Augmentation of Native North American Natural Enemies for the Biological Control of the Introduced Emerald Ash Borer in Central Canada

Total Page:16

File Type:pdf, Size:1020Kb

Augmentation of Native North American Natural Enemies for the Biological Control of the Introduced Emerald Ash Borer in Central Canada BioControl https://doi.org/10.1007/s10526-019-09986-6 (0123456789().,-volV)( 0123456789().,-volV) Augmentation of native North American natural enemies for the biological control of the introduced emerald ash borer in central Canada Justin M. Gaudon . Sandy M. Smith Received: 22 July 2019 / Accepted: 28 November 2019 Ó International Organization for Biological Control (IOBC) 2019 Abstract Agrilus planipennis Fairmaire (Col: Chalcididae) (16.67 ± 16.67%) and Atanycolus spp. Buprestidae) (EAB) has been spreading rapidly Foerster (Hym: Braconidae) (48.18 ± 4.29 %) was throughout North America, killing millions of ash observed in all plots over three years after native trees, Fraxinus spp. L. (Oleaceae). Eradication is not parasitoids were released. However, no reduction was viable, so biological control using natural enemies is seen in EAB density between the treatment and control now the leading management strategy. Little infor- plots or over time. There was no significant relation- mation is available on whether native parasitoids and ship found between predation by woodpeckers and predators can be manipulated to increase EAB mor- year or between control and parasitoid-release plots. tality. We moved freshly cut ash logs infested with However, woodpecker predation increased signifi- EAB parasitoids to field sites where there was no cantly with EAB density. Movement of ash logs record of EAB mortality by native North American containing native parasitoids to sites newly infested by natural enemies. Changes in EAB parasitism, EAB EAB, but with low native natural enemy populations, density, and woodpecker predation were monitored can increase long-term EAB mortality as an added over the following three years. Higher parasitism of component in management strategies to slow its EAB by Phasgonophora sulcata Westwood (Hym: spread. Keywords Augmentative biological control Á Handling Editor: Dirk Babendreier Biocontrol Á Agrilus planipennis Á Atanycolus spp. Á Phasgonophora sulcata Á Woodpeckers J. M. Gaudon (&) Á S. M. Smith Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, ON M5S 3B3, Canada e-mail: [email protected] Introduction Present Address: J. M. Gaudon The emerald ash borer (EAB), Agrilus planipennis School of Environment, Resources and Sustainability, University of Waterloo, 200 University Avenue West, Water- Fairmaire (Col: Buprestidae), is an invasive jewel loo, ON N2L 3G1, Canada beetle introduced into North America from Asia during the 1990s (Haack et al. 2002; Siegert et al. Present Address: 2014). Since then, it has shown a continued pattern of J. M. Gaudon rare Charitable Research Reserve, 1679 Blair Road, Cam- spread in all directions from intial invasion and is now bridge, ON N34R8, Canada 123 J. M. Gaudon, S. M. Smith present in five Canadian provinces and 35 US states. all with the potential to switch from native Agrilus EAB is considered one of the most damaging and Curtis (Col: Buprestidae) hosts to EAB, a closely- costly insects to invade North American forests related, introduced species. Native avian predators, because of its ability to kill healthy ash trees, Fraxinus especially woodpeckers (Picidae) such as the hairy spp. L. (Oleaceae), with up to 99% tree mortality woodpecker [Picoides villosus (L.)], downy wood- observed within a few years of arrival (Knight et al. pecker [Picoides pubescens (L.)], and red-bellied 2013). Early management efforts involved quarantine woodpecker [Melanerpes carolinus (L.)], are known strategies to isolate and eradicate known EAB popu- to increase in abundance after outbreaks of saproxylic lations, thereby limiting the spread of infested ash beetles [i.e., mountain pine beetle, Dendroctonus material (Cappaert et al. 2005). However, these were ponderosae Hopkins (Col: Curculionidae)] and Asian discontinued due to the beetle’s rapid spread, lack of longhorned beetle, Anoplophora glabripennis funding, and the cryptic nature of the wood-boring Motschulsky (Col: Cerambycidae) (Jiao et al. 2008; larvae (Liu et al. 2003; Herms and McCullough 2014). Edworthy et al. 2011). These three species have also Now, short-term management tools (e.g., quarantine been shown to attack EAB in North America with up of EAB-infested material, chemical treatment, tree to 95% mortality (Cappaert et al. 2005; Lindell et al. removal, girdled ‘‘trap trees’’) and long-term 2008; Jennings et al. 2013). Similarly, high rates of approaches such as biological control are being used EAB parasitism by native wasps [i.e., up to 71% to combat EAB in North America (Herms and mortality by Atanycolus cappaerti Marsh and Straza- McCullough 2014). nac (Hym: Braconidae) (Cappaert and McCullough Although many abiotic and biotic mortality factors 2009) and 40% mortality by Phasgonophora sulcata affect EAB populations, including natural host tree Westwood (Hym: Chalcididae) (Lyons 2010)] suggest resistance (Anulewicz et al. 2007; Tannis and McCul- that they could be augmented for biological control. lough 2012), extreme cold (Crosthwaite et al. 2011), This latter approach for managing EAB has received cold-warm-cold fluctuations (Sobek-Swant et al. 2012), little attention in North America to date. predators (Rutledge et al. 2013; Jennings et al. 2015), Successful augmentative biological control parasitoids (Duan et al. 2009, 2012), and pathogens requires key information on the most effective method (Bauer et al. 2004; Kyei-Poku and Johny 2013), none to distribute large quantities of natural enemies, have yet provided sufficient mortality to naturally optimal timing, and location for release, as well as suppress EAB. Thus, classical biological control has factors affecting subsequent dispersal and monitoring. been proposed involving the introduction of non-native In forestry, augmentation of natural enemies has been parasitoids from Asia where EAB is native, namely, explored only in a few forest systems. Notable exam- Tetrastichus planipennisi Yang (Hym: Eulophidae), ples include (1) mass release of the native egg Oobius agrili Zhang and Huang (Hym: Encyrtidae), parasitoid, Trichogramma minutum Riley (Hym: Tri- Spathius agrili Yang (Hym: Braconidae), and Spathius chogrammatidae), against outbreak populations of galinae Belokobylskij and Strazanac (Hym: Bra- native spruce budworm, Choristoneura fumiferana conidae). Recent studies show that the introduction of (Clemens) (Lep: Tortricidae) in Canada (Smith 1996), several parasitoids, especially T. planipennisi, can and (2) mass release of native parasitoids against non- cause significant EAB mortality (Duan et al. 2017). native Sirex woodwasps (Hym: Siricidae) in Australia However, these co-evolved parasitoids alone have not (Haugen and Underdown 1990). The life-history traits yet suppressed EAB populations below damaging of native parasitoids attacking EAB in North America thresholds. There remains a need to explore additional are generally unfavourable for mass rearing and biocontrol options for managing EAB spread through- release, i.e., P. sulcata has a 1:1 parasitoid:host ratio out its introduced range in North America. (i.e., solitary) and is univoltine with a long generation Augmenting native natural enemy populations time (Roscoe 2014). Thus, despite clearly showing where they are absent or in low numbers to combat promise, the only feasible way for native parasitoids to introduced species such as EAB have been used be augmented against EAB would be to move plant against at least 32 species in Canada (MacQuarrie material containing parasitoids from the field to target et al. 2013, 2016). North America is home to a rich sites with high EAB populations, similar to that used complex of native natural enemies of Agrilus beetles, against Sirex (Hauden and Underdown 1990). 123 Augmentation of native North American natural enemies for the biological control of the… To date, proof of concept and criteria for long-term Ash trees were sampled in 2013 before parasitoid- introduction, establishment, and spread of native infested logs were transported to the sites, as well as parasitoids on EAB remains to be shown. Here, we one and three years after the initial transport. In 2013, assess the relative rate of increase in parasitism and its we removed one to three logs per sample tree from two relationship to EAB density following augmentative or three trees in each plot to quantify the number of biological control of native North American natural native EAB parasitoids, number of EAB, and number enemies. Specifically, we ask: (1) does EAB para- of woodpecker holes in the log linked directly to EAB. sitism increase over time following augmentation?; In the following year (2014), we sampled fewer trees (2) do all native parasitoids respond similarly?; (3) (i.e., one or two) per plot, removing more logs (i.e., does EAB parasitism reduce EAB density?; and (4) two to four logs per tree) to conserve the number of how does predation by native woodpeckers impact living trees remaining in each plot. Due to the EAB density or parasitism over the same time? destructive nature of sampling and rapid decline of ash trees in these EAB-infested plots, a complete sample of trees in the parasitoid release and non- Materials and methods release control plots was not done in 2015, but rather all plots were examined to ensure that sufficient living Experimental design ash and viable phloem was available for EAB and its parasitoids to reinfest. In the final sampling year In 2013, woodlots near the epicentre of the initial EAB (2016) two to four logs per tree were sampled from invasion in southwestern Ontario, Canada were sur- two to seven trees per plot. Upon removal from the veyed for a source of native parasitoids attacking EAB field, logs were fully enclosed in emergence netting and suitable collection sites were identified using data and hung on hooks in a rearing chamber at a mean on EAB ash-infested logs obtained by the Canadian temperature of 22.8 ± 0.5 °C and RH of Forest Service in 2012. Three collection sites were 51.4 ± 2.9%. The length and diameter of both ends identified, two in Middlesex County, Ontario and of all logs were measured, and a mean surface area another in Elgin County, Ontario, all which had calculated for each log.
Recommended publications
  • Arthropod Containment in Plant Research
    Arthropod Containment in Plant Research Jian J Duan & Jay Bancroft USDA ARS Beneficial Insects Research Unit Newark, Delaware What we do at USDA ARS BIIRU - • To develop biological control programs against invasive (non-native) agriculture and forest pests – Research involves both the plant-feeding insects and their natural enemies (predators & parasitoids) Invasive Emerald Ash Borer Larval Parasitoids of EAB (EAB) The Goal of Insect Containment at USDA ARS BIIRU-Quarantine Facility • Prevent “accidental introduction” of “unwanted” non-native insects from damaging our agriculture and forestry Outlines • Why do we need to contain insects in plant research? • How can we most effectively contain insects in plant research? • Quarantine containment facility and standard operation procedures Why Do We Need To Contain Insects in Plant Research • Non-native insects can become serious invasive pests in a newly introduced region because disassociation with co- evolved natural enemies • Non-native insects used in plant research should be contained prior to regulatory approval for environmental releases Non-native, plant-feeding insects can become devastating pests in agriculture and forestry Detected in Michigan in 2002 • 31 States in the U.S. • Killed millions of ash trees Emerald Ash Borer Native Range of EAB & Origin of EAB-Parasitoids Origin of EAB Biocontrol Agents (Year releases began in US) 1. Oobius agrili 2. Tetrastichus planipennisi 3. Spathius agrili 4. Spathius galinae Russia China 1 4 2 3 Prevent “accidental introduction” of weed biocontrol
    [Show full text]
  • Population Responses of Hymenopteran Parasitoids to the Emerald Ash Borer (Coleoptera: Buprestidae) in Recently Invaded Areas in North Central United States
    BioControl (2012) 57:199–209 DOI 10.1007/s10526-011-9408-0 Population responses of hymenopteran parasitoids to the emerald ash borer (Coleoptera: Buprestidae) in recently invaded areas in north central United States Jian J. Duan • Leah S. Bauer • Kristopher J. Abell • Roy van Driesche Received: 1 July 2011 / Accepted: 17 September 2011 / Published online: 11 October 2011 Ó International Organization for Biological Control (outside the USA) 2011 Abstract Populations of hymenopteran parasitoids and 58% in 2010 (a year later after field releases). associated with larval stages of the invasive emerald ash Low levels (1–5%) of parasitism of EAB larvae by borer (EAB) Agrilus planipennis Fairmaire (Coleop- T. planipennisi were consistently detected at surveysites tera: Buprestidae) were surveyed in 2009 and 2010 in in both years. Separately, the abundance of the native the recently invaded areas in north central United States parasitoid, Atanycolus spp., increased sharply, resulting (Michigan), where two introduced EAB larval parasit- in an average parasitism rate of EAB larvae from\0.5% oids, Tetrastichus planipennisi Yang and Spathius agrili in 2009 to 19% in 2010. Other parasitoids such as Yang were released for classical biological control. Phasgonophora sulcata Westwood, Spathius spp., Bal- Results from two years of field surveys showed that cha indica Mani & Kaul, Eupelmus sp., and Eurytomus several hymenopteran parasitoids have become associ- sp. were much less abundant than T. planipennisi and ated with EAB in Michigan. Among these parasitoids, Atanycolus spp., and each caused \1% parasitism. the gregarious species T. planipennisi was the most Besides hymenopteran parasitoids, woodpeckers con- abundant, accounting for 93% of all parasitoid individ- sumed 32–42% of the immature EAB stages present uals collected in 2009 (immediately after field release) at our study sites, while undetermined biotic factors (such as microbial disease and host tree resistance) caused 10–22% mortality of observed EAB larvae.
    [Show full text]
  • 25Th U.S. Department of Agriculture Interagency Research Forum On
    US Department of Agriculture Forest FHTET- 2014-01 Service December 2014 On the cover Vincent D’Amico for providing the cover artwork, “…and uphill both ways” CAUTION: PESTICIDES Pesticide Precautionary Statement This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife--if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Product Disclaimer Reference herein to any specific commercial products, processes, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recom- mendation, or favoring by the United States government. The views and opinions of wuthors expressed herein do not necessarily reflect those of the United States government, and shall not be used for advertising or product endorsement purposes. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C.
    [Show full text]
  • Regulation of Classical Biological Control of Invasive Plants in North America
    Evaluating and Regulating Biological Control Agents: A North American Perspective P.G. Mason Agriculture and Agri-Food Canada North American Plant Protection Organization, Ottawa, Ontario EPPO / COST - SMARTER / IOBC / IBMA / CABI WORKSHOP ON EVALUATION AND REGULATION OF BIOLOGICAL CONTROL AGENTS 23-24 November 2015 North American history … Entomophagous biological control agents • United States – first release in 1888: Cryptochetum iceryae against Icerya purchasi (cottony cushion scale) in citrus; Rodalia cardinalis was released in 1889 • Canada – first release in 1885: Trichogramma minutum against Nematus ribesii (imported currantworm); 1910 Mesoleius tenthredinis against Pristiphora erichsonii (larch sawfly) • Mexico – first release in 1922: Lixiphaga diatraeae against Diatraea saccharalis (sugarcane borer) Phytophagous biological control agents • United States – first release in 1945: Chrysolina hyperici against Hypericum perforatum (Klamath weed, St. John’s wort) • Canada – first release in 1951 : C. hyperici against H. perforatum • Mexico – first release in 1977: Neochetina eichhorniae against Eichhornia crassipes (water hyacinth) … North American history … United States • 1957 - Subcommittee on Biological Control of Weeds established [U.S. Department of the Interior’s (USDI) Bureau of Reclamation, Bureau of Land Management, and Fish and Wildlife Service; and from the U.S. Department of Agriculture’s (USDA) Forest Service and Agricultural Research Service]. • 1971 - name changed to Working Group on Biological Control of Weeds. Canadian and Mexican comments were invited because the Working Group knew that an introduced organism recognizes no political boundaries and its introduction needed to be considered on a continental basis. [+ Environmental Protection Agency, Cooperative State Research, Education, and Extension Service (now the National Institute of Food and Agriculture), and the U.S.
    [Show full text]
  • Establishment and Early Impact of Spathius Galinae (Hymenoptera: Braconidae) on Emerald Ash Borer (Coleoptera: Buprestidae) in the Northeastern United States
    applyparastyle "fig//caption/p[1]" parastyle "FigCapt" Copyedited by: OUP Journal of Economic Entomology, XX(XX), 2019, 1–10 doi: 10.1093/jee/toz159 Biological and Microbial Control Research Downloaded from https://academic.oup.com/jee/advance-article-abstract/doi/10.1093/jee/toz159/5519704 by ESA Member Access user on 13 September 2019 Establishment and Early Impact of Spathius galinae (Hymenoptera: Braconidae) on Emerald Ash Borer (Coleoptera: Buprestidae) in the Northeastern United States Jian J. Duan,1,6 Roy G. Van Driesche,2 Ryan S. Crandall,2 Jonathan M. Schmude,1 Claire E. Rutledge,3 Benjamin H. Slager,4 Juli R. Gould,5 and Joseph S. Elkinton2 1USDA ARS, Beneficial Insects Introduction Research Unit, Newark, DE 19713, 2Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, 3Department Entomology, Connecticut Agricultural Experiment Station, New Haven, CT 06511, 4USDA APHIS PPQ Emerald Ash Borer Program, Brighton, MI 48116, 5USDA, APHIS, CPHST, Buzzards Bay, MA 02542, and 6Corresponding author, e-mail: [email protected] Subject Editor: Julio Bernal Received 7 March 2019; Editorial decision 14 May 2019 Abstract The emerald ash borer (EAB), Agrilus planipennis Fairmaire, a buprestid beetle native to Asia, has become a serious pest of ash trees (Fraxinus spp.) in North America since the early 2000s. Due to the impracticality of applying insecticides in natural forests, biocontrol is the most viable method to manage EAB in natural eco- systems. Here, we report the first evidence for the establishment and impact ofSpathius galinae Belokobylskij & Strazenac, a larval parasitoid first released in North America in 2016 and 2017 at six mixed-hardwood forest sites, in Connecticut, New York, and Massachusetts.
    [Show full text]
  • Beneficial Insects of Utah Guide
    BENEFICIAL INSECTS OF UTAH beneficial insects & other natural enemies identification guide PUBLICATION COORDINATORS AND EDITORS Cami Cannon (Vegetable IPM Associate and Graphic Design) Marion Murray (IPM Project Leader) AUTHORS Cami Cannon Marion Murray Ron Patterson (insects: ambush bug, collops beetle, red velvet mite) Katie Wagner (insects: Trichogramma wasp) IMAGE CREDITS All images are provided by Utah State University Extension unless otherwise noted within the image caption. CONTACT INFORMATION Utah State University IPM Program Dept. of Biology 5305 Old Main Hill Logan, UT 84322 (435) 797-0776 utahpests.usu.edu/IPM FUNDING FOR THIS PUBLICATION WAS PROVIDED BY: USU Extension Grants Program CONTENTS PREFACE Purpose of this Guide ................................................................6 Importance of Natural Enemies ..................................................6 General Practices to Enhance Natural Enemies ...........................7 Plants that will Enhance Natural Enemy Populations ..................7 PREDATORS Beetles .....................................................................................10 Flies .........................................................................................24 Lacewings/Dustywings .............................................................32 Mites ........................................................................................36 Spiders .....................................................................................42 Thrips ......................................................................................44
    [Show full text]
  • Field Release of the Parasitoid Spathius Galinae for the for the Biological Control of the Emerald Ash Borer (Agrilus Planipennis) in the Contiguous United States
    United States Department of Agriculture Marketing and Field Release of the Regulatory Programs Parasitoid Spathius Animal and Plant Health Inspection galinae for the Biological Service Control of the Emerald Ash Borer (Agrilus planipennis) in the Contiguous United States Environmental Assessment, March 2015 Field Release of the Parasitoid Spathius galinae for the for the Biological Control of the Emerald Ash Borer (Agrilus planipennis) in the Contiguous United States Environmental Assessment, March 2015 Agency Contact: Robert Tichenor Pest Permitting Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Road, Unit 133 Riverdale, MD 20737–1236 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form.
    [Show full text]
  • Progress in the Classical Biological Control of Agrilus Planipennis Fairmaire (Coleoptera: Buprestidae) in North America Leah S
    300 Progress in the classical biological control of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) in North America Leah S. Bauer,1 Jian J. Duan, Juli R. Gould, Roy Van Driesche Abstract—First detected in North America in 2002, the emerald ash borer (EAB) (Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), an invasive phloem-feeding beetle from Asia, has killed tens of millions of ash (Fraxinus Linnaeus; Oleaceae) trees. Although few parasitoids attack EAB in North America, three parasitoid species were found attacking EAB in China: the egg parasitoid Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) and two larval parasitoids Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius agrili Yang (Hymenoptera: Braconidae). In 2007, classical biological control of EAB began in the United States of America after release of these three species was approved. In 2013, release of the larval parasitoids was approved in Canada. Research continues at study sites in Michigan, United States of America where the establishment, prevalence, and spread of O. agrili and T. planipennisi have been monitored since 2008. However, establishment of S. agrili remains unconfirmed in northern areas, and its release is now restricted to regions below the 40th parallel. In 2015, approval for release of Spathius galinae Belokobylskij (Hymenoptera: Braconidae), an EAB larval parasitoid from the Russian Far East, may be granted in the United States of America. Researchers are guardedly optimistic that a complex of introduced and native natural enemies will regulate EAB densities below a tolerance threshold for survival of ash species or genotypes in forested ecosystems. Introduction quarantines, and initiating eradication activities (Federal Register 2003; Poland and McCullough The emerald ash borer (EAB), Agrilus planipennis 2006; Herms and McCullough 2014).
    [Show full text]
  • Evaluating Methods to Detect and Monitor North American Larval Parasitoids of the Emerald Ash Borer (Coleoptera: Buprestidae)
    The Canadian Entomologist (2020), page 1 of 10 Published on behalf of the doi:10.4039/tce.2020.8 Entomological Society of Canada NOTE Evaluating methods to detect and monitor North American larval parasitoids of the emerald ash borer (Coleoptera: Buprestidae) Justin M. Gaudon1*,† , D. Barry Lyons2, Gene C. Jones2, Jeremy D. Allison2, and Sandy M. Smith1 1Faculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, Ontario, M5S 3B3, Canada and 2Natural Resources Canada-Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen Street East, Sault Ste. Marie, Ontario, P6A 2E5, Canada *Corresponding author. Email: [email protected] †Present addresses: School of Environment, Resources and Sustainability, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada; rare Charitable Research Reserve, 1679 Blair Road, Cambridge, Ontario, N3H 4R8, Canada. (Received 22 July 2019; accepted 3 January 2020; first published online 18 March 2020) Abstract Populations of native North American parasitoids attacking Agrilus Curtis (Coleoptera: Buprestidae) species have recently been considered as part of an augmentative biological control programme in an attempt to manage emerald ash borer, Agrilus planipennis Fairmaire, a destructive wood-boring beetle discovered in North America in 2002. We evaluate trapping methods to detect and monitor populations of two important native larval parasitoids, Phasgonophora sulcata Westwood (Hymenoptera: Chalcididae) and Atanycolus Förster (Hymenoptera: Braconidae) species, attacking emerald ash borer in its introduced range. We found that purple prism traps captured more P. sulcata than green prism traps, yellow pan traps, and log samples and thus were considered better for detecting and monitoring P. sulcata populations. Trap type did not affect the number of captures of Atanycolus species.
    [Show full text]
  • Preliminary Assesment of the Potential Role of Biocontrol in The
    BUYING TIME: PRELIMINARY ASSESMENT OF THE POTENTIAL ROLE OF BIOCONTROL IN THE RECOVERY OF NATIVE FOREST VEGETATION FOLLOWING THE INVASION OF EMERALD ASH BORER by Elan Margulies A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Natural Resources and Environment) at the University of Michigan August 2017 Faculty Advisors Professor Inés Ibáñez Professor Leah Bauer Abstract: Introduced forest pests have become one of the major threats to forest ecosystems in North America. Once the spread phase is underway, biological control is one of the few environmentally acceptable and sustainable practices available for the management of destructive invasive pests in natural ecosystems. Assessing the impact of a biocontrol program progresses from evaluating the establishment of biocontrol agents, to control of the target pest, to impacts on the affected organism, and ultimately, to the indirect impacts that biocontrol may have on the whole community. In our study, we assessed the recovery of forest vegetation following the mortality of overstory ash trees caused by the emerald ash borer (EAB) invasion and ongoing management of EAB using biological control. We collected data on the forest structure and composition of stands affected by this pest and where biocontrol agents were released or not (biocontrol and no-biocontrol plots). We then used a multilevel modeling framework to evaluate the potential indirect effects of a biocontrol agent on native tree seedling forest regeneration. We found that the impacts of biocontrol on ash saplings had community- level effects by protecting native seedlings from invasive and weedy saplings. Our results showed a higher number of ash saplings with increasing numbers of the dominant EAB biocontrol agent T.
    [Show full text]
  • National Program 304 – Crop Protection and Quarantine
    APPENDIX 1 National Program 304 – Crop Protection and Quarantine ACCOMPLISHMENT REPORT 2007 – 2012 Current Research Projects in National Program 304* SYSTEMATICS 1245-22000-262-00D SYSTEMATICS OF FLIES OF AGRICULTURAL AND ENVIRONMENTAL IMPORTANCE; Allen Norrbom (P), Sonja Jean Scheffer, and Norman E. Woodley; Beltsville, Maryland. 1245-22000-263-00D SYSTEMATICS OF BEETLES IMPORTANT TO AGRICULTURE, LANDSCAPE PLANTS, AND BIOLOGICAL CONTROL; Steven W. Lingafelter (P), Alexander Konstantinov, and Natalie Vandenberg; Washington, D.C. 1245-22000-264-00D SYSTEMATICS OF LEPIDOPTERA: INVASIVE SPECIES, PESTS, AND BIOLOGICAL CONTROL AGENTS; John W. Brown (P), Maria A. Solis, and Michael G. Pogue; Washington, D.C. 1245-22000-265-00D SYSTEMATICS OF PARASITIC AND HERBIVOROUS WASPS OF AGRICULTURAL IMPORTANCE; Robert R. Kula (P), Matthew Buffington, and Michael W. Gates; Washington, D.C. 1245-22000-266-00D MITE SYSTEMATICS AND ARTHROPOD DIAGNOSTICS WITH EMPHASIS ON INVASIVE SPECIES; Ronald Ochoa (P); Washington, D.C. 1245-22000-267-00D SYSTEMATICS OF HEMIPTERA AND RELATED GROUPS: PLANT PESTS, PREDATORS, AND DISEASE VECTORS; Thomas J. Henry (P), Stuart H. McKamey, and Gary L. Miller; Washington, D.C. INSECTS 0101-88888-040-00D OFFICE OF PEST MANAGEMENT; Sheryl Kunickis (P); Washington, D.C. 0212-22000-024-00D DISCOVERY, BIOLOGY AND ECOLOGY OF NATURAL ENEMIES OF INSECT PESTS OF CROP AND URBAN AND NATURAL ECOSYSTEMS; Livy H. Williams III (P) and Kim Hoelmer; Montpellier, France. * Because of the nature of their research, many NP 304 projects contribute to multiple Problem Statements, so for the sake of clarity they have been grouped by focus area. For the sake of consistency, projects are listed and organized in Appendix 1 and 2 according to the ARS project number used to track projects in the Agency’s internal database.
    [Show full text]
  • 8 March 2013, 381 P
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/273257107 Mason, P. G., D. R. Gillespie & C. Vincent (Eds.) 2013. Proceedings of the Fourth International Symposium on Biological Control of Arthropods. Pucón, Chile, 4-8 March 2013, 381 p. CONFERENCE PAPER · MARCH 2013 DOWNLOADS VIEWS 626 123 3 AUTHORS, INCLUDING: Peter Mason Charles Vincent Agriculture and Agri-Food Canada Agriculture and Agri-Food Canada 96 PUBLICATIONS 738 CITATIONS 239 PUBLICATIONS 1,902 CITATIONS SEE PROFILE SEE PROFILE Available from: Charles Vincent Retrieved on: 13 August 2015 The correct citation of this work is: Peter G. Mason, David R. Gillespie and Charles Vincent (Eds.). 2013. Proceedings of the 4th International Symposium on Biological Control of Arthropods. Pucón, Chile, 4-8 March 2013, 380 p. Proceedings of the 4th INTERNATIONAL SYMPOSIUM ON BIOLOGICAL CONTROL OF ARTHROPODS Pucón, Chile March 4-8, 2013 Peter G. Mason, David R. Gillespie and Charles Vincent (Eds.) 4th INTERNATIONAL SYMPOSIUM ON BIOLOGICAL CONTROL OF ARTHROPODS Pucón, Chile, March 4-8, 2013 PREFACE The Fourth International Symposium on Biological Control of Arthropods, held in Pucón – Chile, continues the series of international symposia on the biological control of arthropods organized every four years. The first meeting was in Hawaii – USA during January 2002, followed by the Davos - Switzerland meeting during September 2005, and the Christchurch – New Zealand meeting during February 2009. The goal of these symposia is to create a forum where biological control researchers and practitioners can meet and exchange information, to promote discussions of up to date issues affecting biological control, particularly pertaining to the use of parasitoids and predators as biological control agents.
    [Show full text]