THE GENETICAL SOCIETY—ABSTRACTS of PAPERS of A1059metdphageswas Isolated on Minimal 5

Total Page:16

File Type:pdf, Size:1020Kb

THE GENETICAL SOCIETY—ABSTRACTS of PAPERS of A1059metdphageswas Isolated on Minimal 5 Heredity 62 (1989) 281—288 The Genetica! Society of Great Britain THEGENETICAL SOCIETY (Abstracts of papers presented at the TWO HUNDRED AND NINTH MEETING of the Society held from 11th to 12th November 1988 at UNIVERSITY COLLEGE, LONDON) 1. Neutrality of two alleles of 2. Molecular studies of bovine Esterase-5 in Drosophila anti-testosterone immunoglobulins pseudoobscura: a perturbation- T. Jackson,* D. J. Groves,t B. Morrist and P. reperturbation test G. Sanders* * Molecular Biology Group, Department of Einar Arnason Microbiology, and t AFRC Antibody Development Institute of Biology, University of Iceland, Reykjavik, Group, Department of Biochemistry, University of Iceland. Surrey, Guildford GU2 5XH, U.K. Weare interested in improving the therapeutic Aperturbation-reperturbation testsselective properties of ovine and bovine immunoglobulins neutrality of 100/100/100/100/100 and to hormones involved in the reproductive cycle. 106/100/100/100/100,thetwo most common A mouse-bovine heterohybridoma has been alleles at the highly polymorphic X-linked locus produced which secretes a monoclonal antibody Esterase-5 in Drosophila pseudoobscura. A total of against testosterone. In order to investigate the 22 replicate populations are set up in cages, 11 binding of this anti-steroid immunoglobulin to tes- populations start at a frequency of 76% and 11 at tosterone we have cloned cDNAs for both the 21% of the 106 allele. Allele frequencies change heavy and light chain proteins. Studies to charac- directionally and decrease in both high and low tense these clones will be presented. populations as groups and reach equilibria of respectively 60% and 14% after 200-300 days. The directed changes of allele frequencies are due to 3.Cloning studies of a methionine natural selection. A hypothesis of balancing selec- tion accounts for the pattern of allele frequency high-affinity transport system of changes and predicts a dynamic equilibrium. A Salmonella typhimurium neutral hypothesis equally well accounts for the N. A. Shaw and P. D. Ayling pattern leaving the Est-5 variants to drift at neutral equilibria. A reperturbation of allele frequencies Department of Applied Biology, University of Hull, in each population, creating 22 additional reper- Hull HU6 7RX, U.K. turbed populations with the original populations Thehigh-affinity methionine transport system of as controls, directly addresses the question of Salmonella typhimurium (encoded by the metD balancing selection or dissipated linkage effects. locus, formerly called metP) is believed to be of Allele frequencies do not change directionally the shock-sensitive category (Cottam and Ayling, among the reperturbed populations as a group. unpublished), and therefore should consist of one The hypothesis of balancing selection is rejected periplasmic and at least two inner membrane pro- in favor of the hypothesis of dissipated linkage teins (Ames, G. F. L., 1986, Ann. Rev. Biochem., effects. In conclusion the 100/100/100/100/100 55, 379). A library of a partial Sau 3A digest of S. and 106/100/100/100/100 are iso-fitness alleles of typhimurium DNA in the replacement vector, Est-5 A 1059, was obtained from Dr. R. Maurer. A series 282 THE GENETICAL SOCIETY—ABSTRACTS OF PAPERS of A1059metDphageswas isolated on minimal 5. Identification of a putative B- agar plus D-methionine by lysogenic corn- plementation of an E.coli metD mutant.One of chromosome specific sequence the clones was shown to have retained the activity from rye (Secale cereale) of a high-affinity methionine transport system. The metDinsertwas subcloned into the high M. J. Sandery, J. W. Forster and R. N. Jones copy number plasmid, pUC8, and four metD Genetic and Crop Biotechnology Group, Department isolates were selected in an E. coli metD strain. A of Agricultural Sciences, University College of clone carrying pUC8 with a 1.4 kilobase insert gave Wales, Aberystwyth, Dyfed SY23 3DD, U.K. a methionine uptake rate which was 30% that of DNAfrom a rye plant containing 611-chromosomes an E. coli metD strain, and showed slow growth was compared by restriction enzyme analysis with on D-methionine medium. Three other larger DNA from a plant lacking B-chromosomes. With metD plasmids gave wild-type or increased levels the restriction enzyme Dra 1, the 6B restriction of methionine transport. pattern shows the presence of a highly repeated Expression studies using in vitro and minicell DNA sequence, about 1200 bp in length, which is methods showed that the larger metD plasmids not visible in the OB restriction pattern. This encoded two additional proteins of molecular repeated sequence has been isolated and used as weight 40 and 34 kDal. Neither of these proteins a probe to investigate whether the sequence is appeared to be a periplasmic binding protein. B-chromosome specific, its relation to other rye repeated sequences and its position in the rye B 4.Conservation of a human chromosome. derived Y-specific sequence on the Y chromosome of the great apes 6.Detection of Ig and TcR gene M. Kalaitsidaki,* K. Kwok,t M. A. Ferguson- rearrangement in human Smith and J. M. Conner* lymphomas * Duncan Guthrie Institute of Medical Genetics, Glasgow G3 8SJ, U.K. v. Orphanos*, D. Anagnostou,t Th. tAFRCInstitute of Animal Physiology and Genetics Papadaki,t G. M. Maniatis* and A. Research, Cambridge, U.K. Atha n ass iado u * 1 Department of Pathology, Cambridge CB2 lOP, * Department of Biology, Medical School, University U.K. of Patras, Patras, Greece. GM6YIO,a human derived repetitive sequence, Laboratory of Hematopathology, General Hospital specific for the short arm of the Y chromosome, of Athens, "EVANGELIMOS'ç Athens, Greece. was shown by Southern blot analysis to hybridise Igand T cell receptor gene arrangements represent with DNA from male gorilla (Gorilla gorilla), male markers of lineage, clonality and differentiation of orangutan (Pongo pvgrnaeus) and male chimpan- B and T cells respectively. Detection of such zee (Pan troglodytes). To investigate its chromo- rearrangements in B and T cell neoplasms has somal localisation the sequence was utilised in in provided the basis for their molecular diagnosis situ hybridisation studies with metaphase chromo- and classification particularly in severe cases where somes obtained from chimpanzee, orangutan and immunological analysis seems to be unable to gorilla fibroblasts. GMGYIO was labelled by nick define lineage and clonality. We used probes which translation with biotin-1 1-dUTP and hybridisation detect rearrangements of the Ig heavy (JH)and was carried out according to the method of Garson k-light (CK)chaingenes or the TcR 13-chain (Co) er a!. (Nucleic Acids Res., 15, 4761—4770). and y-chain (Tv) genes and proceeded to genotypic Hybridisation signal was observed on the Y analysis of various cases of lymphoproliferative chromosome in all 3 cases. In the orangutan, there disorders. was signal only on the short arm of the Y, whereas Our results on CLL, Hodgkin's disease and in the gorilla the majority of the signal was non-Hodgkin's lymphomas agree with those re- observed on the long arm. In the chimpanzee it ported in the literature (O'Connor, N. I. J., 1987, was not possible to decide whether the signal .1. Pathology, 151, 185—190). occurred on the short or the long arm because the Reactive processes and lymphornas of double Y chromosome is particularly small. The possible phenotype is our main interest. Among the reactive significance of these findings is discussed. processes we detect cases of T cell lymphoma THE GENETICAL SOCIETY—ABSTRACTS OF PAPERS 283 (TcR gene rearranged-Ig genes in germline Mycobacterium paratuberculosis (paratb) is the configuration) as well as of B cell lymphomas (Ig causative agent of Johne's disease (regional genes rearranged-TcR gene in germline configu- enteritis) in ruminants. It is very closely related to ration or deleted). One of the former cases was Mycobacterium avium with which it shares 98% confirmed a year later as a T cell lymphoma by DNA homology (McFadden, J. J., 1988, J. Clin. immunocytochemical analysis. We are currently Microbiol., 25,796—801).However, M. avium using a TcR (y) probe in the analysis of reactive causes only sporadic disease in ruminants, whereas processes in order to obtain data concerning the paratb is a major pathogen causing chronic, fatal, differentiation of these processes. wasting disease. Conversely, unlike paratb, M Ig and TcR genes were rearranged while TcRy avium is a pathogen of birds. Paratb also differs gene was in germline in the three cases of lym- from M. aviuni in its requirement for an iron- phomas of double phenotype (B cell lymphomas) chelating growth factor (mycobactin) for growth studied so far. The evaluation of the usefulness of and in its extremely slow growth rate. We have TcR gene rearrangements in the genotypic analy- isolated and characterised a mycobacterial inser- sis of these lymphomas is also desired. Analysis tion sequence (MIS1) which is present in identical of further cases is in progress. multiple copies in the genomes of all strains of paratb, but absent from all strains of M. avium. We propose that infection of an M. avium strain 7.Selection in karyotypic hybrid with MIS! has recently occurred leading to the zones rapid evolution of the species M. para tuberculosis. We also propose that insertional mutagenesis may J. B. Searle account for the multiple phenotypic differences between paratb and M. aviurn. The newly evolved, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, U.K. debilitated paratb may be an example of what Goldschmidt (The Material Basis of Evolution, Heterozygotesfor chromosomal (structural) re- 1940) termed a "hopeful monster". arrangements produced when karyotypic races hybridize in nature are expected to suffer reduced fertility relative to "pure" race individuals, as a 9. result of chromosomal imbalance or loss among Analysis of dines and linkage germ cells, associated with meiotic aberrations.
Recommended publications
  • Reinhart Heinrich (1946–2006) Pioneer in Systems Biology
    NEWS & VIEWS NATURE|Vol 444|7 December 2006 OBITUARY Reinhart Heinrich (1946–2006) Pioneer in systems biology. In biology, mathematical systems analysis where he showed that the flux of was until recently nearly invisible in the reaction was shared by several the dazzling light of twentieth-century enzymes. Much later, he extended discoveries. But it has emerged from the his ideas to signal-transduction shadows in the field of systems biology, pathways, introducing control a subject buoyed by immense data sets, coefficients to dynamic processes. conveyed by heavy computing power, and Sticking to real examples, such as addressing seemingly incomprehensible the Wnt signalling and MAP kinase forms of complexity. If systems biology has pathways, he again demonstrated heroes, one of them is Reinhart Heinrich, a that new properties and constraints former professor at the Humboldt University emerge when the individual steps in Berlin, who died on 23 October, aged are combined into a complete 60. His most famous accomplishment was pathway. metabolic control theory, published in Heinrich also pointed the way to 1974 with Tom Rapoport and formulated considerations of optimality theory independently by Henrik Kacser and James and evolution that will confront A. Burns in Edinburgh, UK. systems biology for the next From the 1930s to the 1960s, biochemists century. The question of evolution were busy describing metabolic pathways, lies just beneath any effort to just as molecular biologists today are understand biology. Yet in most feverishly trying to inventory the cell’s cases, physiological function and gene-transcription and signalling circuits. evolutionary change are considered The basic kinetic features of the enzymes in distinct and are investigated by the major pathways were studied in great different people.
    [Show full text]
  • Review Heterochronic Genes and the Nature of Developmental Time
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 17, R425–R434, June 5, 2007 ª2007 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2007.03.043 Heterochronic Genes and the Nature of Review Developmental Time Eric G. Moss that have arisen to solve the problem of regulated tim- ing in animal development. Timing is a fundamental issue in development, with Heterochrony and Developmental Timing a range of implications from birth defects to evolu- in Evolution tion. In the roundworm Caenorhabditis elegans, Changes in developmental timing have long been be- the heterochronic genes encode components of lieved to be a major force in the evolution of morphol- a molecular developmental timing mechanism. This ogy [1]. A variety of changes is encompassed by the mechanism functions in diverse cell types through- concept of ‘heterochrony’ — differences in the relative out the animal to specify cell fates at each larval timing of developmental events between two closely stage. MicroRNAs play an important role in this related species. A classic example of heterochrony is mechanism by stage-specifically repressing cell- the axolotl. This salamander reaches sexual maturity fate regulators. Recent studies reveal the surprising without undergoing metamorphosis, such that its complexity surrounding this regulation — for exam- non-gonadal tissues retain larval features of other ple, a positive feedback loop may make the regula- salamanders. Different species of axolotls exhibit ge- tion more robust, and certain components of the netic differences in the production or activity of thyroid mechanism are expressed in brief periods at each hormones that trigger metamorphosis from aquatic stage.
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • Fitness As a Function of Β-Galactosidase Activity In
    Genet. Res., Camb. (1986), 48, pp. 1-8 With 3 text-figures Printed in Great Britain Fitness as a function of /?-galactosidase activity in Escherichia coli ANTONY M. DEAN, DANIEL E. DYKHUIZEN AND DANIEL L. HARTL Department of Genetics, Washington University School of Medicine, St Louis, Missouri USA 63110-1095 (Received 12 July 1985 and in revised form 13 January 1986) Summary Chemostat cultures in which the limiting nutrient was lactose have been used to study the relative growth rate of Escherichia coli in relation to the enzyme activity of /?-galactosidase. A novel genetic procedure was employed in order to obtain amino acid substitutions within the /acZ-encoded /?-galactosidase that result in differences in enzyme activity too small to be detected by ordinary mutant screens. The cryptic substitutions were obtained as spontaneous revertants of nonsense mutations within the lacZ gene, and the enzymes differing from wild type were identified by means of polyacrylamide gel electrophoresis or thermal denaturation studies. The relation between enzyme activity and growth rate of these and other mutants supports a model of intermediary metabolism in which the flux of substrate through a metabolic pathway is represented by a concave function of the activity of any enzyme in the pathway. The consequence is that small differences in enzyme activity from wild type result in even smaller changes in fitness. 1. Introduction sidase activity and growth rate in E. coli, together with a novel genetic technique for obtaining amino acid In the seminal paper, Kacser & Burns (1973) demon- strated that the net flux through a simple linear meta- substitutions that result in electrophoretic or thermo- bolic pathway should be a concave function of the lability differences from wild type.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Henrik Kacser 1918-1995: Metabolism of control. Westerhoff, H.V. DOI 10.1016/S0167-7799(00)88956-8 Publication date 1995 Published in Trends in Biotechnology Link to publication Citation for published version (APA): Westerhoff, H. V. (1995). Henrik Kacser 1918-1995: Metabolism of control. Trends in Biotechnology, 13, 245. https://doi.org/10.1016/S0167-7799(00)88956-8 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:25 Sep 2021 245 f orum Henrik Kacser (19184995): metabolism of control Obituary Henrik Kacser has been referred missed the rate-limiting step. He funding agency had allowed much to as the ‘pope’ of Metabolic much appreciated
    [Show full text]
  • Sonic Hedgehog Signaling in Limb Development
    REVIEW published: 28 February 2017 doi: 10.3389/fcell.2017.00014 Sonic Hedgehog Signaling in Limb Development Cheryll Tickle 1* and Matthew Towers 2* 1 Department of Biology and Biochemistry, University of Bath, Bath, UK, 2 Department of Biomedical Science, The Bateson Centre, University of Sheffield, Western Bank, Sheffield, UK The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in Edited by: limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Andrea Erika Münsterberg, University of East Anglia, UK Currently there are several models for how Shh specifies positional values over time in the Reviewed by: limb buds of chick and mouse embryos and how this is integrated with growth. Extensive Megan Davey, work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it University of Edinburgh, UK Robert Hill, remains unclear how antero-posterior positional values are encoded and then interpreted University of Edinburgh, UK to give the particular structure appropriate to that position, for example, the type of digit.
    [Show full text]
  • Principles of Systems Biology and Dmitri Belyaev's Co-Selection of Traits
    Principles of systems biology and Dmitri Belyaev’s co-selection of traits Hans V. Westerhoff and friends MCISB, MIB, SCEAS, University of Manchester SysBA, Universities of Amsterdam Systems Biology • What is it? • Principles – Lack of dominance (Kacser) – Co-selection (Belyaev) • Progress – Make Me My Model – The genome wide metabolic maps – Epigenetics and noise/cell diversity Bioinformatics: From biological data to information Systems Biology: From that information to understanding Systems Biology: From data to understanding: why is this such an issue? • Because the mapping from genome to function is extremely nonlinear • E.g.: – - – - The DNA in all our cells is the same, but: a heart cell is essentially different from a brain cell – - Self organization, bistability: Belousov, Zhabotinsky, Waddington, Ilya Prigogine, Boris Kholodenko Why systems biology? Cause 1 ~all functions are X network functions Multiple causality Cause 2 Cause 3 X Multifactorial X disease Impaired function 2006 Hornberg et al: ‘Cancer: a systems biology disease’. Now: ‘virtually all disease are Systems Biology diseases.’ This causes the ‘missing heritability problem (Baranov; Stepanov)’ Systems Biology= • The Science that • aims to understand • principles governing • how the biological functions • arise from the interactions = from the networking This leads to precision, personalized, 4P medicine, PPP4M And to precision biotechnology Systems Biology • What is it? • Principles – Lack of dominance (Kacser) – Co-selection (Belyaev) • Progress – Make Me My Model – The genome wide metabolic maps – Epigenetics and noise/cell diversity Henrik Kacser (Student of Waddell) Henrik Kacser Recessivity of most lack-of-function mutations Lack of dominance: No loss of function in heterozygote Lack of dominance: observation F0 F0’ F1 (knock out) X Function= 100% 0% 95% Flux J Lack of dominance: single molecule explanation fails F0 F0’ F1 AA 00 A0 X This is almost always incorre Function= 100% 100% 50% Flux J ct Cf.
    [Show full text]
  • 2019.12.20.883900V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883900; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title 2 Sequence heterochrony led to a gain of functionality in an immature 3 stage of the central complex: a fly-beetle insight 4 Short title: Sequence heterochrony in central complex evolution 5 6 Authors: 7 Max S. Farnwortha,c, Kolja N. Eckermannb,c, Gregor Buchera,* 8 9 a Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, 10 University of Göttingen, Göttingen, Germany, b Department of Developmental Biology, Johann-Friedrich- 11 Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany, c Göttingen Graduate Center for 12 Molecular Biosciences, Neurosciences and Biophysics (GGNB), Göttingen, Germany 13 14 * Corresponding author: Gregor Bucher 15 Email: [email protected] 16 17 ORCID: Max S. Farnworth https://orcid.org/0000-0003-2418-3203, Gregor Bucher 18 https://orcid.org/0000-0002-4615-6401 19 - 1 - bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883900; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20 Abstract 21 Animal behavior is guided by the brain.
    [Show full text]
  • The Molecular Basis of Dominance
    THE MOLECULAR BASIS OF DOMINANCE HENRIK KACSER AND JAMES A. BURNS Deprrrtment of Genetics, Uniuersity of Edinburgh, Edinburgh Manuscript received September 3, 1980 ABSTRACT The best known genes of microbes, mice and men are those that specify enzymes. Wild type, mutant and heterozygote for variants of such genes differ in the catalytic activity at the step in the enzyme network specified by the gene in question. The effect on the respective phenotypes of such changes in catalytic activity, however, is not defined by the enzyme change as estimated by in vitro determination of the activities obtained from the extracts of the three types. In vivo enzymes do not act in isolation, but are kinetically linked to other enzymes uiu their substrates and products. These interactions modify the effect of enzyme variation on the phenotype, depending on the nature and quantity of the other enzymes present. An output of such a system, say a flux, is therefore a systemic property, and its response to variation at one locus must be measured in the whole system. This response is best described by the sensi- tivity coefficient, Z, which is defined by the fractional change in flux over the fractional change in enzyme activity. Its magnitude determines the extent to which a particular enzyme “controls” a particular flux or phenotype and, implicitly, determines the values that the three phenotypes will have. There are as many sensitivity coefficients for a given flux as there are enzymes in the system. It can be shown that the sum of all such coefficients equals unity. n Since n, the number of enzymes, is large, this summation property results in the individual coefficients being small.
    [Show full text]
  • Homeobox Genes D11–D13 and A13 Control Mouse Autopod Cortical
    Research article Homeobox genes d11–d13 and a13 control mouse autopod cortical bone and joint formation Pablo Villavicencio-Lorini,1,2 Pia Kuss,1,2 Julia Friedrich,1,2 Julia Haupt,1,2 Muhammed Farooq,3 Seval Türkmen,2 Denis Duboule,4 Jochen Hecht,1,5 and Stefan Mundlos1,2,5 1Max Planck Institute for Molecular Genetics, Berlin, Germany. 2Institute for Medical Genetics, Charité, Universitätsmedizin Berlin, Berlin, Germany. 3Human Molecular Genetics Laboratory, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan. 4National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland. 5Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, Universitätsmedizin Berlin, Berlin, Germany. The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e., the hands and feet) using the mouse mutant synpolydactyly homolog (spdh), which encodes a polyalanine expansion in Hoxd13. We found that no cortical bone was formed in the autopod in spdh/spdh mice; instead, these bones underwent trabecular ossification after birth. Spdh/spdh metacarpals acquired an ovoid shape and developed ectopic joints, indicating a loss of long bone characteristics and thus a transformation of metacarpals into carpal bones. The perichon- drium of spdh/spdh mice showed abnormal morphology and decreased expression of Runt-related transcription factor 2 (Runx2), which was identified as a direct Hoxd13 transcriptional target. Hoxd11–/–Hoxd12–/–Hoxd13–/– tri- ple-knockout mice and Hoxd13–/–Hoxa13+/– mice exhibited similar but less severe defects, suggesting that these Hox genes have similar and complementary functions and that the spdh allele acts as a dominant negative.
    [Show full text]
  • Evolutionary Developmental Biology 573
    EVOC20 29/08/2003 11:15 AM Page 572 Evolutionary 20 Developmental Biology volutionary developmental biology, now often known Eas “evo-devo,” is the study of the relation between evolution and development. The relation between evolution and development has been the subject of research for many years, and the chapter begins by looking at some classic ideas. However, the subject has been transformed in recent years as the genes that control development have begun to be identified. This chapter looks at how changes in these developmental genes, such as changes in their spatial or temporal expression in the embryo, are associated with changes in adult morphology. The origin of a set of genes controlling development may have opened up new and more flexible ways in which evolution could occur: life may have become more “evolvable.” EVOC20 29/08/2003 11:15 AM Page 573 CHAPTER 20 / Evolutionary Developmental Biology 573 20.1 Changes in development, and the genes controlling development, underlie morphological evolution Morphological structures, such as heads, legs, and tails, are produced in each individual organism by development. The organism begins life as a single cell. The organism grows by cell division, and the various cell types (bone cells, skin cells, and so on) are produced by differentiation within dividing cell lines. When one species evolves into Morphological evolution is driven another, with a changed morphological form, the developmental process must have by developmental evolution changed too. If the descendant species has longer legs, it is because the developmental process that produces legs has been accelerated, or extended over time.
    [Show full text]
  • Geoffrey Herbert Beale, MBE, FRS, FRSE 11 June 1913 - 16 October 2009
    Geoffrey Herbert Beale, MBE, FRS, FRSE 11 June 1913 - 16 October 2009 Geoffrey Beale was recognized internationally as a leading protozoan geneticist with an all-absorbing love of genetics, stimulated in the early part of his career by either working with or meeting many of the key figures who laid the foundations of modern genetics in the 1930s and 1940s. His work on the genetics of the surface antigens of Paramecium provided a conceptual breakthrough in our understanding of the role of the environment, the cytoplasm and the expression of genes, and he continued his interest in the role of cytoplasmic elements in heredity through studies on both the endosymbionts and mitochondria of Paramecium. He pioneered the genetic analysis of parasitic protozoa with his work on Plasmodium, and this stimulated many other scientists to take a genetic approach with these experimentally challenging organisms. Geoffrey was born in Wandsworth, London, on 11 June 1913, the son of Herbert Walter Beale and Elsie Beale (née Beaton). His family included an elder brother (Hugh) and two younger sisters (Margaret and Joan). When he was about five years old the family moved to Wallington, Surrey, where he spent the rest of his childhood as well as staying there during his university undergraduate and postgraduate studies. He attended Sutton County School, Surrey from 1923 until he obtained his higher school certificates in mathematics, physics and chemistry in 1931. His main interest at that time was music and he briefly considered the possibility that he might make music his career and he became an accomplished pianist and organist.
    [Show full text]