Bio-MEMS Technologies and Applications
Total Page:16
File Type:pdf, Size:1020Kb
DK532X_C000.fm Page i Monday, November 13, 2006 7:24 AM Bio-MEMS Technologies and Applications EDITED BY Wanjun Wang • Steven A. Soper Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page ii Monday, November 13, 2006 7:24 AM CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2007 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-3532-9 (Hardcover) International Standard Book Number-13: 978-0-8493-3532-7 (Hardcover) This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the conse- quences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data BioMEMS : technologies and applications / edited by Wanjun Wang and Steven A. Soper. p. cm. Includes bibliographical references and index. ISBN 0-8493-3532-9 (alk. paper) 1. BioMEMS. I. Wang, Wanjun, 1958- II. Soper, Steven A. TP248.25.B54B56 2006 660.6--dc22 2006045665 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page iii Monday, November 13, 2006 7:24 AM Table of Contents Preface.......................................................................................................v About the Editors ................................................................................. vii Contributors............................................................................................ix 1 Introduction..................................................................................... 1 Wanjun Wang and Steven A. Soper Part I Basic Bio-MEMS Fabrication Technologies 2 UV Lithography of Ultrathick SU-8 for Microfabrication of High-Aspect-Ratio Microstructures and Applications in Microfluidic and Optical Components .................................. 11 Ren Yang and Wanjun Wang 3 The LIGA Process: A Fabrication Process for High-Aspect-Ratio Microstructures in Polymers, Metals, and Ceramics................ 43 Jost Goettert 4 Nanoimprinting Technology for Biological Applications ....... 93 Sunggook Park and Helmut Schift 5 Hot Embossing for Lab-on-a-Chip Applications .....................117 Ian Papautsky Part II Microfluidic Devices and Components for Bio-MEMS 6 Micropump Applications in Bio-MEMS .................................. 143 Jeffrey D. Zahn 7 Micromixers ................................................................................. 177 Dimitris E. Nikitopoulos and A. Maha © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page iv Monday, November 13, 2006 7:24 AM 8 Microfabricated Devices for Sample Extraction, Concentrations, and Related Sample Processing Technologies ........................ 213 Gang Chen and Yuehe Lin 9 Bio-MEMS Devices in Cell Manipulation: Microflow Cytometry and Applications......................................................................... 237 Choongho Yu and Li Shi Part III Sensing Technologies for Bio-MEMS Applications 10 Coupling Electrochemical Detection with Microchip Capillary Electrophoresis........................................................... 265 Carlos D. García and Charles S. Henry 11 Culture-Based Biochip for Rapid Detection of Environmental Mycobacteria................................................ 299 Ian Papautsky and Daniel Oerther 12 MEMS for Drug Delivery .......................................................... 325 Kabseog Kim and Jeong-Bong Lee 13 Microchip Capillary Electrophoresis Systems for DNA Analysis ....................................................................... 349 Ryan T. Kelly and Adam T. Woolley 14 Bio-MEMS Devices for Proteomics .......................................... 363 Justin S. Mecomber, Wendy D. Dominick, Lianji Jin, and Patrick A. Limbach 15 Single-Cell and Single-Molecule Analyses Using Microfluidic Devices ....................................................... 391 Malgorzata A. Witek, Mateusz L. Hupert, and Steven A. Soper 16 Pharmaceutical Analysis Using Bio-MEMS............................. 443 Celeste Frankenfeld and Susan Lunte © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page v Monday, November 13, 2006 7:24 AM Preface Applications of microelectromechanical systems (MEMS) and microfabrica- tion have spread to different fields of engineering and science in recent years. Perhaps the most exciting development in the application of MEMS technol- ogy has occurred in the biological and biomedical areas. In addition to key fluidic components, such as microvalves, pumps, and all kinds of novel sensors that can be used for biological and biomedical analysis and mea- surements, many other types of so-called micro total analysis systems (TAS) have been developed. The advantages of such systems are that microvolumes of biological or biomedical samples can be delivered and processed for testing and analysis in an integrated fashion, thereby dramatically reducing the required human involvement in many steps of sample handling and processing. This helps to reduce the overall cost of measurement and time, while improving the sensitivity in most cases. Many books have been published on these subjects in recent years, but most of them have focused primarily on various fabrication technologies with a few application areas highlighted. Unfortunately, in this burgeoning area, only a couple of books have been directed specifically toward biomed- ical MEMS. As MEMS applications spread to all corners of science and engineering, more and more universities and colleges are offering courses in the bio-MEMS area. In comparison with other MEMS areas, which typi- cally involve different engineering disciplines, such as the mechanical, elec- trical, and optical fields, the development of bio-MEMS devices and systems involves a truly interdisciplinary integration of basic sciences, medical sci- ences, and engineering. This is the primary reason bio-MEMS is still in the earliest stages of development in comparison with electrical and mechanical sensing devices and systems. Due to the complexity and interdisciplinary nature of bio-MEMS, it is critical to include a diverse range of expertise in the composition of a book that attempts to cover the bio-MEMS area from both a fabrication and application point of view. This is the reason we have assembled a large group of leading researchers actively working in basic science, engineering, and biomedical areas to contribute to this book. Bio- MEMS: Technologies and Applications is divided into three sections: 1. Basic Bio-MEMS Fabrication Technologies 2. Microfluidic Devices and Components for Bio-MEMS 3. Sensing Technologies and Bio-MEMS Applications The book targets audiences in the basic sciences and engineering, both indus- trial engineers and academic researchers. Efforts have been made to ensure © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page vi Monday, November 13, 2006 7:24 AM that while enough topics on the cutting edge of bio-MEMS research are covered, the book is still easy to read. In addition to structurally organizing the book from basic materials to advanced topics, we have made sure that each chapter and subject area are covered beginning with basic principles and fundamentals. Because of the shortage of suitable textbooks in this area, this collection is designed to be reasonable for graduate education as well as working application engineers who are interested in getting into this exciting new field. © 2007 by Taylor & Francis Group, LLC DK532X_C000.fm Page vii Monday, November 13, 2006 7:24 AM About the Editors Wanjun Wang received his B.S. in mechanical engineering from Xian Jiao- tong University of China in 1982. He received his M.S. and Ph.D. degrees in mechanical engineering from the University of Texas at Austin in 1986 and 1989, respectively. He joined the faculty of the mechanical engineering department of Louisiana State University, Baton Rouge, in 1994 and has been teaching and doing research in microfabrication and MEMS for more than 13 years. His main research specialty