MEMS Technology for Physiologically Integrated Devices

Total Page:16

File Type:pdf, Size:1020Kb

MEMS Technology for Physiologically Integrated Devices A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices AMY C. RICHARDS GRAYSON, REBECCA S. SHAWGO, AUDREY M. JOHNSON, NOLAN T. FLYNN, YAWEN LI, MICHAEL J. CIMA, AND ROBERT LANGER Invited Paper MEMS devices are manufactured using similar microfabrica- I. INTRODUCTION tion techniques as those used to create integrated circuits. They often, however, have moving components that allow physical Microelectromechanical systems (MEMS) devices are or analytical functions to be performed by the device. Although manufactured using similar microfabrication techniques as MEMS can be aseptically fabricated and hermetically sealed, those used to create integrated circuits. They often have biocompatibility of the component materials is a key issue for moving components that allow a physical or analytical MEMS used in vivo. Interest in MEMS for biological applications function to be performed by the device in addition to (BioMEMS) is growing rapidly, with opportunities in areas such as biosensors, pacemakers, immunoisolation capsules, and drug their electrical functions. Microfabrication of silicon-based delivery. The key to many of these applications lies in the lever- structures is usually achieved by repeating sequences of aging of features unique to MEMS (for example, analyte sensitivity, photolithography, etching, and deposition steps in order to electrical responsiveness, temporal control, and feature sizes produce the desired configuration of features, such as traces similar to cells and organelles) for maximum impact. In this paper, (thin metal wires), vias (interlayer connections), reservoirs, we focus on how the biological integration of MEMS and other valves, or membranes, in a layer-by-layer fashion. The implantable devices can be improved through the application of microfabrication technology and concepts. Innovative approaches interested reader is directed to [1]–[3] for a review of for improved physical and chemical integration of systems with the microfabrication techniques. Microelectronics fabrication body are reviewed. An untapped potential for MEMS may lie in techniques routinely produce well-controlled features that the area of nervous and endocrine system actuation, whereby the range in size from millimeters to submicrometers, while ability of MEMS to deliver potent drugs or hormones, combined soft lithography techniques were recently used to produce with their precise temporal control, may provide new treatments features below 100 nm [4]. Although a vast assortment of for disorders of these systems. MEMS components and devices, including microreservoirs, Keywords—Biomedical engineering, biomedical materials, micropumps, cantilevers, rotors, channels, valves, sensors, biomedical transducers, drug delivery systems, microelectrome- and other structures, have been fabricated and tested in the chanical devices, micromachining, microneedles, microparticles, laboratory environment, most devices are designed for in cardiac pacemakers, surface modification, tissue engineering. vitro diagnostics. Interest in using MEMS and microfabrication technolo- gies for in vivo applications, however, is growing. MEMS can be aseptically fabricated and hermetically sealed, and Manuscript received February 3, 2003; revised April 10, 2003. This work was supported by National Institutes of Health Bioengineering Research the biocompatibility of materials used in MEMS fabrication Partnership under Grant R24-AI47739. is being investigated. The manufacturing techniques used in A. C. R. Grayson is currently with the School of Chemical and Biomolec- the microelectronics industry may lead to greater uniformity ular Engineering and the Biomedical Engineering Program, Cornell Univer- sity, Ithaca, NY 14853 USA (e-mail: [email protected]). and reproducibility of implantable devices than is currently R. S. Shawgo, Y. Li, and M. J. Cima are with the Department of available to the biomedical and pharmaceutical industries. Materials Science and Engineering, Massachusetts Institute of Technology, MEMS offer great potential advantages over other types Cambridge, MA 02139 USA (e-mail: [email protected]; [email protected]; of implantable systems for certain applications due to their [email protected]; [email protected]). A. M. Johnson and R. Langer are with the Department of Chemical En- small size scale, electrical nature, and ability to operate gineering, Massachusetts Institute of Technology, Cambridge, MA 02139 on short time scales. The development of retinal implants USA (e-mail: [email protected]; [email protected]; [email protected]). to treat blindness, neural implants for stimulation and N. T. Flynn is with the Department of Chemistry, Wellesley College, Wellesley, MA 02481 USA. recording from the central nervous system, and micronee- Digital Object Identifier 10.1109/JPROC.2003.820534 dles for painless vaccination are examples of applications 0018-9219/04$20.00 © 2004 IEEE 6 PROCEEDINGS OF THE IEEE, VOL. 92, NO. 1, JANUARY 2004 Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 8, 2009 at 16:17 from IEEE Xplore. Restrictions apply. in which features unique to MEMS, such as optical and II. IMPLANTABLE MEMS electrical sensitivity or feature size comparable to relevant A variety of implantable electronic devices are based upon biological structures, are being leveraged for maximum or use MEMS technology, including sensors, immunoisola- impact. tion capsules, and drug delivery microchips. These topics, as The digital capabilities of MEMS may allow potentially greater temporal control in the area of drug delivery than well as a novel application of microfabrication technology to can currently be achieved with polymer-based systems. stents, are briefly reviewed here. Additionally, the incorporation of optical, electrical, or chemical sensing components into MEMS devices can A. Biosensors allow the delivery of drugs to be attuned to changes in Much has been done in the application of MEMS tech- the physiological environment surrounding the device. A nology to biosensors and the adaptation of various types of number of researchers have pursued a similar strategy for sensors to in vivo diagnostics. However, at the intersection the incorporation of sensing components into responsive of these fields, namely, implantable MEMS biosensors, polymeric systems for drug delivery, including systems there are few examples. This is due in part to the formidable that can be triggered by the application of ultrasound [5], challenges faced in the more general field of implantable [6], changes in pH [7]–[12], temperature [13]–[18], analyte biosensors. The goal of short-term sensing of pH, analytes, concentrations [19]–[21], and electric [22]–[27] or magnetic and pressure in blood, tissue, and body fluids has largely [28], [29] fields. While these systems are useful and inter- been achieved, but stable sensors for long-term implantation esting in their own right, we will not discuss them in detail, continue to elude researchers [30]–[34]. Long-term in vivo as they largely fall outside the scope of this paper. sensing is a critical component of the ideal closed-loop drug The small size of MEMS, coupled with their ability to delivery or monitoring system, but the issue of implant bio- achieve precise control over the timing of drug delivery, may compatibility and biofouling must be addressed in order to prove to be of great utility in the area of actuation of physi- achieve long-term in vivo sensing. Although it is important ological systems within the human body. Molecules such as to avoid adverse tissue responses to any implant, the degree hormones or growth factors are often quite potent, and their of biocompatibility must be greater for a sensor. effect is strongly influenced by their temporal administra- Even those materials generally considered to be biocom- tion. These potent molecules affect signaling and regulatory patible produce some degree of tissue response, usually systems in the body, such as the endocrine and nervous sys- resulting in the partial isolation of the implant from the body. tems. The ability of MEMS to act on a short time scale and Although this typically does not impede the function of drug under physiologically relevant conditions, coupled with their delivery, orthopedic, or other implants whose function is ability to deliver an electrical stimulus and/or drugs from a essentially mechanical in nature, implant isolation leads to device, offer the potential for these devices to actuate sys- reduced sensitivity and increased delay time for a sensor. tems in the body. The same biocompatibility challenge must be overcome We focus in this paper on the idea of physiological inte- in vivo gration of MEMS, which encompasses two main concepts. by any MEMS biosensor for use, as the intimate First, we will examine how the physiological integration interaction of sensor and analyte is intrinsic to the operation of MEMS and other implantable devices can be improved of all sensors. Efforts are under way to use microfabricated through the application of microfabrication technology and biosensors in vivo, especially for the less problematic concepts, and we review the current state of the art in the short-term sensing applications. Sensing strategies for assessment and improvement of MEMS biocompatibility. In biosensors include optical [35], mechanical [36], magnetic some cases, such as the microtexturing of surfaces for better [37], and electrochemical [38], [39] detection methods, cell adhesion, greater physical integration
Recommended publications
  • Novel Chitosan–Cellulose Nanofiber Self-Healing Hydrogels to Correlate
    Cheng et al. NPG Asia Materials (2019) 11:25 https://doi.org/10.1038/s41427-019-0124-z NPG Asia Materials ARTICLE Open Access Novel chitosan–cellulose nanofiber self- healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects Kun-Chih Cheng1, Chih-Feng Huang2,YenWei3 and Shan-hui Hsu1,4,5 Abstract Biodegradable self-healing hydrogels are attractive materials for tissue repair; however, the impact of the self-healing abilities of hydrogels on tissue repair is not clear. In this study, we prepared novel chitosan–cellulose nanofiber (CS–CNF) composite self-healing hydrogels with the same modulus (approximately 2 kPa) but tunable self-healing properties. By adding a low amount of CNFs (0.06–0.15 wt%) in the pristine chitosan (CS) self-healing hydrogel, the reversible dynamic Schiff bonding, strain sensitivity, and self-healing of the hydrogel are obviously affected. Neural stem cells embedded in the CS–CNF hydrogel with better self-healing properties reveal significantly enhanced oxygen metabolism as well as neural differentiation. The differentiation of neural stem cells is highly correlated with their metabolic change in the self-healing hydrogel. Moreover, the neural regeneration effect of the optimized CS–CNF hydrogel with 0.09 wt% CNFs and the best self-healing properties show a 50% improvement over the pristine CS hydrogel in the zebrafish brain injury model. A mechanism is proposed to interpret the tunable self-healing properties – 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; of CS CNF hydrogels with stiffness maintained in a similar range. The new self-healing hydrogels help to clarify the role of self-healing in the biological performance of hydrogels as well as provide design rationale for hydrogels with better injectability and tissue regeneration potential.
    [Show full text]
  • A Density Functional Theory Study of Hydrogen Adsorption in MOF-5
    17974 J. Phys. Chem. B 2005, 109, 17974-17983 A Density Functional Theory Study of Hydrogen Adsorption in MOF-5 Tim Mueller and Gerbrand Ceder* Department of Materials Science and Engineering, Massachusetts Institute of Technology, Building 13-5056, 77 Massachusetts AVenue, Cambridge, Massachusetts 02139 ReceiVed: March 8, 2005; In Final Form: August 3, 2005 Ab initio molecular dynamics in the generalized gradient approximation to density functional theory and ground-state relaxations are used to study the interaction between molecular hydrogen and the metal-organic framework with formula unit Zn4O(O2C-C6H4-CO2)3. Five symmetrically unique adsorption sites are identified, and calculations indicate that the sites with the strongest interaction with hydrogen are located near the Zn4O clusters. Twenty total adsorption sites are found around each Zn4O cluster, but after 16 of these are populated, the interaction energy at the remaining four sites falls off significantly. The adsorption of hydrogen on the pore walls creates an attractive potential well for hydrogen in the center of the pore. The effect of the framework on the physical structure and electronic structure of the organic linker is calculated, suggesting ways by which the interaction between the framework and hydrogen could be modified. Introduction ogies can be synthesized using a variety of organic linkers, One of the major obstacles to the widespread adoption of providing the ability to tailor the nature and size of the pores. hydrogen as a fuel is the lack of a way to store hydrogen with Several frameworks have been experimentally investigated for sufficient gravimetric and volumetric densities to be economi- their abilities to store hydrogen, but to date none are able to do cally practical.
    [Show full text]
  • Surface Science 675 (2018) 26–35
    Surface Science 675 (2018) 26–35 Contents lists available at ScienceDirect Surface Science journal homepage: www.elsevier.com/locate/susc Molecular and dissociative adsorption of DMMP, Sarin and Soman on dry T and wet TiO2(110) using density functional theory ⁎ Yenny Cardona Quintero, Ramanathan Nagarajan Natick Soldier Research, Development & Engineering Center, 15 General Greene Avenue, Natick, MA 01760, United States ARTICLE INFO ABSTRACT Keywords: Titania, among the metal oxides, has shown promising characteristics for the adsorption and decontamination of Adsorption of nerve agents on TiO2 chemical warfare nerve agents, due to its high stability and rapid decomposition rates. In this study, the ad- Molecular and dissociative adsorption sorption energy and geometry of the nerve agents Sarin and Soman, and their simulant dimethyl methyl Dry and hydrated TiO2 phosphonate (DMMP) on TiO2 rutile (110) surface were calculated using density functional theory. The mole- Slab model of TiO 2 cular and dissociative adsorption of the agents and simulant on dry as well as wet metal oxide surfaces were DFT calculations of adsorption energy considered. For the wet system, computations were done for the cases of both molecularly adsorbed water Nerve agent dissociation mechanisms Nerve agent and simulant comparison (hydrated conformation) and dissociatively adsorbed water (hydroxylated conformation). DFT calculations show that dissociative adsorption of the agents and simulant is preferred over molecular adsorption for both dry and wet TiO2. The dissociative adsorption on hydrated TiO2 shows higher stability among the different configura- tions considered. The dissociative structure of DMMP on hydrated TiO2 (the most stable one) was identified as the dissociation of a methyl group and its adsorption on the TiO2 surface.
    [Show full text]
  • Cell and Protein Compatibility of Parylene-C Surfaces
    Cell and Protein Compatibility of Parylene-C Surfaces Tracy Y. Chang,†,# Vikramaditya G. Yadav,‡,¶,# Sarah De Leo,§ Agustin Mohedas,⊥ Bimal Rajalingam,£ Chia-Ling Chen,| Selvapraba Selvarasah,| Mehmet R. Dokmeci,| and Ali Khademhosseini*,£,¶ Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Department of Chemical Engineering, UniVersity of Waterloo, Waterloo, Canada N2L 3G1, Department of Biological Engineering, Louisiana State UniVersity, Baton Rouge, Louisiana 70808, Department of Biomedical Engineering, Texas A&M UniVersity, College Station, Texas 77843, Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, HarVard Medical School, Boston, Massachusetts 02139, Department of Electrical and Computer Engineering, Northeastern UniVersity, Boston, Massachusetts 02115, and HarVard-MIT DiVision of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ReceiVed June 11, 2007. In Final Form: August 9, 2007 Parylene-C, which is traditionally used to coat implantable devices, has emerged as a promising material to generate miniaturized devices due to its unique mechanical properties and inertness. In this paper we compared the surface properties and cell and protein compatibility of parylene-C relative to other commonly used BioMEMS materials. We evaluated the surface hydrophobicity and roughness of parylene-C and compared these results to those of tissue culture-treated polystyrene, poly(dimethylsiloxane) (PDMS), and glass. We also treated parylene-C and PDMS with air plasma, and coated the surfaces with fibronectin to demonstrate that biochemical treatments modify the surface properties of parylene-C. Although plasma treatment caused both parylene-C and PDMS to become hydrophilic, only parylene-C substrates retained their hydrophilic properties over time. Furthermore, parylene-C substrates display a higher degree of nanoscale surface roughness (>20 nm) than the other substrates.
    [Show full text]
  • Biocompatibility of Polyimides: a Mini-Review
    materials Review Biocompatibility of Polyimides: A Mini-Review Catalin P. Constantin 1 , Magdalena Aflori 1 , Radu F. Damian 2 and Radu D. Rusu 1,* 1 “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41A, Iasi-700487, Romania; [email protected] (C.P.C.); mafl[email protected] (M.A.) 2 SC Intelectro Iasi SRL, Str. Iancu Bacalu, nr.3, Iasi-700029, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-232-217454 Received: 14 August 2019; Accepted: 25 September 2019; Published: 27 September 2019 Abstract: Polyimides (PIs) represent a benchmark for high-performance polymers on the basis of a remarkable collection of valuable traits and accessible production pathways and therefore have incited serious attention from the ever-demanding medical field. Their characteristics make them suitable for service in hostile environments and purification or sterilization by robust methods, as requested by most biomedical applications. Even if PIs are generally regarded as “biocompatible”, proper analysis and understanding of their biocompatibility and safe use in biological systems deeply needed. This mini-review is designed to encompass some of the most robust available research on the biocompatibility of various commercial or noncommercial PIs and to comprehend their potential in the biomedical area. Therefore, it considers (i) the newest concepts in the field, (ii) the chemical, (iii) physical, or (iv) manufacturing elements of PIs that could affect the subsequent biocompatibility, and, last but not least, (v) in vitro and in vivo biocompatibility assessment and (vi) reachable clinical trials involving defined polyimide structures. The main conclusion is that various PIs have the capacity to accommodate in vivo conditions in which they are able to function for a long time and can be judiciously certified as biocompatible.
    [Show full text]
  • Adsorption and Desorption Performance and Mechanism Of
    molecules Article Adsorption and Desorption Performance and Mechanism of Tetracycline Hydrochloride by Activated Carbon-Based Adsorbents Derived from Sugar Cane Bagasse Activated with ZnCl2 Yixin Cai 1,2, Liming Liu 1,2, Huafeng Tian 1,*, Zhennai Yang 1,* and Xiaogang Luo 1,2,3,* 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; [email protected] (Y.C.); [email protected] (L.L.) 2 School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, LiuFang Campus, No.206, Guanggu 1st road, Donghu New & High Technology Development Zone, Wuhan 430205, Hubei Province, China 3 School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, Henan Province, China * Correspondence: [email protected] (H.T.); [email protected] (Z.Y.); [email protected] or [email protected] (X.L.); Tel.: +86-139-8627-0668 (X.L.) Received: 4 November 2019; Accepted: 9 December 2019; Published: 11 December 2019 Abstract: Adsorption and desorption behaviors of tetracycline hydrochloride by activated carbon-based adsorbents derived from sugar cane bagasse modified with ZnCl2 were investigated. The activated carbon was tested by SEM, EDX, BET, XRD, FTIR, and XPS. This activated carbon 2 1 exhibited a high BET surface area of 831 m g− with the average pore diameter and pore volume 3 1 reaching 2.52 nm and 0.45 m g− , respectively. The batch experimental results can be described by Freundlich equation, pseudo-second-order kinetics, and the intraparticle diffusion model, 1 while the maximum adsorption capacity reached 239.6 mg g− under 318 K.
    [Show full text]
  • Proteins and Peptides As Important Modifiers of the Polymer Scaffolds
    polymers Review Proteins and Peptides as Important Modifiers of the Polymer Scaffolds for Tissue Engineering Applications—A Review Katarzyna Klimek * and Grazyna Ginalska Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-81-448-7028; +48-81-448-7020 Received: 29 January 2020; Accepted: 2 April 2020; Published: 6 April 2020 Abstract: Polymer scaffolds constitute a very interesting strategy for tissue engineering. Even though they are generally non-toxic, in some cases, they may not provide suitable support for cell adhesion, proliferation, and differentiation, which decelerates tissue regeneration. To improve biological properties, scaffolds are frequently enriched with bioactive molecules, inter alia extracellular matrix proteins, adhesive peptides, growth factors, hormones, and cytokines. Although there are many papers describing synthesis and properties of polymer scaffolds enriched with proteins or peptides, few reviews comprehensively summarize these bioactive molecules. Thus, this review presents the current knowledge about the most important proteins and peptides used for modification of polymer scaffolds for tissue engineering. This paper also describes the influence of addition of proteins and peptides on physicochemical, mechanical, and biological properties of polymer scaffolds. Moreover, this article sums up the major applications of some biodegradable natural and synthetic polymer scaffolds modified with proteins and peptides, which have been developed within the past five years. Keywords: bioactive construct; biocompatibility; biomolecules; cytotoxicity; ECM; hydrogels; protein carrier; regenerative medicine; stem cells; tissue repair 1. Introduction: The Role of Proteins and Peptides in TE Tissue engineering (TE) is a multidisciplinary field, which constitutes an alternative and promising approach for grafts, i.e., autografts, allografts, and xenografts [1–3].
    [Show full text]
  • Design of a Microelectronic Manufacturing Laboratory
    2006-1635: DESIGN OF A MICROELECTRONIC MANUFACTURING LABORATORY Stilson Applin, Montana State University Todd Kaiser, Montana State University Page 11.407.1 Page © American Society for Engineering Education, 2006 Design of a Microelectronic Manufacturing Laboratory Abstract The design of an undergraduate microelectronic manufacturing laboratory for teaching will be described in the following paper. This laboratory emphasizes learning the processes of semiconductor manufacturing and clean room protocol. The laboratory is housed in a 500 square foot, class 10,000 facility. In the laboratory the students, with a junior standing and a science based background, will use a pre-made six mask set to create P and N type transistors as well as inverters and diodes. The students will be conducting oxidization, RCA clean, photolithography, etching, diffusion, metallization and other processes. A brief description of these processes and the methods used to teach them will also be described. In addition to these processes students will also learn about clean room protocol, chemical safety, and testing devices. All of these skills will be marketable to future employers and graduate schools. These same skills and processes will be covered in a seminar course for educators, with the main purpose of inspiring the high school teachers to teach about semiconductor manufacturing. The cost effective design is what makes the laboratory unique. The expenditure control is important due to the size of the Electrical Engineering department. The department has only 250 undergraduates and 40 graduate students, thus internal funding is difficult to obtain. A user fee paid by the students will cover the funding. This fee will be small and manageable for any college student.
    [Show full text]
  • Biocompatibility of Plastics
    SPECIAL EDITION RESINATE Your quarterly newsletter to keep you informed about trusted products, smart solutions, and valuable updates. BIOCOMPATIBILITY OF PLASTICS REVISED AND EDITED BY KEVIN J. BIGHAM, PhD. © 2010; © 2017 BIOCOMPATIBILITY OF PLASTICS 2 INTRODUCTION Plastics have many unique properties regarding their manufacturability and production potential. These properties are increasingly being utilized in the production of medical devices and medical packaging. The medical device industry is one of the fastest growing areas for plastics with growth rates exceeding gross domestic product growth for several years. This trend is predicted to continue into the future due to developments of increasingly innovative medical devices, improvements in plastics technology (both materials and processing), and an aging population. Despite this significant growth, one thing remains constant: The application of any material in a medical device must meet stringent safety requirements. BIOCOMPATIBILITY Biocompatibility is a general term used to describe the suitability of a material for exposure to the body or bodily fluids with an acceptable host response. Biocompatibility is dependent on the specific application and circumstance of the material in question: A material may be biocompatible in one particular usage but may not be in another. In general, a material may be considered biocompatible if it causes no harm to the host. This is distinct, however, from causing no side effects or other consequences. Frequently, material that is considered biocompatible once implanted in the body will result in varying degrees of inflammatory and immune responses. For a biocompatible material, these responses are not harmful and are part of body’s normal responses. Materials that are not biocompatible are those that do result in adverse (harmful) effects to the host.
    [Show full text]
  • Advanced Solar Technology Sample
    ADVANCED SOLAR TECHNOLOGY SAMPLE TECHNOLOGY ACQUISITION REPORT CONTENTS Technology 1: Microsystems Enabled Photovoltaics (MEPV) - Photovoltaic solar concentrator ............... 4 Technology 2: Method and apparatus for integrating an infrared (ir) photovoltaic cell on a thin film photovoltaic cell ............................................................................................................................................ 7 Technology 3: Photovoltaic cells with quantum dots with built-in-charge and methods of making same 10 Technology 4: Super-transparent electodes for photovoltaic applications ................................................. 13 Technology 5: Optical concentrator and associated photovoltaic devices ................................................. 15 Technology 6: Hybrid photovoltaic devices and applications thereof ........................................................ 18 Technology 7: Methods of manufacturing photovoltaic electrodes ............................................................ 20 Technology 8: Thin film photovoltaic cell structure, nanoantenna, and method for manufacturing ......... 23 Technology 9: Apparatuses, systems and methods for cleaning photovoltaic devices .............................. 26 Technology 10: Photovoltaic structures having a light scattering Interface layer and methods of making the same ....................................................................................................................................................... 28 Technology 11: Rapid thermal
    [Show full text]
  • Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering
    sustainability Review Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering Ilhan Chang 1,†, Jooyoung Im 2,† and Gye-Chun Cho 2,*,† 1 Geotechnical Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang 10223, Korea; [email protected] 2 Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-42-350-3622; Fax: +82-42-350-7210 † These authors contributed equally to this work. Academic Editor: Michael A. Fullen Received: 24 November 2015; Accepted: 3 March 2016; Published: 10 March 2016 Abstract: Soil treatment and improvement is commonly performed in the field of geotechnical engineering. Methods and materials to achieve this such as soil stabilization and mixing with cementitious binders have been utilized in engineered soil applications since the beginning of human civilization. Demand for environment-friendly and sustainable alternatives is currently rising. Since cement, the most commonly applied and effective soil treatment material, is responsible for heavy greenhouse gas emissions, alternatives such as geosynthetics, chemical polymers, geopolymers, microbial induction, and biopolymers are being actively studied. This study provides an overall review of the recent applications of biopolymers in geotechnical engineering. Biopolymers are microbially induced polymers that are high-tensile, innocuous, and eco-friendly. Soil–biopolymer interactions and related soil strengthening mechanisms are discussed in the context of recent experimental and microscopic studies. In addition, the economic feasibility of biopolymer implementation in the field is analyzed in comparison to ordinary cement, from environmental perspectives.
    [Show full text]
  • Nanoparticle Size Effect on Water Vapour Adsorption by Hydroxyapatite
    nanomaterials Article Nanoparticle Size Effect on Water Vapour Adsorption by Hydroxyapatite Urszula Szałaj 1,2,*, Anna Swiderska-´ Sroda´ 1, Agnieszka Chodara 1,2, Stanisław Gierlotka 1 and Witold Łojkowski 1 1 Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland 2 Faculty of Materials Engineering, Warsaw University of Technology, Wołoska 41, 02-507 Warsaw, Poland * Correspondence: [email protected]; Tel.: +48-22-876-04-31 Received: 12 June 2019; Accepted: 10 July 2019; Published: 12 July 2019 Abstract: Handling and properties of nanoparticles strongly depend on processes that take place on their surface. Specific surface area and adsorption capacity strongly increase as the nanoparticle size decreases. A crucial factor is adsorption of water from ambient atmosphere. Considering the ever-growing number of hydroxyapatite nanoparticles applications, we decided to investigate how the size of nanoparticles and the changes in relative air humidity affect adsorption of water on their surface. Hydroxyapatite nanoparticles of two sizes: 10 and 40 nm, were tested. It was found that the nanoparticle size has a strong effect on the kinetics and efficiency of water adsorption. For the same value of water activity, the quantity of water adsorbed on the surface of 10 nm nano-hydroxyapatite was five times greater than that adsorbed on the 40 nm. Based on the adsorption isotherm fitting method, it was found that a multilayer physical adsorption mechanism was active. The number of adsorbed water layers at constant humidity strongly depends on particles size and reaches even 23 layers for the 10 nm particles. The amount of water adsorbed on these particles was surprisingly high, comparable to the amount of water absorbed by the commonly used moisture-sorbent silica gel.
    [Show full text]