Bio-MEMS Technologies and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Bio-MEMS Technologies and Applications DK532X_C000.fm Page i Monday, November 13, 2006 7:24 AM Bio-MEMS Technologies and Applications EDITED BY Wanjun Wang • Steven A. Soper Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page ii Monday, November 13, 2006 7:24 AM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2007 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-3532-9 (Hardcover) International Standard Book Number-13: 978-0-8493-3532-7 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the conse- quences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data BioMEMS : technologies and applications / edited by Wanjun Wang and Steven A. Soper. p. cm. Includes bibliographical references and index. ISBN 0-8493-3532-9 (alk. paper) 1. BioMEMS. I. Wang, Wanjun, 1958- II. Soper, Steven A. TP248.25.B54B56 2006 660.6--dc22 2006045665 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page iii Monday, November 13, 2006 7:24 AM Table of Contents Preface.......................................................................................................v About the Editors ................................................................................. vii Contributors............................................................................................ix 1 Introduction..................................................................................... 1 Wanjun Wang and Steven A. Soper Part I Basic Bio-MEMS Fabrication Technologies 2 UV Lithography of Ultrathick SU-8 for Microfabrication of High-Aspect-Ratio Microstructures and Applications in Microfluidic and Optical Components .................................. 11 Ren Yang and Wanjun Wang 3 The LIGA Process: A Fabrication Process for High-Aspect-Ratio Microstructures in Polymers, Metals, and Ceramics................ 43 Jost Goettert 4 Nanoimprinting Technology for Biological Applications ....... 93 Sunggook Park and Helmut Schift 5 Hot Embossing for Lab-on-a-Chip Applications .....................117 Ian Papautsky Part II Microfluidic Devices and Components for Bio-MEMS 6 Micropump Applications in Bio-MEMS .................................. 143 Jeffrey D. Zahn 7 Micromixers ................................................................................. 177 Dimitris E. Nikitopoulos and A. Maha © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page iv Monday, November 13, 2006 7:24 AM 8 Microfabricated Devices for Sample Extraction, Concentrations, and Related Sample Processing Technologies ........................ 213 Gang Chen and Yuehe Lin 9 Bio-MEMS Devices in Cell Manipulation: Microflow Cytometry and Applications......................................................................... 237 Choongho Yu and Li Shi Part III Sensing Technologies for Bio-MEMS Applications 10 Coupling Electrochemical Detection with Microchip Capillary Electrophoresis........................................................... 265 Carlos D. García and Charles S. Henry 11 Culture-Based Biochip for Rapid Detection of Environmental Mycobacteria................................................ 299 Ian Papautsky and Daniel Oerther 12 MEMS for Drug Delivery .......................................................... 325 Kabseog Kim and Jeong-Bong Lee 13 Microchip Capillary Electrophoresis Systems for DNA Analysis ....................................................................... 349 Ryan T. Kelly and Adam T. Woolley 14 Bio-MEMS Devices for Proteomics .......................................... 363 Justin S. Mecomber, Wendy D. Dominick, Lianji Jin, and Patrick A. Limbach 15 Single-Cell and Single-Molecule Analyses Using Microfluidic Devices ....................................................... 391 Malgorzata A. Witek, Mateusz L. Hupert, and Steven A. Soper 16 Pharmaceutical Analysis Using Bio-MEMS............................. 443 Celeste Frankenfeld and Susan Lunte © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page v Monday, November 13, 2006 7:24 AM Preface Applications of microelectromechanical systems (MEMS) and microfabrica- tion have spread to different fields of engineering and science in recent years. Perhaps the most exciting development in the application of MEMS technol- ogy has occurred in the biological and biomedical areas. In addition to key fluidic components, such as microvalves, pumps, and all kinds of novel sensors that can be used for biological and biomedical analysis and mea- surements, many other types of so-called micro total analysis systems (TAS) have been developed. The advantages of such systems are that microvolumes of biological or biomedical samples can be delivered and processed for testing and analysis in an integrated fashion, thereby dramatically reducing the required human involvement in many steps of sample handling and processing. This helps to reduce the overall cost of measurement and time, while improving the sensitivity in most cases. Many books have been published on these subjects in recent years, but most of them have focused primarily on various fabrication technologies with a few application areas highlighted. Unfortunately, in this burgeoning area, only a couple of books have been directed specifically toward biomed- ical MEMS. As MEMS applications spread to all corners of science and engineering, more and more universities and colleges are offering courses in the bio-MEMS area. In comparison with other MEMS areas, which typi- cally involve different engineering disciplines, such as the mechanical, elec- trical, and optical fields, the development of bio-MEMS devices and systems involves a truly interdisciplinary integration of basic sciences, medical sci- ences, and engineering. This is the primary reason bio-MEMS is still in the earliest stages of development in comparison with electrical and mechanical sensing devices and systems. Due to the complexity and interdisciplinary nature of bio-MEMS, it is critical to include a diverse range of expertise in the composition of a book that attempts to cover the bio-MEMS area from both a fabrication and application point of view. This is the reason we have assembled a large group of leading researchers actively working in basic science, engineering, and biomedical areas to contribute to this book. Bio- MEMS: Technologies and Applications is divided into three sections: 1. Basic Bio-MEMS Fabrication Technologies 2. Microfluidic Devices and Components for Bio-MEMS 3. Sensing Technologies and Bio-MEMS Applications The book targets audiences in the basic sciences and engineering, both indus- trial engineers and academic researchers. Efforts have been made to ensure © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page vi Monday, November 13, 2006 7:24 AM that while enough topics on the cutting edge of bio-MEMS research are covered, the book is still easy to read. In addition to structurally organizing the book from basic materials to advanced topics, we have made sure that each chapter and subject area are covered beginning with basic principles and fundamentals. Because of the shortage of suitable textbooks in this area, this collection is designed to be reasonable for graduate education as well as working application engineers who are interested in getting into this exciting new field. © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page vii Monday, November 13, 2006 7:24 AM About the Editors Wanjun Wang received his B.S. in mechanical engineering from Xian Jiao- tong University of China in 1982. He received his M.S. and Ph.D. degrees in mechanical engineering from the University of Texas at Austin in 1986 and 1989, respectively. He joined the faculty of the mechanical engineering department of Louisiana State University, Baton Rouge, in 1994 and has been teaching and doing research in microfabrication and MEMS for more than 13 years. His main research specialty
Recommended publications
  • Recent Advances in Electrowetting Microdroplet Technologies
    Chapter 4 Recent Advances in Electrowetting Microdroplet Technologies Robert W. Barber and David R. Emerson 4.1 Introduction The ability to handle small volumes of liquid, typically from a few picolitres (pL) to a few microlitres (mL), has the potential to improve the performance of complex chemical and biological assays [1–6]. The benefits of miniaturisation are well documented [7–9] and include smaller sample requirements, reduced reagent con- sumption, decreased analysis time, lower power consumption, lower costs per assay and higher levels of throughput and automation. In addition, miniaturisation may offer enhanced functionality that cannot be achieved in conventional macroscale devices, such as the ability to combine sample collection, analyte extraction, preconcentration, filtration and sample analysis onto a single microfluidic chip [10]. Microfluidics-based lab-on-a-chip devices have received considerable attention in recent years, and are expected to revolutionise clinical diagnostics, DNA and protein analysis and many other laboratory procedures involving molecular biology [11–13]. Currently, most lab-on-a-chip devices employ continuous fluid flow through closed microchannels. However, an alternative approach, which is rapidly gaining popularity, is to mani- pulate the liquid in the form of discrete, unit-sized microdroplets—an approach which is often referred to as digital microfluidics [14–18]. The use of droplet-based microfluidics offers many benefits over continuous flow systems; one of the main advantages is that the reaction or assay can be performed sequentially in a similar manner to traditional (macroscale) laboratory techniques. Consequently, a wide range of established chemical and biological protocols can be transferred to the micro-scale without the need to establish continuous flow protocols for the same reaction.
    [Show full text]
  • A Review Paper on Enhancement of Radio Frequency Microelectro Mechanical Systems
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 10, October- 2014 A Review Paper on Enhancement of Radio Frequency MicroElectro Mechanical Systems Shilpa G. Kulkarni Electronics And Telecommunication Engineering V.I.T.Wadala Mumbai - India Abstract—Radio Frequency Micro Electro Mechanical Systems (RF MEMS) refers to the design and fabrication of committed II. NEED FOR RF MEMS MEMS for RF circuits. RF MEMS is a multi-disciplinary area MEMS switches combine the advantageous properties of in which the components operate Micromechanical And / Or mechanical and semiconductor switches.RF MEMS have components are fabricated using micromachining and these advantages such as, Low insertion loss, High isolation, Lower components are used in RF systems. The regular microwave switches currently employed in the microwave industry are power consumption, Excellent signal linearity, Better mechanical switches and semiconductor switches. Mechanical impedance match, Less dispersion , Miniaturization, Simple coaxial and waveguide switches offer benefits such as, low control circuits, High volume production possible, Very large insertion loss, large off-state isolation and high power handling bandwidth , Resistant to external environment. Table Iand Fig capabilities. Yet, they are bulky, heavy and slow. Semiconductor 1provide a comparison of RF MEMS Switches with the switches provide switching at a much faster speed and are conventional switches. smaller in size and weight, but are inferior in insertion loss, DC power consumption, isolation and power handling capabilities TABLE I. COMPARISON OF VARIOUS PARAMETERS[2] than their mechanical counterparts. MEMS switches promise to RF combine the advantageous properties of mechanical and Parameter PIN FET semiconductor switches. There are nevertheless few issues in RF MEMS MEMS Switch like, Actuation Speed, Power handling capacity, Voltage(V) 20-80 ±3-5 3-5 Stiction and Actuation voltage etc.
    [Show full text]
  • Agarose Gel Electrophoresis
    Laboratory for Environmental Pathogen Research Department of Environmental Sciences University of Toledo Agarose gel electrophoresis Background information Agarose gel electrophoresis of DNA is used to determine the presence and distinguish the type of nucleic acids obtained after extraction and to analyze restriction digestion products. Desired DNA fragments can be physically isolated for various purposes such as sequencing, probe preparation, or for cloning fragments into other vectors. Both agarose and polyacrylamide gels are used for DNA analysis. Agarose gels are usually run to size larger fragments (greater than 200 bp) and polyacrylamide gels are run to size fragments less than 200 bp. Typically agarose gels are used for most purposes and polyacrylamide gels are used when small fragments, such as digests of 16S rRNA genes, are being distinguished. There are also specialty agaroses made by FMC (e.g., Metaphor) for separating small fragments. Regular agarose gels may range in concentration from 0.6 to 3.0%. Pouring gels at less or greater than these percentages presents handling problems (e.g., 0.4% agarose for genomic DNA partial digests requires a layer of supporting 0.8% gel). For normal samples make agarose gels at 0.7%. The chart below illustrates the optimal concentrations for fragment size separation. The values listed are approximate and can vary depending on the reference that is used. If you do not know your fragment sizes then the best approach is to start with a 0.7% gel and change subsequently if the desired separation is not achieved. Nucleic acids must be stained prior to visualization. Most laboratories use ethidium bromide but other stains (e.g., SYBR green, GelStar) are available.
    [Show full text]
  • An Introduction to Inhomogeneous Liquids, Density Functional Theory, and the Wetting Transition Adam P
    An introduction to inhomogeneous liquids, density functional theory, and the wetting transition Adam P. Hughes, Uwe Thiele, and Andrew J. Archer Citation: American Journal of Physics 82, 1119 (2014); doi: 10.1119/1.4890823 View online: http://dx.doi.org/10.1119/1.4890823 View Table of Contents: http://scitation.aip.org/content/aapt/journal/ajp/82/12?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Density functional theory of inhomogeneous liquids. II. A fundamental measure approach J. Chem. Phys. 128, 184711 (2008); 10.1063/1.2916694 Mean-field density-functional model of a second-order wetting transition J. Chem. Phys. 128, 114716 (2008); 10.1063/1.2895748 Surface phase transitions in athermal mixtures of hard rods and excluded volume polymers investigated using a density functional approach J. Chem. Phys. 125, 204709 (2006); 10.1063/1.2400033 Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamic∕density-functional theory J. Chem. Phys. 125, 144515 (2006); 10.1063/1.2357937 Perfect wetting along a three-phase line: Theory and molecular dynamics simulations J. Chem. Phys. 124, 244505 (2006); 10.1063/1.2206772 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.176.202.20 On: Wed, 03 Dec 2014 08:24:19 An introduction to inhomogeneous liquids, density functional theory, and the wetting transition Adam P. Hughes Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom Uwe Thiele Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom and Institut fur€ Theoretische Physik, Westfalische€ Wilhelms-Universitat€ Munster,€ Wilhelm Klemm Str.
    [Show full text]
  • Recent Advances in Droplet-Based Microfluidic Technologies
    micromachines Review Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology 1, 1, 2, Joel Sánchez Barea y , Juhwa Lee y and Dong-Ku Kang * 1 Department of Chemistry, Incheon National University, Incheon 22012, Korea; [email protected] (J.S.B.); [email protected] (J.L.) 2 Department of Chemistry, Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea * Correspondence: [email protected]; Tel.: +82-32-835-8094 These authors contribute equally to this article. y Received: 2 May 2019; Accepted: 18 June 2019; Published: 20 June 2019 Abstract: Recently, droplet-based microfluidic systems have been widely used in various biochemical and molecular biological assays. Since this platform technique allows manipulation of large amounts of data and also provides absolute accuracy in comparison to conventional bioanalytical approaches, over the last decade a range of basic biochemical and molecular biological operations have been transferred to drop-based microfluidic formats. In this review, we introduce recent advances and examples of droplet-based microfluidic techniques that have been applied in biochemistry and molecular biology research including genomics, proteomics and cellomics. Their advantages and weaknesses in various applications are also comprehensively discussed here. The purpose of this review is to provide a new point of view and current status in droplet-based microfluidics to biochemists and molecular biologists. We hope that this review will accelerate communications between researchers who are working in droplet-based microfluidics, biochemistry and molecular biology. Keywords: droplet-based microfluidic; biochemistry; molecular biology; digital PCR; biochip; biosensor; digital quantification; microfluidic; single cell analysis 1.
    [Show full text]
  • Effect of Temperature on Wetting Angle
    San Jose State University SJSU ScholarWorks Faculty Publications, Biomedical, Chemical, and Biomedical, Chemical and Materials Materials Engineering Engineering 7-1-1997 Effect of Temperature on Wetting Angle Guna S. Selvaduray San Jose State University, [email protected] R. Brindos San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/chem_mat_eng_pub Part of the Chemical Engineering Commons Recommended Citation Guna S. Selvaduray and R. Brindos. "Effect of Temperature on Wetting Angle" National Educators' Workshop: Update 96 - Standard Experiments in Engineering Materials Science and Technology, NASA Publication 3354 (1997): 137-151. This Article is brought to you for free and open access by the Biomedical, Chemical and Materials Engineering at SJSU ScholarWorks. It has been accepted for inclusion in Faculty Publications, Biomedical, Chemical, and Materials Engineering by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. NASA Conference Publication 3354 National Educators' Workshop: Update 96 Standard Experiments.in Engineering Materials Science and Technology Compiled by James E. Gardner and Ginger L. Freeman Langle~; Research Center • Hampton, Virginia James A. Jacobs Norfolk State University • Norfolk, Virginia Don M. Parkin Los Alamos National Laboratory • Los Alamos, New Mexico Proceedings of a workshop sponsored jointly by the United States Department of Energy, Los Alamos, New Mexico, the National Aeronautics and Space Administration,
    [Show full text]
  • Opto-Electrowetting (OEW)
    Nano-Bio-Sens ing Summer Sc hoo l @ EPFL June 29 – July 3, 2009 Introduction to Optofluidics Ming C. Wu University of California, Berkeley Electrical Engineering & Computer Sciences Dept. Berkeley Sensor and Actuator Center (BSAC) [email protected] .edu Wu-1 ©2009. University of California Optofluidics • Electrowetting optics • Tunable lenses • Electronic papers • Optical trapping and manipulation • Optofluidic lab-on-a-chip • Microresonators • Photonic crystals Wu-2 ©2009. University of California Optofluidics • Integration of optics and fluidics to synthesize novel functionalities • Applications: Li, et. al., Opt. Express, 2006 – Use microfluidics to control light • Optical switches, tunable lenses • Display • Sensors – Use light t o cont rol micro flu idics, micro/nanoparticles, cells, … Wolfe, et. al., Proc. Natl. Acad. Sci. , 2004 • Optical trapping, sorting, and assembly • Non-invasive optical actuation Psaltis, et. al., Nature, 2006 Domachuck, et. al., Nature, 2005 Wu-3 ©2009. University of California “Bubble” Switches Agilent Champaign Switch • Optical crossbar switch using total internal reflection by a thermally generated bubble • 32x32 switches have been demonstrated • J. E. Fouquet, "Compact optical cross-connect switch based on total internal reflection in a fluid- containing planar lightwave circuit,“ OFC 2006 Wu-4 ©2009. University of California Optofludic Microscopy • Low-cost, high-resolution (0.8 !m), lensless on-chip microscopes • Use micro flu idic flow to de liver specimens across apertures on a metal-coated CMOS sensor X. Cui, L. M. Lee, X. Heng, W. Zhong, P. W. Sternberg, D. Psaltis, and C. Yang, "Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging," Proceedings of the National Academy of Sciences, vol.
    [Show full text]
  • Nonlinear Electrokinetic Phenomena
    Nonlinear electrokinetic phenomena Synonyms Induced-charge electro-osmosis (ICEO), induced-charge electrophoresis (ICEP), AC electro- osmosis (ACEO), electro-osmosis of the second kind, electrophoresis of the second kind, Stotz-Wien effect, nonlinear electrophoretic mobility. Definition Nonlinear electrokinetic phenomena are electrically driven fluid flows or particle motions, which depend nonlinearly on the applied voltage. The term is also used more specifically to refer to induced-charge electro-osmotic flow, driven by an electric field acting on diffuse charge induced near a polarizable surface. Chemical and Physical Principles Linear electrokinetic phenomena A fundamental electrokinetic phenomenon is the electro-osmotic flow of a liquid electrolyte (solution of positive and negative ions) past a charged surface in response to a tangential electric field. Electrophoresis is the related phenomenon of motion of a colloidal particle or molecule in a background electric field, propelled by electro-osmotic flow in the opposite direction. The basic physics is as follows: Electric fields cause positive and negative ions to migrate in opposite directions. Since each ion drags some of the surrounding fluid with it, any significant local charge imbalance yields an electrostatic stress on the fluid. Ions also exert forces on each other, which tend to neutralize the bulk solution, so electrostatic stresses are greatest in the electrical double layers, where diffuse charge exists to screens surface charge. The width of the diffuse part of the double layer (or “diffuse layer”) is the Debye screening length (λ ~ 1-100 nm in water), which is much smaller than typical length scales in microfluidics and colloids. Such a “thin double layer” resembles a capacitor skin on the surface.
    [Show full text]
  • MEMS Technology for Physiologically Integrated Devices
    A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices AMY C. RICHARDS GRAYSON, REBECCA S. SHAWGO, AUDREY M. JOHNSON, NOLAN T. FLYNN, YAWEN LI, MICHAEL J. CIMA, AND ROBERT LANGER Invited Paper MEMS devices are manufactured using similar microfabrica- I. INTRODUCTION tion techniques as those used to create integrated circuits. They often, however, have moving components that allow physical Microelectromechanical systems (MEMS) devices are or analytical functions to be performed by the device. Although manufactured using similar microfabrication techniques as MEMS can be aseptically fabricated and hermetically sealed, those used to create integrated circuits. They often have biocompatibility of the component materials is a key issue for moving components that allow a physical or analytical MEMS used in vivo. Interest in MEMS for biological applications function to be performed by the device in addition to (BioMEMS) is growing rapidly, with opportunities in areas such as biosensors, pacemakers, immunoisolation capsules, and drug their electrical functions. Microfabrication of silicon-based delivery. The key to many of these applications lies in the lever- structures is usually achieved by repeating sequences of aging of features unique to MEMS (for example, analyte sensitivity, photolithography, etching, and deposition steps in order to electrical responsiveness, temporal control, and feature sizes produce the desired configuration of features, such as traces similar to cells and organelles) for maximum impact. In this paper, (thin metal wires), vias (interlayer connections), reservoirs, we focus on how the biological integration of MEMS and other valves, or membranes, in a layer-by-layer fashion. The implantable devices can be improved through the application of microfabrication technology and concepts.
    [Show full text]
  • A Density Functional Theory Study of Hydrogen Adsorption in MOF-5
    17974 J. Phys. Chem. B 2005, 109, 17974-17983 A Density Functional Theory Study of Hydrogen Adsorption in MOF-5 Tim Mueller and Gerbrand Ceder* Department of Materials Science and Engineering, Massachusetts Institute of Technology, Building 13-5056, 77 Massachusetts AVenue, Cambridge, Massachusetts 02139 ReceiVed: March 8, 2005; In Final Form: August 3, 2005 Ab initio molecular dynamics in the generalized gradient approximation to density functional theory and ground-state relaxations are used to study the interaction between molecular hydrogen and the metal-organic framework with formula unit Zn4O(O2C-C6H4-CO2)3. Five symmetrically unique adsorption sites are identified, and calculations indicate that the sites with the strongest interaction with hydrogen are located near the Zn4O clusters. Twenty total adsorption sites are found around each Zn4O cluster, but after 16 of these are populated, the interaction energy at the remaining four sites falls off significantly. The adsorption of hydrogen on the pore walls creates an attractive potential well for hydrogen in the center of the pore. The effect of the framework on the physical structure and electronic structure of the organic linker is calculated, suggesting ways by which the interaction between the framework and hydrogen could be modified. Introduction ogies can be synthesized using a variety of organic linkers, One of the major obstacles to the widespread adoption of providing the ability to tailor the nature and size of the pores. hydrogen as a fuel is the lack of a way to store hydrogen with Several frameworks have been experimentally investigated for sufficient gravimetric and volumetric densities to be economi- their abilities to store hydrogen, but to date none are able to do cally practical.
    [Show full text]
  • Surface Science 675 (2018) 26–35
    Surface Science 675 (2018) 26–35 Contents lists available at ScienceDirect Surface Science journal homepage: www.elsevier.com/locate/susc Molecular and dissociative adsorption of DMMP, Sarin and Soman on dry T and wet TiO2(110) using density functional theory ⁎ Yenny Cardona Quintero, Ramanathan Nagarajan Natick Soldier Research, Development & Engineering Center, 15 General Greene Avenue, Natick, MA 01760, United States ARTICLE INFO ABSTRACT Keywords: Titania, among the metal oxides, has shown promising characteristics for the adsorption and decontamination of Adsorption of nerve agents on TiO2 chemical warfare nerve agents, due to its high stability and rapid decomposition rates. In this study, the ad- Molecular and dissociative adsorption sorption energy and geometry of the nerve agents Sarin and Soman, and their simulant dimethyl methyl Dry and hydrated TiO2 phosphonate (DMMP) on TiO2 rutile (110) surface were calculated using density functional theory. The mole- Slab model of TiO 2 cular and dissociative adsorption of the agents and simulant on dry as well as wet metal oxide surfaces were DFT calculations of adsorption energy considered. For the wet system, computations were done for the cases of both molecularly adsorbed water Nerve agent dissociation mechanisms Nerve agent and simulant comparison (hydrated conformation) and dissociatively adsorbed water (hydroxylated conformation). DFT calculations show that dissociative adsorption of the agents and simulant is preferred over molecular adsorption for both dry and wet TiO2. The dissociative adsorption on hydrated TiO2 shows higher stability among the different configura- tions considered. The dissociative structure of DMMP on hydrated TiO2 (the most stable one) was identified as the dissociation of a methyl group and its adsorption on the TiO2 surface.
    [Show full text]
  • Three-Dimensional Integrated Circuit Design: EDA, Design And
    Integrated Circuits and Systems Series Editor Anantha Chandrakasan, Massachusetts Institute of Technology Cambridge, Massachusetts For other titles published in this series, go to http://www.springer.com/series/7236 Yuan Xie · Jason Cong · Sachin Sapatnekar Editors Three-Dimensional Integrated Circuit Design EDA, Design and Microarchitectures 123 Editors Yuan Xie Jason Cong Department of Computer Science and Department of Computer Science Engineering University of California, Los Angeles Pennsylvania State University [email protected] [email protected] Sachin Sapatnekar Department of Electrical and Computer Engineering University of Minnesota [email protected] ISBN 978-1-4419-0783-7 e-ISBN 978-1-4419-0784-4 DOI 10.1007/978-1-4419-0784-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009939282 © Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword We live in a time of great change.
    [Show full text]