The Symptomatic Accessory Navicular Bone

Total Page:16

File Type:pdf, Size:1020Kb

The Symptomatic Accessory Navicular Bone The Symptomatic Accessory Navicular Bone Gregory Strayhorn, MD, MPH, and James Puhl, MD Chapel Hill, North Carolina, and Iowa City, Iowa The accessory navicular bone may serve as a nidus for in­ flammation and irritation of the medial aspect of the foot. When symptoms occur, the presence of the bone is frequently misdiagnosed as a fracture of the navicular bone. Conservative treatment of the symptoms associated with the accessory na­ vicular bone may not permanently resolve the inflammation and discomfort. When conservative therapy is ineffective, ex­ cision of the accessory navicular bone is the treatment of choice to alleviate pain and disability. It has been reported that 10 to 14 percent of rather than as affecting the normal mechanics of normal feet have an accessory navicular bone.1 the foot.2,5 Other reports have estimated a 5 percent preva­ lence in the general population.2 The accessory navicular bone has been implicated in the produc­ Anatomy tion of a weak, painful foot.3 It was once thought The accessory navicular bone is located poste­ that the bone interfered with the normal mechan­ rior medially behind the tuberosity of the navicular ics of the foot because its relationship to the pos­ bone and is found unilaterally or bilaterally. The terior tibialis tendon then led to the development accessory navicular bone may be independent of of the flat foot.4 More recent studies have refuted the navicular bone, form a fibrocartilaginous union, the theory that the accessory navicular bone inter­ or form a natural bony union with the navicular feres with the mechanics of the foot; they suggest bone. The independent accessory navicular bone that the presence of the bone serves as an irritant is surrounded by the posterior tibialis tendon. A portion of the posterior tibialis tendon inserts on the other two forms of the accessory navicular bone.2 The roentgenogram of the feet may show complete fusion, incomplete fusion, or nonfusion of the accessory navicular bone to the navicular bone.6 The findings of nonfusion and incomplete From the Department of Family Medicine, University of Iowa HospitaI and Clinics, Iowa City, Iowa and Mercy Hospi­ fusion unilaterally with symptoms localized to that tal, Iowa City, Iowa. At the time this paper was written, Dr. foot may lead to a misdiagnosis of a fractured na­ Strayhorn was Chief Resident in family practice, University of Iowa Hospital and Clinics, Iowa City, Iowa. Requests for vicular bone. reprints should be addressed to Dr. Gregory Strayhorn, Microscopically, the accessory navicular and Robert Wood Johnson Clinical Scholars Program, The School of Medicine, University of North Carolina, Chapel the navicular bones have a cancellous trabecular Hill, NC 27514. structure of tarsal bones. The two bones are joined 0094-3509/82/070059-06$01.50 5 1982 Appleton-Century-Crofts THE JOURNAL OF FAMILY PRACTICE, VOL. 15, NO. 1: 59-64, 1982 59 ACCESSORY NAVICULAR BONE by hyaline cartilate, dense fibrocartilage, or a ing and narrow shoes. Frequently, the first symp­ combination of the two. In younger patients there toms appear after an eversion injury to the foot. can be marked ossification activity on both sides The symptoms may be bilateral or unilateral. The of the fibrous plate between the two bones. A syn­ physician may easily misdiagnose the acute symp­ chondrosis is formed if there is not complete toms that occur after an injury to the foot as a ossification.6 fractured navicular bone if he or she is not familiar with this entity. Pathology The etiology of the pain and irritation associ­ Differential Diagnosis ated with the accessory navicular bone may be Vertical fractures of the tarsal navicular medial secondary to the inflammation that occurs from tuberosity result from a forced eversion of the direct and repeated trauma to the bone and its at­ foot, usually occurring from a fall from a low tachment to the navicular bone and to its associa­ height.7-8 The local symptoms of a fracture of the tion with the posterior tibialis tendon. A sudden medial navicular tuberosity may go unnoticed for strain on the posterior tibialis tendon from an several hours, but are usually more pronounced eversion injury can cause a partial separation of than those of an injury to the accessory navicular the accessory navicular bone’s fibrocartilaginous bone. One may find moderate diffuse swelling and attachment to the navicular bone and cause a ecchymoses on the medial side of the foot. Ten­ pseudoarthrosis with inflammatory changes. The derness is usually not so localized as that of a accessory navicular bone may cause irritation to symptomatic accessory navicular bone.9 the posterior tibialis tendon when it is embedded Fractures of the tarsal navicular bone involve in or partially surrounded by the tendon. A bursa the medial tuberosity, the dorsal lip, and the may form between the posterior tibialis tendon body.7-10-11 They occur in the vertical and horizon­ and the accessory navicular bone. The bursa can tal plane and are usually comminuted, crushed, or become inflamed and irritated.1-8 chipped fractures.8-12 Because of its anatomical Microscopic findings have shown hemorrhages, relationship to the tarsal navicular bone, the ac­ organizing fibrous tissue containing giant cell os­ cessory navicular bone may be misdiagnosed as a teoclasts or chondroblasts, and callus-like repara­ vertical chipped fracture of the medial tuberosity tive tissue located subchondrally between the of the tarsal navicular bone. The fracture of the accessory navicular and the navicular bones. medial tuberosity, however, rarely occurs in iso­ These findings explain the acute and localized lation. There is commonly an associated tear of symptoms in patients with an accessory navicular the posterior tibialis tendon and ligaments that bone.6 support the surrounding joints, which results in joint deformity. Fractures of the surrounding bony structures are usually encountered.7-9 The fracture fragment is usually irregular at the fracture line and asymmetrical, unlike the accessory navicular bone, which tends to be symmetrical with smooth Symptomatology surfaces (Table l).12 The patient who has symptoms associated with the accessory navicular bone usually presents to the physician with pain localized to the medial sur­ face of the foot. The patient tends to be in his or her teens or early adulthood, and the pain is acute or chronic. There is usually a palpable protuber­ Treatment ance with swelling and redness where the pain is Conservative treatment of symptoms that are localized. The pain is aggravated by weight bear- associated with the accessory navicular bone 60 THE JOURNAL OF FAMILY PRACTICE, VOL. 15, NO. 1, 1982 ACCESSORY NAVICULAR BONE Table 1. Differential Clinical and Radiographic Findings of a Symptomatic Accessory Navicular Bone (SANB) and a Fractured Navicular Bone (FNB) SANB FNB Precipitating Event None + Forced eversion of foot + + + ± Forced eversion and fall + + + + + from low height Clinical Symptoms Swelling Diffuse + + + Localized + + ± Discoloration Erythema + + Ecchymoses - + + + Tenderness Diffuse + + Localized + + + Fiadiographic Findings Symmetrical and smooth margins + + + Joint space deformity - + + Fracture of adjacent bones + + -N ot present ±Present infrequently +May be present + +Frequently present + + +Almost always present consists of arch supports, heel wedge with arch month orthopedic rotation. Information obtained supports, warm soaks, strapping, anti-inflamma­ from the charts were age, sex, presenting com­ tory medication, and casts. The conservative plaints, physical examination findings, initial man­ methods offer varying success of symptomatic re­ agement of symptoms, operative findings, postop­ lief that may not be long lasting. The definitive erative treatment, and outcome of treatment. treatment for permanent relief of refractory symp­ The findings of the chart review for three female toms related to the accessory navicular bone is and two male patients are listed in Table 2. Their surgical excision of the bone. ages ranged from 13 to 37 years, with four patients being under 25 years. Four patients had the onset of symptoms after a twisting or eversion injury to the involved foot or ankle. One patient had a grad­ ual onset of pain, not associated with an injury, occurring over a six-month period. Chart Review On physical examination all patients had pain to Charts of five patients were reviewed from the palpation over the area of the accessory navicular practice of a private orthopedic surgeon who bone or the posterior tibialis tendon. Eversion of teaches family practice residents during their two- the foot and plantar flexion aggravated the pain. THE JOURNAL OF FAMILY PRACTICE, VOL. 15, NO. 1, 1982 61 ACCESSORY NAVICULAR BONE Table 2. Summary of Chart Review Presenting Physical Initial Operative Postoperative Patient Complaints Examination Management Findings Treatment Outcome 1. 24-year- Six-month his- Swelling, medial None Large bone Short leg cast in Pain free 4'/2 old male tory of gradual- aspect right fragment ex- slight varus years after onset severe, ankle. Firm 7 to 8 tending into position for com plete heal- sharp pain in mm mass in del- deltoid three weeks. ing medial right toid ligament ligament and Gradual in- ankle, aggra- distal to tip im pinged crease in activity vated by walking o f medial against after cast re- on uneven ter- m alleolus. Pain posterior tibialis m oval rain. Aching increased with tendon. It was pain at rest eversion and attached to plantar flexion. navicular bone X-ray film by dense fibrous showed bony tissue mass im ­ mediately distal to medial mal­ leolus, which appeared to arise from medial aspect o f talus 2. 13-year- Three-year his- Swelling, medial None Accessory Short leg cast Asymptomatic old female to ry o f pain in aspect of foot navicular bone for 10 days. 3'/2 years after medial aspect of over the navicu- joined to the Weight bearing cast removal left foot just lar bone.
Recommended publications
  • Skeletal Foot Structure
    Foot Skeletal Structure The disarticulated bones of the left foot, from above (The talus and calcaneus remain articulated) 1 Calcaneus 2 Talus 3 Navicular 4 Medial cuneiform 5 Intermediate cuneiform 6 Lateral cuneiform 7 Cuboid 8 First metatarsal 9 Second metatarsal 10 Third metatarsal 11 Fourth metatarsal 12 Fifth metatarsal 13 Proximal phalanx of great toe 14 Distal phalanx of great toe 15 Proximal phalanx of second toe 16 Middle phalanx of second toe 17 Distal phalanx of second toe Bones of the tarsus, the back part of the foot Talus Calcaneus Navicular bone Cuboid bone Medial, intermediate and lateral cuneiform bones Bones of the metatarsus, the forepart of the foot First to fifth metatarsal bones (numbered from the medial side) Bones of the toes or digits Phalanges -- a proximal and a distal phalanx for the great toe; proximal, middle and distal phalanges for the second to fifth toes Sesamoid bones Two always present in the tendons of flexor hallucis brevis Origin and meaning of some terms associated with the foot Tibia: Latin for a flute or pipe; the shin bone has a fanciful resemblance to this wind instrument. Fibula: Latin for a pin or skewer; the long thin bone of the leg. Adjective fibular or peroneal, which is from the Greek for pin. Tarsus: Greek for a wicker frame; the basic framework for the back of the foot. Metatarsus: Greek for beyond the tarsus; the forepart of the foot. Talus (astragalus): Latin (Greek) for one of a set of dice; viewed from above the main part of the talus has a rather square appearance.
    [Show full text]
  • The Patellofemoral Joint Alignment in Patients with Symptomatic Accessory Navicular Bone
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Firenze University Press: E-Journals IJAE Vol. 121, n. 2: 148-158, 2016 ITALIAN JOURNAL OF ANATOMY AND EMBRYOLOGY Research article - Basic and applied anatomy The patellofemoral joint alignment in patients with symptomatic accessory navicular bone Heba M. Kalbouneh1,*, Abdullah O. Alkhawaldah2, Omar A. Alajoulin2, Mohammad I. Alsalem1 1 Department of Anatomy, Faculty of Medicine, University of Jordan, Amman, Jordan 2 Foot and Ankle Orthopedic Clinic, King Hussein Medical Center, Amman, Jordan Abstract Quadriceps angle (Q angle) provides useful information about the alignment of the patellofem- oral joint. The aim of the present study was to assess a possible link between malalignment of the patellofemoral joint and symptomatic accessory navicular (AN) bone as an underlying cause in early adolescence using Q angle measurements. This study was performed on patients presenting to the Foot and Ankle Clinic at the Jorda- nian Royal Medical Services because of pain on the medial side of the foot that worsened with activities or shoe wearing, with no history of knee pain, between September 2013 and April 2015. The Q angle was measured using a goniometer in 27 early adolescents aged 10-18 years diagnosed clinically and radiologically with symptomatic AN bone, only seven patients had associated pes planus deformity; the data were compared with age appropriate normal arched feet without AN. Navicular drop test (NDT) was used to assess the amount of foot pronation. The mean Q angle value among male and female patients with symptomatic AN with/with- out pes planus was significantly higher than in controls with normal arched feet without AN (p<0.05).
    [Show full text]
  • Original Article Pictorial Atlas of Symptomatic Accessory Ossicles by 18F-Sodium Fluoride (Naf) PET-CT
    Am J Nucl Med Mol Imaging 2017;7(6):275-282 www.ajnmmi.us /ISSN:2160-8407/ajnmmi0069278 Original Article Pictorial atlas of symptomatic accessory ossicles by 18F-Sodium Fluoride (NaF) PET-CT Sharjeel Usmani1, Cherry Sit2, Gopinath Gnanasegaran2, Tim Van den Wyngaert3, Fahad Marafi4 1Department of Nuclear Medicine & PET/CT Imaging, Kuwait Cancer Control Center, Khaitan, Kuwait; 2Royal Free Hospital NHS Trust, London, UK; 3Antwerp University Hospital, Belgium; 4Jaber Al-Ahmad Molecular Imaging Center, Kuwait Received August 7, 2017; Accepted December 15, 2017; Epub December 20, 2017; Published December 30, 2017 Abstract: Accessory ossicles are developmental variants which are often asymptomatic. When incidentally picked up on imaging, they are often inconsequential and rarely a cause for concern. However, they may cause pain or discomfort due to trauma, altered stress, and over-activity. Nuclear scintigraphy may play a role in the diagnosis and localizing pain generators. 18F-Sodium Fluoride (NaF) is a PET imaging agent used in bone imaging. Although commonly used in imaging patients with cancer imaging malignancy, 18F-NaF may be useful in the evaluation of benign bone and joint conditions. In this article, we would like to present a spectrum of clinical cases and review the potential diagnostic utility of 18F-NaF in the assessment of symptomatic accessory ossicles in patients referred for staging cancers. Keywords: 18F-NaF PET/CT, accessory ossicles, hybrid imaging Introduction Accessory ossicles are developmental variants which are often asymptomatic. When inciden- Bone and joint pain is a common presentation tally picked up on imaging, they are often incon- in both primary and secondary practice.
    [Show full text]
  • The Skeletal System
    Essentials of Human Anatomy & Physiology Seventh Edition Foundation • Physical Foundation of the Body The Skeletal System – 206 Bones • Osteology – science of the anatomy, structure, and function of bones – “Os” means Bone • With the exception of teeth, bone IS the hardest substance in the body Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The Skeletal System • Parts of the skeletal system • Bones (skeleton) • Joints • Cartilages • Ligaments (bone to bone)(tendon=bone to muscle) • Divided into two divisions • Axial skeleton • Copyright © 2003Appendicular Pearson Education, Inc. publishing as Benjaminskeleton Cummings – limbs and girdle 1 Functions of Bones Bones of the Human Body • The skeleton has 206 bones • Support of the body • Two basic types of bone tissue • Protection of soft organs • Compact bone • Movement due to attached skeletal • Homogeneous muscles • Spongy bone • Storage of minerals and fats (K, Mg, • Small needle-like pieces of bone Na) Figure 5.2b • Many open spaces • Blood cell formation (White and Red) Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Classification of Bones Classification of Bones • Long bones • Short bones • Typically longer than wide • Generally cube-shape • Have a shaft with heads at both ends • Contain mostly spongy bone • Contain mostly compact bone •Examples: Carpals, tarsals • Examples: Femur, humerus Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings 2 Classification of Bones on the Classification of Bones Basis of Shape • Flat bones • Thin and flattened • Usually curved • Thin layers of compact bone around a layer of spongy bone •Examples: Skull, ribs, sternum Figure 5.1 Copyright © 2003 Pearson Education, Inc.
    [Show full text]
  • Navicular Disease Q&A
    9616 W. Titan Rd, Littleton, CO 80125 ~ (303) 791-4747 ~ Fax (303) 791-4799 Email: [email protected] Web: www.coequine.com Navicular Disease Q&A Navicular disease. Two words horse owners really do not want to hear from their veterinarians. This chronic degenerative condition is one of the most common causes of forelimb lameness in horses. What are the facts about this disease? Dr. Barbara Page has answered some common questions about this syndrome below. Q: What exactly is navicular disease? A: This disease is an inflammatory condition involving all or some of the following anatomical parts of the foot: the navicular bone, the navicular ligaments, the navicular bursa, and the vascular system of the navicular bone. This disease is often more accurately termed caudal heel pain. Q: Could you describe these structures? A: The navicular bone, also called the distal sesamoid bone, is a boat-shaped bone that is located behind the coffin bone. Navicular ligaments, fibrous connective tissue, serve to keep the navicular bone in alignment with other structures of the foot and help the joints within the foot move properly. The navicular bursa is the fluid filled sac that helps to protect the fragile structures within the foot from friction. With out this, severe bursa pain would result. When discussing the vascular system of the navicular bone we are simply referring to the blood supply in this area. Q: What actually causes a horse to develop navicular disease? A: The exact cause is unknown, however, conformation, geographical location, age, heredity and use all may play a part.
    [Show full text]
  • Bilateral Navicular Osteonecrosis Treated with Medial Femoral Condyle Vascularized Autograft
    Orthoplastics Tips and Tricks: Bilateral Navicular Osteonecrosis Treated with Medial Femoral Condyle Vascularized Autograft Ivan J. Zapolsky, MD1 Abstract Christopher R. Gajewski, BA2 A 17-year-old male with a history of Matthew Webb, MD1 chronic bilateral navicular osteonecrosis with Keith L. Wapner, MD1 fragmentation was treated with staged bilateral L. Scott Levin MD1 open reduction and internal fixation of tarsal 1 Department of Orthopaedic Surgery, navicular with debridement of necrotic bone University of Pennsylvania and insertion of ipsilateral medial femoral 2 Perelman School of Medicine, University condyle vascularized bone grafting. The patient of Pennsylvania progressed to full painless weight bearing on each extremity by four months post operatively. This patient’s atypical presentation of a rare disease was well-treated with the application of orthoplastic tools and principles to promote return of function and avoidance of early arthrodesis procedure. Figure 1. Early diagnostic bilateral foot weight-bearing x-rays, 18 months pre-op. Case A 17-year-old male with a history of bilateral Kohler’s disease with 4 years of mild bilateral foot pain (Figure 1) presented to outpatient clinic with a 5-day history of severe right foot pain that began after an attempted acrobatic maneuver. Radiographs demonstrated a chronic appearing fracture of the right tarsal navicular with evidence of osteonecrosis of his navicular. (Figure 2) The prognosis, treatment, and challenge of Kohler’s disease will be discussed later. In order to address the patient’s acute issue while minimizing the potential for failure of intervention it was recommended that patient undergo open reduction and internal fixation of his right tarsal navicular with debridement of necrotic bone with insertion of a medial femoral condyle vascularized bone graft.
    [Show full text]
  • Four Unusual Cases of Congenital Forelimb Malformations in Dogs
    animals Article Four Unusual Cases of Congenital Forelimb Malformations in Dogs Simona Di Pietro 1 , Giuseppe Santi Rapisarda 2, Luca Cicero 3,* , Vito Angileri 4, Simona Morabito 5, Giovanni Cassata 3 and Francesco Macrì 1 1 Department of Veterinary Sciences, University of Messina, Viale Palatucci, 98168 Messina, Italy; [email protected] (S.D.P.); [email protected] (F.M.) 2 Department of Veterinary Prevention, Provincial Health Authority of Catania, 95030 Gravina di Catania, Italy; [email protected] 3 Institute Zooprofilattico Sperimentale of Sicily, Via G. Marinuzzi, 3, 90129 Palermo, Italy; [email protected] 4 Veterinary Practitioner, 91025 Marsala, Italy; [email protected] 5 Ospedale Veterinario I Portoni Rossi, Via Roma, 57/a, 40069 Zola Predosa (BO), Italy; [email protected] * Correspondence: [email protected] Simple Summary: Congenital limb defects are sporadically encountered in dogs during normal clinical practice. Literature concerning their diagnosis and management in canine species is poor. Sometimes, the diagnosis and description of congenital limb abnormalities are complicated by the concurrent presence of different malformations in the same limb and the lack of widely accepted classification schemes. In order to improve the knowledge about congenital limb anomalies in dogs, this report describes the clinical and radiographic findings in four dogs affected by unusual congenital forelimb defects, underlying also the importance of reviewing current terminology. Citation: Di Pietro, S.; Rapisarda, G.S.; Cicero, L.; Angileri, V.; Morabito, Abstract: Four dogs were presented with thoracic limb deformity. After clinical and radiographic S.; Cassata, G.; Macrì, F. Four Unusual examinations, a diagnosis of congenital malformations was performed for each of them.
    [Show full text]
  • Radionuclide Bone Scintigraphy in Sports Injuries
    Radionuclide Bone Scintigraphy in Sports Injuries Hans Van der Wall, MBBS, PhD, FRACP,* Allen Lee, MBBS, MMed, FRANZCR, FRAACGP, DDU,† Michael Magee, MBBS, FRACP,* Clayton Frater, PhD, ANMT, BHSM,† Harindu Wijesinghe, MBBS, FRCP,‡ and Siri Kannangara, MBBS, FRACP†,§ Bone scintigraphy is one of the mainstays of molecular imaging. It has retained its relevance in the imaging of acute and chronic trauma and sporting injuries in particular. The basic reasons for its longevity are the high lesional conspicuity and technological changes in gamma camera design. The implementation of hybrid imaging devices with computed tomography scanners colocated with the gamma camera has revolutionized the technique by allowing a host of improvements in spatial resolution and anatomical registration. Both bone and soft-tissue lesions can be visualized and identified with greater and more convincing accuracy. The additional benefit of detecting injury before anatomical changes in high-level athletes has cost and performance advantages over other imaging modalities. The applications of the new imaging techniques will be illustrated in the setting of bone and soft-tissue trauma arising from sporting injuries. Semin Nucl Med 40:16-30 © 2010 Elsevier Inc. All rights reserved. he uptake characteristics of the bone-seeking radiophar- Scintigraphy is also capable of detecting bone bruising, an Tmaceuticals are highly conducive to the localization of acute injury resulting from direct trauma that leads to trabec- trauma to bone or its attached soft-tissue structures. Bone ular microfractures without frank cortical disruption.1 The scintigraphy has an inherently high contrast-resolution, greater force transmission involved in cortical fracture en- which enables the detection of the pathophysiology of sures early detection by three-phase scintigraphy.
    [Show full text]
  • Christy Crystal Creek"
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2004 Missoula County Sheriff's Department case #8509102: A comprehensive forensic case report for "Christy Crystal Creek" Sydney Wimbrow The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Wimbrow, Sydney, "Missoula County Sheriff's Department case #8509102: A comprehensive forensic case report for "Christy Crystal Creek"" (2004). Graduate Student Theses, Dissertations, & Professional Papers. 5884. https://scholarworks.umt.edu/etd/5884 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. ♦♦Please check "Yes" or "No" and provide signature** Yes, I grant permission y No, I do not grant permission_____ Author's Signature: Z) Date:_____________________________ Any copying for commercial purposes or financial gain may be undertaken only with
    [Show full text]
  • Stress Fractures in the Foot and Ankle of Athletes Fratura Por Estresse No Pé E Tornozelo De Atletas Authors: Asano LYJ, Duarte Jr
    GUIDELINES IN FOCUS ASANO LYJ ET al. Stress fractures in the foot and ankle of athletes FRATURA POR ESTRESSE NO PÉ E TORNOZELO DE ATLETAS Authors: Asano LYJ, Duarte Jr. A, Silva APS http://dx.doi.org/10.1590/1806-9282.60.06.006 The Guidelines Project, an initiative of the Brazilian Medical Association, aims to combine information from the medical field in order to standar- dize procedures to assist the reasoning and decision-making of doctors. The information provided through this project must be assessed and criticized by the physician responsible for the conduct that will be adopted, de- pending on the conditions and the clinical status of each patient. DESCRIPTION OF THE EVIDENCE COLLECTION INTRODUCTION METHOD Stress fractures were described for the first time in 1855 To develop this guideline, the Medline electronic databa- by Breihaupt among soldiers reporting plantar pain and se (1966 to 2012) was consulted via PubMed, as a primary edema following long marches.1 For athletes, the first cli- base. The search for evidence came from actual clinical nical description was given by Devas in 1958, based so- scenarios and used keywords (MeSH terms) grouped in lely on the results of simple X-rays.2 Stress injuries are the following syntax: “Stress fractures”, “Foot”, “Ankle”, common among athletes and military recruits, accoun- “Athletes”, “Professional”, “Military recruit”, “Immobili- ting for approximately 10% of all orthopedic injuries.3 zation”, “Physiotherapy”, “Rest”, “Rehabilitation”, “Con- It is defined as a solution for partial or complete con- ventional treatment”, “Surgery treatment”. The articles tinuity of a bone as a result of excessive or repeated loads, were selected by orthopedic specialists after critical eva- at submaximal intensity, resulting in greater reabsorp- luation of the strength of scientific evidence, and publi- tion faced with an insufficient formation of bone tissue.1 cations of greatest strength were used for recommenda- Although stress fractures may affect all types of bone tion.
    [Show full text]
  • Fractures of the Carpal Bones Excluding the Scaphoid
    FRACTURES OF THE CARPAL BONES EXCLUDING THE SCAPHOID BY MUNIR A. SHAH, MD, AND STEVEN F. VIEGAS, MD Carpal fractures excluding the scaphoid can cause morbidity that is dispropor- tionate to their incidence because they are easily overlooked and are often harbingers of a wider wrist injury. Failure to recognize a more global injury pattern can result in undertreatment and permanent wrist dysfunction. Diagnosis requires a high index of suspicion,familiarity with carpal topography to guide the physical examination,and judicious use of specialized radiographic views and ancillary imaging techniques. Copyright © 2002 by the American Society for Surgery of the Hand racture of the carpal bones, excluding the topography to guide the physical examination and scaphoid, account for approximately 40% of judicious use of specialized radiographic views and Fall carpal fractures.1 Paradigms for evaluation ancillary imaging techniques based on clinical sus- and treatment of the fractured scaphoid are well picion. Second, such fractures are often harbingers delineated in the literature. The less common frac- of significant ligamentous disruption or associated tures of other carpal bones have received consider- carpal fractures. Failure to recognize a more global ably less attention. However, these injuries can injury pattern can result in undertreatment and produce morbidity that is disproportionate to their permanent wrist dysfunction. incidence for several reasons. First, carpal fractures We examine the incidence, mechanisms of injury, excluding the scaphoid may have a subtle clinical associated osseous and ligamentous injuries, physical and radiographic presentation and are easily over- examination findings, useful radiographic views, and looked. Diagnosis requires familiarity with carpal ancillary imaging techniques and management prin- ciples of these often overlooked carpal fractures.
    [Show full text]
  • Alternative Treatment of Tibialis Posterior Tendon Avulsion Fracture
    EX 05 Alternative Treatment Of Tibialis Posterior Tendon Avulsion Fracture 1Hussin AR, 1Khor JK, 1Tahir SH, 1Arthroscopic and Sports Injury Unit, Orthopaedics and Traumatology Institute, Hospital Kuala Lumpur INTRODUCTION: Figure 1: Swelling and tenderness over insertion of An avulsion fracture of the tibialis posterior tibialis posterior tendon over medial aspect of left ankle tendon is a rare injury. It usually occurs in young athletes because of an induced trauma. (1) It is the most common fracture of the navicular bone, often associated with ligamentous injuries and results from twisting forces on the mid foot. (2) Symptoms are pain distal and posterior to the (3) medial malleolus, loss of stability of the foot. These fractures are commonly treated Figure 2: X-ray of Left Foot (a) showed avulsion fracture conservatively, except for avulsion of the over left navicular bone, compared to Right Foot X-ray(b) posterior tibial tendon insertion (tuberosity fracture) which have better outcome with surgical intervention especially in a case of complete wide separation from the insertion site. (1)(5) (a) (b) (c) Figure 3: a) Anchor suture used to reattach tendon to insertion site. Assessment 6 weeks post operation: b) CASE: Plantarflexion c) Dorsiflexion. Patient also able to A 20-year-old student was referred to our perform single leg heel rise test and tiptoeing orthopaedic clinic with complaints of pain and (a) swelling over the medial aspect of left foot after DISCUSSIONS: twisted ankle injury for a month duration with Demand on the tibialis posterior tendon is high no sign of improvement. during gait particularly just after heel strike.
    [Show full text]