene mosaicism.
    [Show full text]
  • Snow and Glacial Algae: a Review1
    J. Phycol. 56, 264–282 (2020) © 2019 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. DOI: 10.1111/jpy.12952 P UBLICATION R EVIEW SNOW AND GLACIAL ALGAE: A REVIEW1 Ronald W. Hoham2 Department of Biology, Colgate University, Hamilton, New York 13346, USA and Daniel Remias2 School of Engineering, University of Applied Sciences Upper Austria, Wels 4600, Austria Snow or glacial algae are found on all continents, Key index words: albedo; community structure; and most species are in the Chlamydomonadales cryophilic; environmental parameters; genomics; gla- (Chlorophyta) and Zygnematales (Streptophyta). cial algae; life cycles; primary productivity; sec- Other algal groups include euglenoids, cryptomonads, ondary metabolites; snow algae chrysophytes, dinoflagellates, and cyanobacteria. They Abbreviations: Cr, Chloromonas; Cd, Chlamydomonas; may live under extreme conditions of temperatures Ch Chlainomonas ° , ; DIC, dissolved inorganic carbon; near 0 C, high irradiance levels in open exposures, DOC, dissolved organic carbon; DON, dissolved low irradiance levels under tree canopies or deep in organic nitrogen; HTS, high-throughput sequencing; snow, acidic pH, low conductivity, and desiccation IBPs, ice binding proteins; MAAs, mycosporine-like after snow melt. These primary producers may color amino acids; OTUs, operational taxonomic units; snow green, golden-brown, red, pink, orange, or PUFAs, polyunsaturated fatty acids; TXT, triple purple-grey, and they are part of communities that crossover triangle include other eukaryotes, bacteria, archaea, viruses, and fungi.
    [Show full text]